/T & LTI systems

e |llustration
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(d) A bandpass filter corresponding to (c).

(¢) Poles near the unit circle.

https://engineering.purdue.edu/.../notes/Sect
ion1.6.pdf
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/T & LTI systems

e Example: phase distortion and delay

h;d[n] = 3[!‘! - nd].

— Which leads to Hiy(e/®) = e~ioma,
|Hig(e’*) =1,
<Hig(e!”) = —wny, lw| < ,

— Linear phase: delay
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/T & LTI systems

e Example: ideal LPF (with linear phase)
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hip[n] = x(n—ny)

’ —00 < n < 0O0.
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/T & LTI systems

e ||[lustration
e Filtering: selection of frequency components

Input Signal x|n]
1 ! ! T |

0.5
E MW
-

-05 H -
-1 | | | l
150 200 250 300 350 400

Sample number (n)

Mohammad Mahdi Naghsh
26 ECE. Dept., Isfahan University of Technology



Magnitude (dB)

[ x(er) |

/T & LTI systems

e [llustration (cont.)

Frequency Response Magnitude
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/T & LTI systems

e All-pass systems: constant magnitude for all
frequencies

— Delay system

e An example of first order system

-1 *

Z —a
H. ) =
- e /v —a* 1 —a*e/®
Hap(e}w) = — =e /¥ —
| —ae /@ | —ge /@
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/T & LTI systems

e Note: numerator and denominator of the
second factor are complex conjugate

1 —a*e’®
e /¥

| —ge-Jje

— therefore,

|Hap(eiw)| = ]

— Applications: e.g., phase compensation purposes
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/T & LTI systems

* |nverse systems

— Remember (LTI case)

— convolution x[n] — | hi[n] | — | h2[n] | — y[n]

z(n| — | hy[n] * ha|n] | — y[n]

xi[n] % xa[n] <> X,(2) Xa(2),

x[n| — | haln] x hq[n] | — y[n]

x[n] — | ha[n] |— | h1[n] | — y[n]

Mohammad Mahdi Naghsh
30 ECE. Dept., Isfahan University of Technology



/T & LTI systems

e Definition (inverse system):

The system H;(z) 1s the inverse system to H(z) if
Gl(z) = H(z)H;(z) = 1
¢ Or

g[n] = hin] x h;i[n] = §[n]

e and hence,

Mohammad Mahdi Naghsh
31 ECE. Dept., Isfahan University of Technology



/T & LTI systems

e ROC?

The question of which ROC to associate with H;(z) 1s answered by the

convolution theorem — for the previous equation to hold the regions of

convergence of H(z) and H;(z) must overlap.

e Example: an LTI system e opiie )
H(z)

~ 120091

_ ] — 0.9z}
T e

— Therefore, Hi(z)

ROC |z]| > 0.9.
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/T & LTI systems

] —0.9z7}
Helg) —
1(2) | —0.5z!

— ROC: two possible choices
— To be overlapped
— Finally:

|z] > 0.5

hi[n] = (0.5)"u[n] — 0.9(0.5)" 'un — 1]

— Causal and stable
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/T & LTI systems

 Observation
— the poles of H(z) are zeros of the inverse system
— the zeros of H(z) are poles of the inverse system
e Remember

— An LTI system is causal and stable iff all the poles
are located within the unit circle

e When both the H(z) and the inverse systems
are causal and stable?
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/T & LTI systems

 The previous question leads us to the
following definition:

— Minimum phase systems
— All the poles and zeros are located within the unit
circle

 The H(z) is causal and stable
 The inverse system is causal and stable
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/T & LTI systems

* Frequency response

l

H(e'?) = _
T He)

 Note: some LTI systems have no inverse!!
— Example: ideal LPF

— Some frequencies are set to zero and can not be
recovered
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/T & LTI systems

e Application: a wireless communication
channel

G(z2)
ST T Ty rr T r |
| |
l Distorting Compensating| |
—ll-»- system  fr—s system —lL—r 1
Slnl : Hd(z) "d["] H‘(Z) : “rl"l H"(z) = Hdmin(z)

G(2) = Ha(2) Ho(2) = Hyp(2)
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/T & LTI systems

 |llustration: compensation for FIR systems

Hi(2) = (1 = 0.9¢/967 7=1)(] — (0.9¢-i067 7-1)

x (1 — 1.25e/987 z=1)(1 — 1.25¢=7087 z—1),

— Causal
— non-minimum phase

) Im
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/T & LTI systems

— Frequency response
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