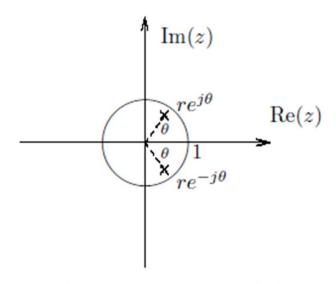
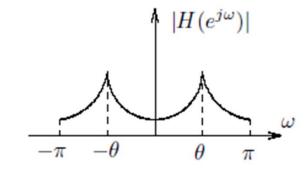
Illustration



(c) Poles near the unit circle.



(d) A bandpass filter corresponding to (c).

https://engineering.purdue.edu/.../notes/Sect ion1.6.pdf

Example: phase distortion and delay

$$h_{\rm id}[n] = \delta[n - n_d]$$

- Which leads to

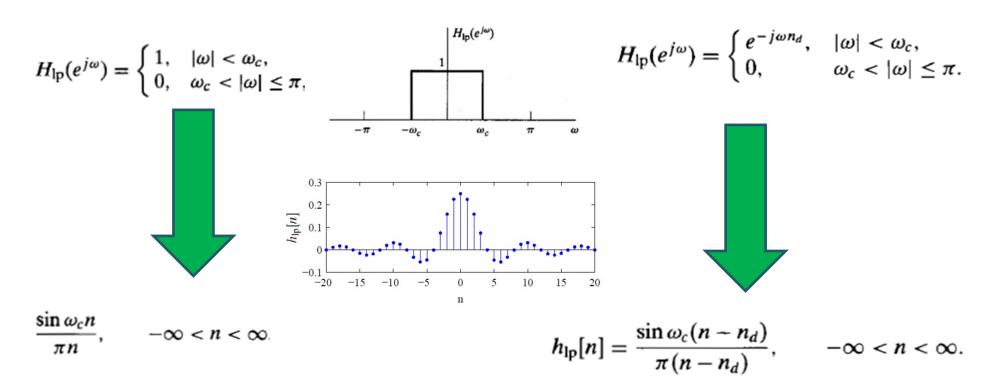
$$H_{\rm id}(e^{j\omega})=e^{-j\omega n_d},$$

$$|H_{id}(e^{j\omega})| = 1,$$

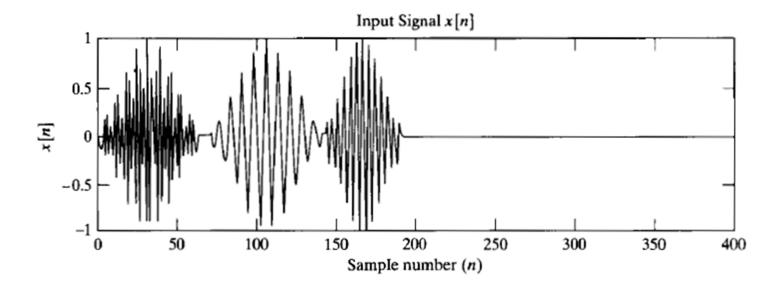
 $\langle H_{id}(e^{j\omega}) = -\omega n_d, \qquad |\omega| < \pi,$

– Linear phase: delay

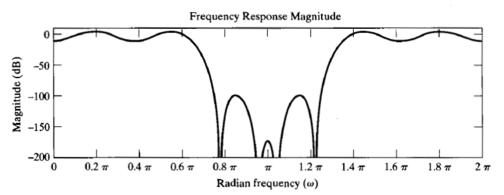
Example: ideal LPF (with linear phase)

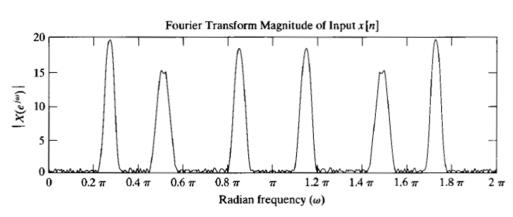


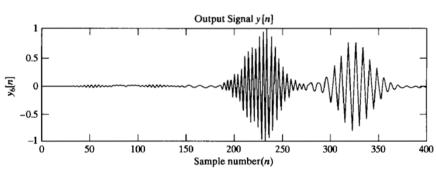
- Illustration
- Filtering: selection of frequency components



• Illustration (cont.)







- All-pass systems: constant magnitude for all frequencies
 - Delay system
- An example of first order system

$$H_{\rm ap}(z) = \frac{z^{-1} - a^*}{1 - az^{-1}}$$

$$H_{\rm ap}(e^{j\omega}) = \frac{e^{-j\omega} - a^*}{1 - ae^{-j\omega}} = e^{-j\omega} \frac{1 - a^*e^{j\omega}}{1 - ae^{-j\omega}}.$$

 Note: numerator and denominator of the second factor are complex conjugate

$$e^{-j\omega}\frac{1-a^*e^{j\omega}}{1-ae^{-j\omega}}.$$

- therefore,

$$|H_{\rm ap}(e^{j\omega})|=1$$

- Applications: e.g., phase compensation purposes

- Inverse systems
 - Remember (LTI case)
 - convolution

$$x[n] \to \boxed{h_1[n]} \to \boxed{h_2[n]} \to y[n]$$

$$x_1[n] * x_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X_1(z)X_2(z),$$

$$x[n] \to \boxed{h_1[n] * h_2[n]} \to y[n]$$

$$x[n] \to h_2[n] * h_1[n] \to y[n]$$

$$x[n] \to \boxed{h_2[n]} \to \boxed{h_1[n]} \to y[n]$$

Definition (inverse system):

The system $H_i(z)$ is the inverse system to H(z) if

$$G(z) = H(z)H_i(z) = 1$$

or

$$g[n] = h[n] * h_i[n] = \delta[n].$$

and hence,

$$H(z) = \frac{1}{H_i(z)}$$

ROC?

The question of which ROC to associate with $H_i(z)$ is answered by the convolution theorem — for the previous equation to hold the regions of convergence of H(z) and $H_i(z)$ must overlap.

Example: an LTI system

$$H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.9z^{-1}} \text{ ROC } |z| > 0.9.$$

- Therefore,
$$H_i(z) = \frac{1 - 0.9z^{-1}}{1 - 0.5z^{-1}}$$

We have

$$H_i(z) = \frac{1 - 0.9z^{-1}}{1 - 0.5z^{-1}}$$

- ROC: two possible choices
- To be overlapped
- Finally:

$$h_i[n] = (0.5)^n u[n] - 0.9(0.5)^{n-1} u[n-1]$$

Causal and stable

- Observation
 - the poles of H(z) are zeros of the inverse system
 - the zeros of H(z) are poles of the inverse system
- Remember
 - An LTI system is causal and stable iff all the poles are located within the unit circle
- When both the H(z) and the inverse systems are causal and stable?

 The previous question leads us to the following definition:

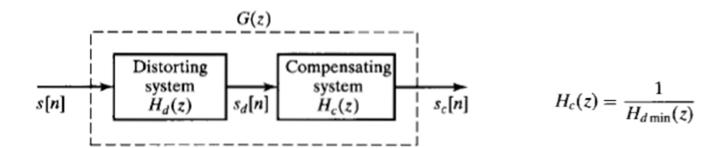
- Minimum phase systems
- All the poles and zeros are located within the unit circle
 - The H(z) is causal and stable
 - The inverse system is causal and stable

Frequency response

$$H(e^{j\omega}) = \frac{1}{H_i(e^{j\omega})}$$

- Note: some LTI systems have no inverse!!
 - Example: ideal LPF
 - Some frequencies are set to zero and can not be recovered

Application: a wireless communication channel

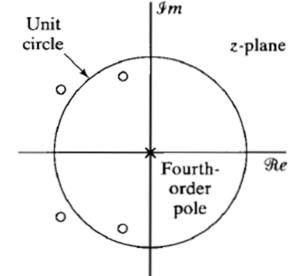


• Then,

$$G(z) = H_d(z)H_c(z) = H_{ap}(z)$$

Illustration: compensation for FIR systems

$$H_d(z) = (1 - 0.9e^{j0.6\pi} z^{-1})(1 - 0.9e^{-j0.6\pi} z^{-1})$$
$$\times (1 - 1.25e^{j0.8\pi} z^{-1})(1 - 1.25e^{-j0.8\pi} z^{-1}).$$



- Causal
- non-minimum phase

Frequency response

