P8.13 Optimum speeds, feeds, cost, Use Fig. P8.11

A single-tool, single pass turning operation has the following tool life equation: $v^3 f_r^{2.5}T = 15.24 \times 10^6$; v(m/min), $f_r(mm)$, T(min). The rate for using the machine is $r_m = 0.5/min$, the tool-changing time is $t_{tch} = 5 min$, and the cost per tool edge is $C_{te} = 2.50 , d = 80 mm, L = 400 mm

- (a) The feed f_r is limited by the maximum permissible cutting force of $F_{t,max} = 2516 N$. If cutting force is determined by $F_t = 1400 b f_r$ and b = 5 mm, what is the maximum feed?
- (b) Express the machining time t_m as a function of v and determine the optimum cutting speed v_{opt} (m/min).
- (c) What is the corresponding machining time t_m and the minimum cost per part C_p ?

P8.17 See Fig. P8.17

(a) $d_1 = 80$, $l_1 = 40$, $d_2 = 60$, $l_2 = 80$, $d_3 = 70$, $l_3 = 20$, $d_4 = 55$, $l_4 = 40$, all in (mm). Maximum permissible feed on all for tools $f_{max} = 0.3 mm$, tool life equation for all tools $v^3 f_r^2 T = 2 \times 10^7$, $t_{tch} = 6 min$, $C_{te} = 4$ \$, machine rate $r_m = 0.8$ \$/min.

Optimize spindle speeds n_a and n_b for minimum *C*/part. Determine n_a , n_b ; cutting speeds v_1 , v_2 , v_3 , v_4 ; Cycle time tool lives T_1 , T_2 , T_3 , T_4 , and cost per part C_p for the optimum conditions.

(b) $d_1 = 100$, $l_1 = 50$, $d_2 = 55$, $l_2 = 88$, $d_3 = 110$, $l_3 = 47$, $d_4 = 50$, $l_4 = 95$, all in (mm). Maximum permissible feed on tools 1 and 3 is 0.25 mm and on tools 2 and 4 0.3 mm, tool life equation is the same for all four tools $v^4 f_r^2 T = 3.24 \times 10^8$, $t_{tch} = 7.5 min$, $C_{te} = 8$ \$, machine rate = \$1.25. Determine optimum spindle speeds, cutting speeds, tool lives, and optimum cost per part.

Figure P8.17

Figure P8.11