**P8.3** Consider temperature in the chip, neglecting heat conducted through the tool. Refer to Section 8.2.2 and Fig. P8.3.

(a) Chip width  $b=8\,mm$ ,  $h_1=0.12\,mm$ ,  $v=3000\,mm/sec$ ,  $K_s=2000\,N/mm^2$ ,  $L_c=1.0\,mm$ ,  $\phi=30^\circ$ ,  $\beta=20^\circ$ ,  $T_{room}=20^\circ$ C,  $\Delta x=0.002\,mm$ ,  $\Delta y=0.01\,mm$ ,  $k=40\,N/(sec.\,^\circ\text{C})$ ,  $(\rho c)=3.6\,N/(mm^2.\,^\circ\text{C})$ . Determine:

Shear-plane temperature:  $v_s(mm/sec)$ ,  $F_s(N)$ ,  $P_s(mW)$ ,  $T_s(^{\circ}C)$ ,

Friction power distribution:  $F_f(N)$ ,  $v_c(mm/sec)$ ,  $P_f(mW)$ ,  $P_{max}(mW)$ :

Start of the potential computation:

Determine  $T_{1,1}, T_{2,1}, T_{3,1}, T_{1,2}, T_{2,2}, T_{3,2}$ 

(b) Chip width  $b=10 \ mm, \ h_1=0.15 \ mm, \ v=2500 \ mm/sec$  ,  $K_s=2000 \ N/mm^2$  ,  $L_c=1.0 \ mm, \ \phi=30^\circ$  ,  $\beta=20^\circ$  ,  $T_{room}=20^\circ$ C,  $\Delta x=0.002 \ mm, \Delta y=0.01 \ mm, \ k=40 \ N/(sec. °C), (<math>\rho c$ ) = 3.6  $N/(mm^2. °C)$ .

(c) b=10~mm,  $h_1=0.1~mm$ ,  $h_2=0.2~mm$ ,  $\Delta x=0.002~mm$ ,  $\Delta y=0.01~mm$ ,  $K_S=1800~N/mm^2$ , v=2500~mm/sec, k=24.5~N/(sec. °C),  $(\rho c)=3.5~N/(mm^2.$  °C),  $\phi=26.57$ °,  $\beta=20$ °,  $T_{room}=20$ °C.



Figure P8.3

**P8.4** Consider temperature in the chip; neglect heat conducted through the tool. Refer to Section 8.2.2 and Fig. P8.3. Machining steel 1035, k=43 N/(sec.°C),  $\alpha=12$   $mm^2/sec$ ,  $(\rho c)=3.7$   $N/(mm^2.$ °C),  $h_1=0.2$  mm, b=10 mm,  $L_c=0.8$  mm,  $v_c=1.5$  (m/sec),  $\Delta x=0.0025$  mm,  $\Delta y=0.02$  mm,  $\beta=20^{\circ}$ ,  $\phi=25^{\circ}$ .

HW #5



The following values have been precomputed: Shear-plane temperature  $T_s=510^{\circ}\text{C}$ , friction power  $P_f=2.07\times 10^6~N.\,mm/s~(mW)$ .

- (a) Determine  $P_{max}$ .
- (b) Determine the initial tempratures in the thermal field:  $T_{1,1}$ ,  $T_{2,1}$ ,  $T_{3,1}$ ,  $T_{1,2}$ ,  $T_{2,2}$ .
- P8.5 Consider temperatures in the chip; neglect heat through the tool. Refer to Section 8.2.2 and Fig. P8.5 and P8.10. Cutting steel  $K_s=2000~N/mm^2$ ,  $(\rho c)=3.7~N/(mm^2.\,^{\circ}\text{C})$ ,  $h_1=0.25~mm$ , b=8~mm,  $\beta=25^{\circ}$ ,  $\phi=30^{\circ}$ ,  $\alpha=0^{\circ}$ , v=3~m/sec. Determine cutting force F(N), shearing force  $F_s(N)$ , shearing velocity  $v_s(mm/sec)$ , shearing power  $P_s(N~mm/s)$ , and shear-plane temperature  $T_s(^{\circ}\text{C})$ , assuming  $T_{room}=20^{\circ}\text{C}$ . Thermal diffusivity  $\alpha=12~mm^2/sec$ . Determine chip velocity  $v_c$ , friction force  $F_f$ , and friction power  $P_f(N~mm/s)$ . Element dimentions:  $\Delta x=0.0025~mm$ ,  $\Delta y=0.022~mm$ . Determine time step  $\Delta t$ . In the course of computation, we find:  $T_{1,165}=779.2^{\circ}\text{C}$ ,  $T_{2,165}=706.0^{\circ}\text{C}$ ,  $T_{3,165}=670.1^{\circ}\text{C}$ , and  $T_{1,166}=781.0^{\circ}\text{C}$ . Determine  $T_{2,166}$ .



Figure P8.5