P8.3 Consider temperature in the chip, neglecting heat conducted through the tool. Refer to Section 8.2.2 and Fig. P8.3. (a) Chip width $b=8\,mm$, $h_1=0.12\,mm$, $v=3000\,mm/sec$, $K_s=2000\,N/mm^2$, $L_c=1.0\,mm$, $\phi=30^\circ$, $\beta=20^\circ$, $T_{room}=20^\circ$ C, $\Delta x=0.002\,mm$, $\Delta y=0.01\,mm$, $k=40\,N/(sec.\,^\circ\text{C})$, $(\rho c)=3.6\,N/(mm^2.\,^\circ\text{C})$. Determine: Shear-plane temperature: $v_s(mm/sec)$, $F_s(N)$, $P_s(mW)$, $T_s(^{\circ}C)$, Friction power distribution: $F_f(N)$, $v_c(mm/sec)$, $P_f(mW)$, $P_{max}(mW)$: Start of the potential computation: Determine $T_{1,1}, T_{2,1}, T_{3,1}, T_{1,2}, T_{2,2}, T_{3,2}$ (b) Chip width $b=10 \ mm, \ h_1=0.15 \ mm, \ v=2500 \ mm/sec$, $K_s=2000 \ N/mm^2$, $L_c=1.0 \ mm, \ \phi=30^\circ$, $\beta=20^\circ$, $T_{room}=20^\circ$ C, $\Delta x=0.002 \ mm, \Delta y=0.01 \ mm, \ k=40 \ N/(sec. °C), (<math>\rho c$) = 3.6 $N/(mm^2. °C)$. (c) b=10~mm, $h_1=0.1~mm$, $h_2=0.2~mm$, $\Delta x=0.002~mm$, $\Delta y=0.01~mm$, $K_S=1800~N/mm^2$, v=2500~mm/sec, k=24.5~N/(sec. °C), $(\rho c)=3.5~N/(mm^2.$ °C), $\phi=26.57$ °, $\beta=20$ °, $T_{room}=20$ °C. Figure P8.3 **P8.4** Consider temperature in the chip; neglect heat conducted through the tool. Refer to Section 8.2.2 and Fig. P8.3. Machining steel 1035, k=43 N/(sec.°C), $\alpha=12$ mm^2/sec , $(\rho c)=3.7$ $N/(mm^2.$ °C), $h_1=0.2$ mm, b=10 mm, $L_c=0.8$ mm, $v_c=1.5$ (m/sec), $\Delta x=0.0025$ mm, $\Delta y=0.02$ mm, $\beta=20^{\circ}$, $\phi=25^{\circ}$. HW #5 The following values have been precomputed: Shear-plane temperature $T_s=510^{\circ}\text{C}$, friction power $P_f=2.07\times 10^6~N.\,mm/s~(mW)$. - (a) Determine P_{max} . - (b) Determine the initial tempratures in the thermal field: $T_{1,1}$, $T_{2,1}$, $T_{3,1}$, $T_{1,2}$, $T_{2,2}$. - P8.5 Consider temperatures in the chip; neglect heat through the tool. Refer to Section 8.2.2 and Fig. P8.5 and P8.10. Cutting steel $K_s=2000~N/mm^2$, $(\rho c)=3.7~N/(mm^2.\,^{\circ}\text{C})$, $h_1=0.25~mm$, b=8~mm, $\beta=25^{\circ}$, $\phi=30^{\circ}$, $\alpha=0^{\circ}$, v=3~m/sec. Determine cutting force F(N), shearing force $F_s(N)$, shearing velocity $v_s(mm/sec)$, shearing power $P_s(N~mm/s)$, and shear-plane temperature $T_s(^{\circ}\text{C})$, assuming $T_{room}=20^{\circ}\text{C}$. Thermal diffusivity $\alpha=12~mm^2/sec$. Determine chip velocity v_c , friction force F_f , and friction power $P_f(N~mm/s)$. Element dimentions: $\Delta x=0.0025~mm$, $\Delta y=0.022~mm$. Determine time step Δt . In the course of computation, we find: $T_{1,165}=779.2^{\circ}\text{C}$, $T_{2,165}=706.0^{\circ}\text{C}$, $T_{3,165}=670.1^{\circ}\text{C}$, and $T_{1,166}=781.0^{\circ}\text{C}$. Determine $T_{2,166}$. Figure P8.5