

e Introduction to Pyt

« ABAQUS Scripting

Introductio

Python

Python Is an open source scripting language.

Developed by Guido van Rossum in the early
1990s

Named after Monty Python

Avallable for download from
http://www.python.org

Outline

Data

—strings, variables, lists, dictionaries
Control Flow

Working with files

Functions

Classes

Modules

Strings

e A string Is a single piece of text.
e Strings are written *..” or °...””

>>>
the king of spain

>>>

the king said hello.”

e Spaces are significant

>>>
the knights of ni

» Backslashes mark special characters

>>> # \n” 1s a newline
hello
wor ld

. Operation

>>> “the” + ’king”
“theking’

>>> len(the dif?)

6

>>> “the df " .count(the)
1

>>> “ihe king .replace
’a king’

>>> “the king’.u

>THE KING~

Variables

e A variable 1s a name for a value.

— Use “=" to assign values to variables.
>>> first_name =
>>> Jast name =
>>> first_name + + last _name
>John Smith”

— Variable names are case sensitive

— Variable names include only letters, numbers, and
— Variable names start with a letter or “ "

— Any variable can hold any value (no typing)

Lists

e Alistis an ordered set of values

— Lists are written reit,, eit,, ..., elt,,]
>>> [1, 3, 8]
[1., 3, 8]
>>> [. , » L 11

>>> []
>>> [1, 2, 1

— Ist[i] Is the |th element of Ist.
— Elements are indexed from zero

>>> words = [3 ! , 1
>>> words|[O]

“the”

>>> words|[2]

> of

Ist = ["a’, °b’
Ist[0]

Ist[-2]

I1st[-1][0]

Ist[0:2]
- 7]
Ist[2:]

Operations on Lists

>>> determiners = [: , 1
>>> Jen(determiners)

3

>>> determiners + [. 1
[the’, ”an’, ”a’, “some”’, “one’]}
>>> determiners

[“the’, “an”, “a’]}

>>> determiners.index()

2

>>> [1, 1, 2, 1, 3, 4, 3, 6]-count(l)
3

Operations on Lists

>>> determiners

[*the’, “an’, a’]

>>> del determiners[2]
determiners.append(
determiners.insert(l,
determiners

[’the”, “one”, “an’, ’every’]
>>> determiners.sort()

>>> determiners

[’an”, “every’, ’one’, “the’]
>>> determiners.reverse()
[’the’, “one’, ’every’,

>>>
>>>
>>>

an’]

remove the element at 2
) #insert at the end of the list
) #insert at the given index

sort alphabetically

reverse the order

Lists and Strings

e Converting strings to lists:

>>> list() # get a list of characters
[1a1, 2 1, 1m1, 1a1, 1n1]
>>> sphit() # get a list of words

[*a’, *man”]

e Converting lists to strings:

>>> str ([. 1) arepresentation of the list
11[1a1, 1man1]11
>>> gJoin(L , D # combine the list

Into one string
a-man’

>>> 1=2

>>> " job-"+str (i)
“jJob-2*

Dictionaries

e A dictionary maps keys to values

— Like a list, but indexes (keys) can be anything,
not just integers.
— Dictionaries are written {key:vai, ...}

>>> numbers = {“one”’:1, “two’:2, “three’:3}

— Dictionaries are indexed with dict[key]

>>> numbers| “three”’]
3
>>> numbers[“four’] = 4

— Dictionaries are unordered.

Operations on Dictionaries

>>> determiners = {“the’:“def’, “an’:“indef”’,
“a’:’indef’}

>>> determiners.keys()

[<an”, “a’, “the’]

>>> determiners.has _key(“an?”)

1 # 1is true

>>> del determiners[“an’”]

>>> determiners.has _key(“an?)

0 # 0 is false

>>> lastFrame.fieldOutputs|["EPDDEN"].values

>>> 5§ == 342
True

>>> 5 1= 3*2
False

>>> 5 > 3*2
False

Control Flow
e | T statement

if i1 > 3:
del mdb.models["Model-1"].steps["load"]

body i
print “deleted the load step’

— Indentation is used to mark the body.
— Note the “.” at the end of the if line.

Control Flow

e [f-elif-else statement

iT 1 == 5:
bodylg del mdb.models["Model-1"].steps| “preload”]
print deleted the preload step’
elif 1 == 6:
body?2) del mdb.models["Model-1"].steps|["load"]
print deleted the load step’

kelse:
body3{ i

— Indentation is used to mark the body.
— Note the “.” at the end of the if line.

Control Flow

< while statement

while x < 1000 :
body X = X*X+3

— Indentation is used to mark the body.
— Note the “.” at the end of the if line.

Control Flow

e for statement

fornin|[1, 8, 12]:
print n*n+n

range()

for n in range(0, 10):
print n*n

— Indentation is used to mark the body.
— Note the “:” at the end of the if line.

Working with Files

To read a file:

>>> for line in open(’corpus.txt’, “r’).readlines()
print line

. To write to a file:

>>> outfile = open(Coutput.txt’, “w?)
>>> outfile.write(my _string)
>>> outfile.close()

e Example:
>>> outfile = open(Coutput.txt”, “w’)
>>> for line 1In open(’corpus.txt’, ’r’).readlines()
outfile.write(line. replace(a’, ’some’))

>>> outfile.close()

Functions

o A function Is a reusable piece of a
program.

 Functions are defined with def

>>> def square(X):

return x*x
>>> print square(8)
64

>>> def power(x, exp=2): # exp defaults to 2
IT X <= 02 return 1

else: return x*power(x, exp-1)

Classes

A class acts as the object which contains
variables and operations (or methods)

The simplest class:

>>> class Simple: pass

Class objects are created with the constructor,
which has the same name as the class:

>>> obj = Simple()

Variables are accessed as obj.var

>>> obj.x = 3

An Example Class

>>> class Account:
def _1nit_ (self, initial):
self.balance = 1nitial
def deposit(self, amt):
self.balance = self.balance + amt
def withdraw(self,amt):
self.balance = self.balance - amt
def getbalance(selT):
return self.balance

e init__ defines the constructor

- self is the object that is being manipulated.
— It is the first argument to every method.

Using the example class

>>> a = Account(1000.00)
>>> a.deposit(550.23)
>>> print a.getbalance()
1550.23

>>> a.deposit(100)

>>> a.withdraw(50)

>>> print a.getbalance()
1600.23

Modules

A module Is a collection of useful
operations and objects.

e Access modules with import

>>> import Odb # regular expressions

e Or use from..import

>>> from abaqus 1mport *

