The stress intensity factor
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Equal stress intensity factors for two different cracks with different
lengths In different geometries under different loadings ensure
similar crack tip stress fields. Hence, the critical stress intensity
factor K., obtained at the onset of crack growth for a specific
material and geometry, can be interpreted as a /mechanical property
named fracture toughness.
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Relationship between K and Global Behavior

In order for the stress intensity factor to be useful, one must be able to
determine K from remote loads and the geometry. Closed-form
solutions for K have been derived for a number of simple
configurations. For more complex situations, the stress intensity factor
can be estimated by experiment or numerical analysis.

For an infinite plate subjected to remote tensile stress:

K, of, .. 6. 30
Cos—|1-SIn—SIn— | — K, =0 r

O =

XX

K-based crack growth criteria:
Ky =Ky, Ki =Kie. K =Ky

K. = Fracture Toughness
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Effect of Finite Size

Most configurations for which there is a closed-form K solution consist
of a crack with a simple shape (e.g., a rectangle or ellipse) in an infinite
plate. Stated another way, the crack dimensions are small compared
with the size of the plate; the crack tip conditions are not influenced by
external boundaries. As the crack size increases, or as the plate
dimensions decrease, the outer boundaries begin to exert an influence
on the crack tip. In such cases, a closed-form stress intensity solution is
usually not possible.
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Effect of Finite Size
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Stress concentration effects due to a through crack in finite and infinite
width plates: (a) infinite plate and (b) finite plate
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Effect of Finite Size

Collinear cracks in an infinite plate subjected to remote tension
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Effect of Finite Size

More accurate solutions for a through crack in a finite plate
have been obtained from finite element analysis; solutions of
this type are usually fit to a polynomial expression.
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Although stress intensity solutions are A
given in a variety of forms, K can :
always be related to the through crack [
through an appropriate correction factor:

I =—Equation 2.53
= A / I -=— Equation 2.54
K( I, I ,”” YG na o —e — Secant term in Equation 2.54

0 I L L | L L | T L 1 4 L 1 L I
0 0.2 0.4 0.6 0.8 1.0

alW

ST 0aSliils ~Olgins  gnis oKl 7 S SIS



f&ébdﬂé‘ﬁuﬁ'gbm%%

~_

Source. Tada, H., Paris, P.C., and lrwin, G.R., The Stress Analysis of Cracks Handbook (2" Ed),

Paris Productions, Inc., St. Louis, 1985. f(i]
Geometry W
Single-edge notched tension (SENT) \/2 tan(na/ZW) 0.752 + 2.02(1]
T lk p cos(ma/2W)
w — 3
| +0.37(1—smﬂ)
2W
Single-edge notched bend (SE(B)) 3(S/ W) la/ W [1
P/2 e S »| P/2 32|
V v 2(1+ 2(a/W)) (1= (a/ W)

e ai-aers-ss(g)er(a]]
I

P a
K; = , where B is the specimen thickness
= ( w) P
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Source. Tada, H., Paris, P.C., and lrwin, G.R., The Stress Analysis of Cracks Handbook (2" Ed),

Paris Productions, Inc., St. Louis, 1985. f(i
Geometry W
Center-cracked tension (CCT) - - i ; 2
—sec(—) 1—0.025(—)
4w 2W W
+ p L
-+ 2W 2a >

Double-edge notched tension (DENT)

I_[E Jra/2W [ a =

—— | 1.122-0.561| — |—=0.205| —
T P JI=(a/W) (w) (w)
-~ 2W — -

— roar(ir] s

P a
K; = , where B is the specimen thickness
= ( w) P
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Source. Tada, H., Paris, P.C., and lrwin, G.R., The Stress Analysis of Cracks Handbook (2" Ed),

Paris Productions, Inc., St. Louis, 1985. f(i]
Geometry W
Compact specimen
2
A e i [0.886+4.64(i)—13.32(1)
o) T (1-@@/W)) W W
3 4
E e +14.72(i) —5.60(1) }
@ *“-*JL W W
Y

P a
K; = , where B is the specimen thickness
Nl [w) P
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EXAMPLE

Show that the K, solution for the single-edge notched tensile panel reduces to
Equation K, —Y oNma =1.12c+7a whena<<W.

Single-edge notched tension (SENT)

P a
a ) _ 4J2tan(ma/2W) (i)
f(,W] ~ cos(ma/2W) 0-752+ 2.2 4%
+037(1 smﬂ”
QW

Kf=Bj’Wf[;;]=%f(gj\/%wzmw — o)

) i a i imY =1.122
pu— _— _—
aAIA'/moY aAIA'/mof QN )‘/ " a/u/mo‘/ [0.752 + 0.37] /;; ) W o
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The K-zone \

what distance to the crack tip, displacement and stresses are still
described accurately by the first term of the total solution?

' o= K1 g
D 27rr
l l K-zone : D
/ | Il D, << D,
2 2 = 2

The K-zone depends on geometry and /oading.
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Relationship between Kand G

There are two different criteria, based on energy considerations and
crack tip stress field, for the onset of crack growth. So, there should be

a relationship between methods.

Consider a crack of initial length a + Aa
subject to Mode / It is convenient in this
case to place the origin a distance Aa behind
the crack tip (plate thickness=1).
Now assume that we may partially close the
crack through application of a compressive
stress field to the crack faces between x = 0
and x =Aa. The required work is:
W zszaGy (x)v(x)dx
0 2
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Relationship between Kand G
g, Is the compressive stress distribution and v Is the crack opening

displacement. The factor of 2 on work Is required because both
crack faces are displaced.

As this work will be released as energy, the energy release rate G can
be written (fixedload):

G = IimVL: lim —| —2—dx (*)

? J-Aa G \"
Aa—>0 Aq Aa—0 AQ YO 2

We may define the stresses and displacements in terms of the stress
intensity factor (The crack opening displacement, v, for Mode 7 is
obtained from Previous meeting by setting 8 = m, r = Aa — x):

1+V e 2 e 4K|(a+Aa) Aa - X
v=—-K, sin +1-2cos°| — )\ =
E \/27: (2)[]{ (2)} E’ on
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Relationship between Kand G

Noting that E’=E for plane stress and E'=E/(1-v?) for plane strain. Here
K;(a +Aa) denotes the stress intensity factor at the original crack tip.
The normal stress required to close the crack is related to K, for the

shortened crack: K
o =@
o V27X
Substltutlng Into Eq. (*):
G — Iim I(a+Aa) | (a) J’Aa Aa — X
ra-0  27E'Aa
For plane stress: G = K/*
E
For plane strain: G =01-v%)
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Relationship between Kand G

Ki'
El
analysis can be repeated for other modes of loading; the relevant closure
stress and displacement for Mode 1II is 7,, and u, and the corresponding
quantities for Mode /// are 7, and u,, When all three modes of loading are

present, the energy release rate is given by:

— I<|2 +KII2_|_KIII2

Thus, Equation G = 1s a general relationship for Mode I. The above

G

E’ E' 26
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Crack Tip Plasticity

Linear elastic stress analysis of sharp cracks predicts infinite stresses at the
crack tip. In real materials, however, stresses at the crack tip are finite
because the crack tip radius must be finite. Inelastic material deformation,
such as plasticity in metals leads to further relaxation of crack tip stresses.
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Crack Tip Plasticity

The size of the crack tip yielding zone can be estimated by two methods: #e
/rwin approach, where the elastic stress analysis Is used to estimate the
elastic—plastic boundary, and the strip yield model. Both approaches lead to
simple corrections for crack tip yielding. The term plastic zone usually
applies to metals, but will be adopted here to describe inelastic crack tip
behavior in a more general sense.

» The Irwin Approach

On the crack plane (9 = 0) the normal stress, 0 ,, in a linear elastic material

1s given by o As a first approximation, we can assume that the

Yy \/—
boundary between elastic and plastic behavior occurs when the o, satisty a

yield criterion.
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Crack Tip Plasticity

: K 1 (K
> The Irwin Approach o, =———==0¢,, == y = E .]

27Tr 27\ oyg

If we neglect strain hardening, the stress  %» —_p

distribution for r= r, can be represented e

by a horizontal line at o, = 0 y5.

The cross-hatched region represents o T i
forces that would be present in an e }

elastic material but cannot be carried - _

iIn the elastic—plastic material v r
because the stress cannot exceed the — % \

yield. ’

ST 0aSliils ~Olgins  gnis oKl 19 CanS SIS



S 5 Gl 4l Sy U,

> The Irwin Approa(;h\

The cross-hatched area represents the load that must be redistributed,
resulting in a larger plastic zone. A simple force balance leads to a second-

order estimate of the plastic zone size, s,

fy fy K
oyl = E‘;cfyydl‘ =_£ 27'” dr

2
- r zl(K.j

7T\ Oyg

Irwin accounted for the softer material
In the plastic zone by defining an
effective crack length that is slightl

longer than the actual crack size.

ST 0aSliils ~Olgins  gnis oKl

20

¥y

Oys

Elastic

Elastic—plastic

o §a¢§f&~



= S 5 Gl 4l Sy L,

> The Irwin Approa(;h\

The effective crack: By =a+Tr,
1 (K , 1 (K
For plane stress: ¥, = ( ' ] For plane strain. 1, = ( | j
27\ oy 7\ Oy

The effective stress intensity is obtained by inserting 4.5 into the K
expression for the geometry of interest:

Kt =Y (& )o A 7

Since the effective crack size is taken into account in the geometry
correction factor, Y; an iterative solution is usually required to solve for K
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» The Strip Yield Model

The strip yield model was first proposed by Dugaale and Barenblatt.

This model approximates the elastic—plastic behavior by superimposing
two elastic solutions: a through crack under remote tension and a through
crack with closure stresses at the tip. Thus, the strip yield model is a
classical application of the principle of superposition.

2a + 2p

|< 2a p l Oy 1 l

Plastic zone
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» The Strip Yield Mc-)del\

Load o: K, (o) = O'\/ﬂ'(a +1))

. a
Load 0 K, (0vs) =K oo = =207 P arccos
T a—+ rp

singular term =0

K, () =K, (5ys) trerrrrtrtrrttttitto
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Since 1/m = 0.318 and /8 = 0.392, the Irwin and strip yield approaches
predict similar plastic zone sizes.

The effective crack: Ay =atrl

o
Ky =0, [rasec
\/ (ZGYS j
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Table: Fracture toughness of materials

Material G,(kJm=2) K,A{MNm?) E(GPa) K2, /E
Steel alloy 107 150 210 97 7
Aluminum alloy 20 37 09 18.1
Polyethylene 20 (J;0) — 0.15

High-impact polystyrene 15.8(Jyc) — 2.1

Steel — mild 12 50 210 10.83
Rubber 13 — 0.001
Glass-reinforced thermoset 7 7 7 6.37
Rubber-toughened epoxy 2 2.2 2.4 1.84
PMMA 0.5 1.1 2.5 0.44
Polystyrene 0.4 1.1 3 0.366
Wood 0.12 0.5 2.1 0.11
Glass 0.007 0.7 70 0.636
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