Crack-tip Stress Analysis
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A variety of techniques are available for analyzing stresses In
cracked bodies. We focus on Williams approach; the Williams
approach considers the local crack-tip fields under generalized
Inplane loading.

Williams was the first to demonstrate the universal nature of
the 1/\/Fsingularity for elastic crack problems. Williams actually
began by considering stresses at the corner of a plate with various
boundary conditions and included angles; a crack is a special case
where the included angle of the plate corner is 2t and the surfaces
are traction free.
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Williams postulated the
following stress function: ¢ — r*c,sin(A+1)@" +c, cos(A+1)6"
+c,8in(A-1)0 +c,cos(A-1)0"] (%)
=" (6", 1)
where ¢, c,, ¢y, and ¢, are constants and 6 = 6 + w. Williams showed that the
displacements vary with r % In order for displacements to be finite in all

regions of the body, A must be > 0.
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If the crack faces are traction free, ¢,,(0)=0,,(27) =0,,(0) =0,,(27) =0
which implies the following boundary conditions:

FO)=F@2r)=F'(0)=F'(27)=0 (#)

Assuming the constants in Equation (*) are nonzero in the most general case,
the boundary conditions can be satisfied only when sin(2z1) =0. Thus,

ﬁzg, where n=12.3 ...
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There are an infinite number of A values that satisfy the boundary conditions;
the most general solution to a crack problem, therefore, is a polynomial of
the form: (

and the stresses are: 1
(6?*

Oy = "‘i( j(9*1m)j (**)

I" is a function that depends on F~and its derivatives. The order of the stress function
polynomial, A, must be sufficient to model the stresses in all regions of the body.
When ,r — 0 the first term in Equation (**) approaches infinity, while the higher-
order terms remain finite (when m = 0) or approach zero (for m > 0).
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Fij (‘9*’_1) N m
o, = 2 +Z(r21“ij (H*,m)j (**)

! \/F m=0

Thus the higher-order terms are negligible close to the crack-tip, and stress exhibits
an 1/+/r singularity. Note that this result was obtained without assuming a specific
configuration. It can be concluded that the inverse square-root singularity is universal
for cracks In isotropic elastic media.

From Egs. (*) and (#), it is possible to eliminate two of the constants:

CI)(r,6?)=r2+1 cg[sin N4 6?*—n_25in(n+ j&}
2 n+2 2

+c{cos A 9*—cos(n+1j6?*}}
2 2
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0=0*-r r
o(r,0) =r* {51(—0056—1cos?ﬁj+t1(—sine—sin 39)}
2l 2 3 2 2 2

\ +r2[1-c0s20]+0 (r*?)+...

9*

where s;and £;are constants to be defined.
The stresses are:

c, = 1{51{—5005‘9+ cosw} +t1{—53in 9 | 3sin 39}}+452 cos’ @+0 (r'?) +...
aJr 2 2 2 2

1 ) 0 360 . 0 . 30 ) 12
= —=3S,| —3C0S—~—C0S— [+t,| =3sIn ——3sIn— |+ +4s,SIN“@+0(r"°) +...
O 9o 4/_I’{1_ 5 2} 1[ 5 2}} 2 (r)

o =1{sl —sine—sin39}+t{cosg+3cos?"9}}—2323in 20+0 (r’?) +...
N e 2 2 2
The constants s; in the stress function are multiplied by cosine terms while the £ are
multiplied by sine terms. Thus, the stress function contains symmetric and
antisymmetric components, with respect to 6 = 0. When the loading is symmetric
about 6 = 0, £,= 0, while s;= 0 for the special case of pure antisymmetric loading.
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(Opening) (In-Plane Shear) (Out-of-Plane Shear)
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¢ displacement for Mode |
' U1(9>0):U1(9<0)
0 A >0) =—U2(e<0)

X1

Examples of symmetric loading include pure bending
and pure tension; in both cases the principal stress Is
normal to the crack plane. Therefore, symmetric
loading corresponds to Mode /.
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¢ displacements for Mode |l
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antisymmetric loading is produced by in-plane shear on
the crack faces and corresponds to Moae /1.
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o, =1{s{—5c059+c0539 +tl[—55in9+3sin39}}+4szcosz6?+O(r1’2)+...
4T 2 2 2 2
aeezl{sl 3c0s’ —cos ¥ +t1{—35in9—3sin39}}+4szsin29+0(r1’2)+...
adr 2 2 2 2
o,y =1{s1 —sine—sin38}41[0059+30053‘9}}—2525in 20+0 (r'?) +...
AN1 7L 2 2 2 2
KI KII
S =— e, 1, =
N2r N2rx

The crack-tip stress fields for symmetric (Mode 1) loading (assuming the higher-
order terms are negligible) are given by: K [5 0 1 30
o, = [4005—003}

27rY 2 4 2

K, [ 3 0 1 39}
Gy = ~Cos—+>c0s—

27r| 4 2 4 2

O,,=—"— 1sin9+lsin3ﬂ
Y 2xrld4 2 4
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The singular stress fields for Mode Il are given by:

[ 5. 60 3. 39}
o, = —=sin = +-=sin—
4 2 4 2




In the Cartesian coordinates
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The crack-tip stress fields for Mode I: O
¥ iiy
o (I Oy =
) ol
O,
__c;;;?\ 0 Y O'Xy =
0 X
The crack-tip stress fields for Mode II:
GXX
o

o, =v(o, + Oy )

GZZ :O
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The Stress Intensity Facm

Each mode of loading produces the 1/~/r singularity at the crack tip, but the
proportionality constants K (7/e Stress Intensity Factor) and f; depend on the mode.
The stress intensity factor is usually given a subscript to denote the mode of loading,
e, K, K,, or K, Thus, the stress fields ahead of a crack tip in an isotropic linear
elastic for Modes I, 11, and IlI, respectively.

The stress fields ahead of a crack tip in an isotropic linear elastic material can be

written as:

. K
lim ol = ——L_f (g
Moy = o @

. K
lim o :2_'7'”1‘”(“)(.9)

||m Giglll) _ hf ij(III)(@)

r—0 ‘/Zﬂ-r

In a mixed-mode problem (i.e., when more than one loading mode is present):
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The Stress Intensity Facm

Consider the Mode I singular field on the crack plane, where 6= 0:

Singularity Dominated
Zone

The stress intensity factor defines the amplitude of the crack-tip singularity. That
IS, stresses near the crack tip increase in proportion to K. Moreover, the stress
Intensity factor completely defines the crack tip conditions; if K'is known, it Is
possible to solve for all components of stress, strain, and displacement as a
function of rand &. This single-parameter description of crack tip conditions
turns out to be one of the most important concepts in fracture mechanics.
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Finding the displacement field can be a more difficult problem than finding
the stress field. One approach is to calculate the strains using the stress-strain
laws, and then integrate the strain-displacement relations to determine the

displacement fields.

Williams used the approach of starting from the solution of Coker and Filon
In which it is shown that the displacement components in polar coordinates

are related to the stress function by: oD o
2uu,. =——+1-v)r—

100 0¥
2ul, =———+1-v)r°— +
HUy r 00 1-v) or (+)
where the displacement potential, ¥ is related to the stress function by

8(r N)
Vip=——00_ ()
or
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1 is the shear modulus, and v =v for plane strain and v =v/(1+v) for plane
stress.

For Mode-1:  ®=r""[c,cos(A+1)0+c,cos(A-1)0]  (%%)
¥ =r"[a,cosméf+a,sinmé]

Evaluating the derivatives of Eq. (%%) and substituting into Eq. (%) yields:
a=0 a=4,/4, m=41

w = Lagin 10
A
Taking only the first term of the series (corresponding to A=1/2):
O :c4r3’2[cosg+}cosg—‘9]
2 3 2

¥ :8c4r‘”zsin§
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Substituting into Eq. (+) and replacing ¢, by K,/N2x yields:
6 1 36

u. i a+v) [T (—41/)(3033—2cos.2
u, "B \2z .0 1. 30

—(——4v)sm—+—sm—
2 2 2 2

In the Cartesian coordinates: _
U= 1+—VK COS 0 Kk —1+2sin?
Ui ocIr E 27‘C 2 |

1+—VK ‘/ sm(ej Kk +1—2cos”
E 2T 2

where u, v = displacements in X, y directions
Kk = (3—4v) for plane strain problems

K= (3_—\’) for plane stress problems
1+v
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