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Joad controlled : Consider a cracked plate that is dead loaded, since
the load is fixed at A, the structure is said to be /oad controlled

(‘f;’) 2B @2)

(a)
Cracked plate at a fixed load ~.
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aisplacement controlled: when displacement is fixed
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(a)

Cracked plate at a fixed displacement A.
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The compliance : the inverse of the plate stiffness cah
P

For both load control and displacement control: G =——

(@) {w)
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In reality the loading of the plate may not be purely according to the
extreme cases, as Is shown in the figure. From such a real experiment the
energy release rate can be determined from the force-displacement curve.
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u
Experimental force-displacement curve during crack growth.
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Instability and the R curve R e 5 gl <
R : the material resistance to crack extension

Crack extension occurs when G = 2w ; but crack growth may be
stable or unstable, depending on how G and w;vary with crack size.

A plot of Rvs. crack extension is called a resistance curve or R curve.

The corresponding plot of G vs. crack extension is the ariving force curve.
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(a) (b)

Schematic driving force vs. R curve diagrams (a) flat / curve and (b) rising /R curve.
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(a) (b)
The conditions for stable crack growth can be expressed as follows:

G R and dG sd R
da da

dG . dR

Unstable crack growth occurs when da da

ST 0aSliils ~Olgins  gnis oKl 9 S SIS



R oo 5 olubLl

~_

The energy approach can also be used for the analysis of different aspects of

further crack growth such as /nstability, dynamic crack growth, and crack arrest.
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Unstable crack growth occurswhen G >R and dG > dR
da da
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Crack Speed

an infinite sheet with a central crack of length Za under remote tensile stress o ,

the horizontal and vertical displacements of these elements can be written as:

’ =22 Jar £, (0) A R
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Crack Speed N

The kinetic energy for the plate can be

defined and calculated as follows:

The kinetic energy for two crack tips, can

be defined and calculated as follows:

The constant Ris equal to G,, at the onset of

2
instability(G _ = ’“’Eac .
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Crack Speed N

Equating the two energies we may find

the crack growth rate as: = \/E F (1_&)
k\p a
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Crack Branching

under constant load where the energy release rate increases with further
crack growth, there might be a point where the available energy becomes

twice the energy required to grow a single crack.
A
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Crack Arrest

One practical remedy Is to use riveted

patches or other types of stiffeners to

simulate a fixed-displacement condition 4
and arrest the crack. The location of the
arrester must be chosen properly by
considering the Kkinetic energy of the
crack.The patch may decrease the energy
down to the point C where the crack is <. ) |
expected to stop after a growth equal to | o KT

™ S

Ad,. o o .

The area CDE equal to ABC
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Mathematical Foundations of Linear Elastic Fracture Mechanics
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The equations that follow are simplifications of more general relationships
In elasticity and are subject to the following restrictions:

« Two-dimensional stress state (plane stress or plane strain)

* |sotropic material
 Quasistatic, isothermal deformation

 Absence of body forces from the problem
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Thickness

Plane Stress

Thickness

Plane Strain

plane Stress : climio i
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plane strain : s\i=ao i S
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Cartesian Coordinates:

Strain-displacement relationships:
ou, ou, 1(6uX 5UyJ
= +

gxx I ] g - ] 8 —_- —
OX Yooy
Stress-strain relationships:

1. Plane strain I

O =
T (1+v)(1=2v)

[((1=v)e  +ve ]

E
O =
T A+v)(1-2v)

[((1=v)e, +Vve ]

E

T, =2UE, = 1+v8xy

o.=Vv(Oo,.+0,)

822 = 8xz = 8_))2 = TJCZ = TyZ = O
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Cartesian Coordinates:
Stress-strain relationships:

2. Plane stress

0,=—" 2[(c:m,+veyy]
Ry le,, + Ve, ]
xyzzugxy:lfv xy
e.=——(e +¢€,)




Cartesian Coordinates:
Equilibrium equations:

Compatibility equation:
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Cartesian Coordinates:

Airy stress function. For a two-dimensional R

contir_1uous elastic medi_um, there exists a 0= 0y

function ®(x, y) from which the stresses can be

derived: PRI
O-y)-’: x>
L. 00
“"y 0xdy

The equilibrium and compatibility equations are automatically satisfied if

® has the following property: ,

o' P 0'd  J'D

4 T 2 2 2 T 4
ox ox-dy~ dy

=0

VVD =0
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Polar Coordinates:

Strain-displacement relationships:

ou,
grr:
or
, U 10u,
“r r o6
1(1aur ou, ug)
ro — Al - + o
2\r o0 or r

Stress-strain relationships:

1. Plane strain
E

O =
T d+v)(1-2v)

[(1-Vv)e_+ Vel
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Polar Coordinates:
Stress-strain relationships:

2. Plane stress E
O-rr - 2 [err + VSBB]
Equilibrium equations:
ao_rr + l aTrB + O-rr 0-99 =
or r 00 4




s SV S SO L, Sl
T N—

Polar Coordinates:

tibilit tion: 2 —
Compatibility equation V (O-rr + 0-99) = ()
where: @ 10 18
Vi=s—S+——+—5——
or:- ror r°oo
Airy stress function(where @ = @(r, 6 )): V2V2iP = ()
- : 1 0°® 10®
Airy stress function: - et
4 O r* 00° " r or
5 - 0°D
06 arz
1 0°® 1 9D

T,=—— +
o r orof 1> 00
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