

دانشگاه صنعتی اصفهان دانشکده مکانیک

Modeling Fracture with Abaqus (2)

Modeling Fracture with Abaqus

- Modeling Cracks
- Calculation of Contour Integrals
- ❖ Creating an XFEM Fracture Model

Introduction of XFEM

- The XFEM modeling technique...
 - Can be used in conjunction with the cohesive zone model or the virtual crack closure technique
 - Delamination can be modeled in conjunction with bulk crack propagation
 - Can determine the load carrying capacity of a cracked structure
 - What is the maximum allowable flaw size for safe operation?
- Applications of this technique include the modeling of bulk fracture and the modeling of failure in composites
 - •Cracks in pressure vessels or engineering structures
 - •Delamination and through-thickness crack modeling in composite plies

Introduction of XFEM

- Some advantages of the method:
 - •Ease of initial crack definition
 - •Mesh is generated independent of crack
 - •Partitioning of geometry not needed as when a crack is represented explicitly
 - •Nonlinear material and nonlinear geometric analysis
 - •Arbitrary solution-dependent crack initiation and propagation path
 - •Crack path does not have to be specified a priori
 - •Mesh refinement studies are much simpler
 - •Reduced remeshing effort
 - •Improved convergence rate for the finite element solution (stationary crack)
 - •Due to the use of singular crack tip enrichment

Introduction of XFEM

- ➤ Mesh-independent Crack Modeling —Basic Ingredients
 - 1. Need a way to incorporate discontinuous geometry –the crack –and the discontinuous solution field into the finite element basis functions
 - •eXtended Finite Element Method (XFEM)
 - 2. Need to quantify the magnitude of the discontinuity –the displacement jump across the crack faces
 - •Cohesive zone model (CZM)
 - 3. Need a method to locate the discontinuity
 - Level set method (LSM)
 - 4. Crack initiation and propagation criteria
 - •At what level of stress or strain does the crack initiate?
 - •What is the direction of propagation?

> XFEM Displacement Interpolation

Heaviside enrichment term

H(x): Heaviside distribution

a₁: Nodal enriched DOF (jump discontinuity)

 N_{Γ} : Nodes belonging to elements cut by crack

$$\mathbf{u}^{h}(\mathbf{x}) = \sum_{I \in N} N_{I}(\mathbf{x}) \left(\mathbf{u}_{I}\right) + \underbrace{H(\mathbf{x}) \mathbf{a}_{I}}_{I \in N_{\Gamma}} \left(\mathbf{x}\right) b_{I}^{\alpha}$$

 u_I : Nodal DOF for conventional shape functions N_I

Crack tip enrichment term

 $F_{\alpha}(x)$: Crack tip asymptotic functions

 b_I^{α} : Nodal enriched DOF (jump discontinuity)

 N_{Λ} : Nodes belonging to elements containing crack tip

- The crack tip and Heaviside enrichment functions are multiplied by the conventional shape functions
 - Hence enrichment is local around the crack
 - Sparsity of the resulting matrix equations is preserved
- The crack is located using the level set method (discussed shortly)
- > Heaviside function

* Accounts for displacement jump across crack

$$H(x) = \begin{cases} 1 & \text{if } (x - x^*) \cdot n \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Here x is an integration point, x^* is the closest point to x on the crack face and n is the unit normal at x^*

- Crack Tip Enrichment Functions (Stationary Crack Only)
 - Account for crack tip singularity
 - Use displacement field basis functions for sharp crack in an isotropic linear elastic material

$$[F_{\alpha}(\mathbf{x}), \alpha = 1 - 4] = [\sqrt{r} \sin \frac{\theta}{2}, \sqrt{r} \cos \frac{\theta}{2}, \sqrt{r} \sin \theta \sin \frac{\theta}{2}, \sqrt{r} \sin \theta \cos \frac{\theta}{2}]$$

* Accounts for displacement jump across crack

- Level Set Method for Locating a Crack
 - A level set (also called level surface or isosurface) of a real-valued function is the set of all points at which the function attains a specified value
 - Popular technique for representing surfaces in interface tracking problems
 - Two functions Φ and Ψ are used to completely describe the crack
 - The level set Φ = 0 represents the crack face
 - The intersection of level sets $\Psi = 0$ and $\Phi = 0$ denotes the crack front
 - Functions are defined by nodal values whose spatial variation is determined by the usual finite element shape functions
 - Function values need to be specified only at nodes belonging to elements cut by the crack
 - Uses signed distance functions to describe the crack geometry
 - No explicit representation of the crack is needed and the crack is entirely described by nodal data

- Calculating Φ and Ψ
 - \bullet The nodal value of the function Φ is the signed distance of the node from the crack face
 - Positive value on one side of the crack face, negative on the other
 - * The nodal value of the function Ψ is the signed distance of the node from an almost-orthogonal surface passing through the crack front
 - The function Ψ has zero value on this surface and is negative on the side

towards the crack

Node	Ф	Ψ
1	+0.25	-1.5
2	+0.25	-1.0
3	-0.25	-1.5
4	-0.25	-1.0

Propagation cracks

- Assumptions
 - Near-tip asymptotic singularity is not considered
 - Crack has to propagate across an entire element at a time to avoid the need to model the stress singularity
 - Effective engineering approach
- * Two distinct types of damage modeling within an XFEM framework
 - Cohesive segments approach
 - Linear elastic fracture mechanics (LEFM) approach
- Cohesive segment approach
 - Uses traction-separation laws
 - Follows the general framework for surface based cohesive behavior
 - Damage properties are specified as part of the bulk material definition
- LEFM-based approach
 - Uses the virtual crack closure technique (VCCT)
 - VCCT for XFEM uses the same principles as in VCCT for interfacial debonding
 - Damage properties are specified via an interaction property assigned to the XFEM crack

- Damage modeling is achieved through the use of a traction-separation law across the fracture surface
- It follows the general framework:
 - Damage initiation
 - Damage evolution
 - Traction-free crack faces at failure
- Damage properties are specified as part of the bulk material definition

Damage Modeling

- Damage Initiation
 - Two criteria available at present
 - Maximum principal stress criterion (MAXPS) $f = \frac{\langle \sigma_{\text{max}} \rangle}{\sigma_{\text{max}}^0}$

Initiation occurs when the maximum principal stress reaches critical value

• Maximum principal strain criterion (MAXPE) $f = \frac{\langle \varepsilon_{\text{max}} \rangle}{\varepsilon_{\text{max}}^0}$

Initiation occurs when the maximum principal strain reaches critical value

- Crack plane is perpendicular to the direction of the maximum principal stress (or strain)
- Crack initiation occurs at the center of the element

 However, crack propagation is arbitrary through the mesh
- The damage initiation criterion is satisfied when $1.0 \le f \le 1.0 + f_{tol}$ where f is the selected damage criterion and f_{tol} is a user-specified tolerance value

- Damage Evolution
 - Any of the damage evolution models for traction-separation laws
 - * However, it is not necessary to specify the undamaged traction-separation response

- Damage Stabilization
 - * Fracture makes the structural response nonlinear and non-smooth Numerical methods have difficulty converging to a solution
 - Using viscous regularization helps with the convergence of the Newton method
 - * The stabilization value must be chosen so that the problem definition does not change
 - •A small value regularizes the analysis, helping with convergence while having a minimal effect on the response
 - •Perform a parametric study to choose appropriate value for a class of problems

- User defined damage initiation subroutine UDMGINI
 - Can be used to specify a user-defined damage initiation criterion.
 - Allows the specification of more than one failure mechanisms in an element with the most severe one governing the actual failure.
 - * Can be used in combination with several Abaqus built-in damage evolution models, with each model corresponding to a particular failure mechanism.

- Steps
- 1.Define damage criteria in the material model
- 2.Define an enrichment region (the associated material model should include damage)
 - Crack type –stationary or propagation
- 3.Define an initial crack, if present
- 4.If needed, set analysis controls to aid convergence

- Step-dependent Enrichment Activation
 - Crack growth can be activated or deactivated in analysis steps

- Example: Crack Initiation and Propagation
- Model crack initiation and propagation in a plate with a hole
 - •Crack initiates at the location of maximum stress concentration
 - •Half model is used taking advantage of symmetry

- Example: Crack Initiation and Propagation
- 1 Define the damage criteria
 - Damage initiation

- Example: Crack Initiation and Propagation
- 1 Define the damage criteria
 - Damage evolution

Example: Crack Initiation and Propagation

- Example: Crack Initiation and Propagation
- 2 Define the enriched region

Keyword interface

```
*ENRICHMENT, TYPE=PROPAGATION CRACK, NAME=CRACK-1, ELSET=SELECTED_ELEMENTS, INTERACTION=CONTACT-1
Frictionless small-sliding contact interaction
```

- 3 No initial crack definition is needed
 - Crack will initiate based on specified damage criteria

- Example: Crack Initiation and Propagation
- 4 Set analysis controls to improve convergence behavior
 - Set reasonable minimum and maximum increment sizes for step
 - •Increase the number of increments for step from the default value of 100

- Example: Crack Initiation and Propagation
- 4 Set analysis controls to improve convergence behavior

- Example: Crack Initiation and Propagation
- A Set analysis controls to improve convergence behavior
 - Increase value of maximum number of attempts before abandoning increment (increased to 20 from the default value of 5)

• Example: Crack Initiation and Propagation

CSMAXUCRT, Maximum displacement damage initiation criterion for cohesive

- Output Requests
 - Request PHILSM and STATUSXFEM in addition to the usual output for static analysis

- Example: Crack Initiation and Propagation
- Postprocessing
 - Crack isosurface (Crack_PHILSM) created and displayed automatically
 - Field and history quantities of interest can be plotted and animated as usual

Defining Enriched Feature and its Properties in Abaqus

Category	Keyword	Comments	
type of enrichment	*ENRICHMENT, TYPE=PROPAGATION CRACK	The cohesive segments method and linear elastic fracture mechanics approach in conjunction with phantom nodes.	
type of eminemical	*ENRICHMENT, TYPE=STATIONARY CRACK	Analysis with stationary cracks requires that the elements around the crack tips are enriched with asymptotic functions	
Enriched region	*ENRICHMENT, ELSET=element set name	Elements currently intersected by cracks and those likely to be intersected by cracks	
Crack surface	*SURFACE, TYPE=XFEM	Representing both faces of cracked elements	
Cracked element surfaces	*ENRICHMENT, INTERACTION =interaction_property_name	Feature such as cohesive behavior can be added as interaction	
Crack initiation	*DAMAGE INITIATION, TOLERANCE= f_{tol}	The default value of f_{tol} is 0.05	

Defining Enriched Feature and its Properties in Abaqus

Category	Keyword	Comments
Position used to measure the crack initiation criterion	*DAMAGE INITIATION, POSITION=CENTROID (default) *DAMAGE INITIATION, POSITION=CRACKTIP *DAMAGE INITIATION, POSITION=COMBINED	By default, Abaqus uses a Gauss point average of the stress/strain evaluated at the element centroid ahead of the crack tip Alternatively, you can use the stress/strain values extrapolated to the crack tip
Specifying the crack direction	*DAMAGE INITIATION, NORMAL DIRECTION =1 (default) *DAMAGE INITIATION, NORMAL DIRECTION =2	Newly introduced crack is always orthogonal to the maximum principal stress/strain direction you can specify if the newly introduced crack will be orthogonal to the element local 1-direction
Activating and deactivating the enriched feature	*ENRICHMENT ACTIVATION, NAME=name, ACTIVATE=ON *ENRICHMENT ACTIVATION, NAME=name, ACTIVATE=OFF	By default, enrichment is activated and can be deactivated/reactivated in a new step

Fracture Initiation and Extension in Abaqus

Criterion	f	Keyword
Maximum principal stress	$f = \left\{ \frac{\langle \sigma_{max} \rangle}{\sigma_{max}^o} \right\}$	*DAMAGE INITIATION,
		CRITERION=MAXPS
Maximum principal strain	$f = \left\{ \frac{\langle \varepsilon_{max} \rangle}{\varepsilon_{max}^o} \right\}$	*DAMAGE INITIATION,
		CRITERION=MAXPE
	$f = \max\left\{\frac{\langle t_n \rangle}{t_n^0}, \frac{t_s}{t_s^0}, \frac{t_t}{t_t^0}\right\}$	*DAMAGE INITIATION,
		CRITERION=MAXS
Maximum nominal stress	t_n is normal and t_s and t_t are shear	
wiaximum nominai suess	components	
	t_n^0 , t_s^0 , t_t^0 represent the peak values of	
	the nominal stress	
Maximum nominal strain	$f = max \left\{ \frac{\langle \varepsilon_n \rangle}{\varepsilon_n^0} , \frac{\varepsilon_s}{\varepsilon_s^0} , \frac{\varepsilon_t}{\varepsilon_t^0} \right\}$	*DAMAGE INITIATION,
		CRITERION=MAXE
Quadratic nominal stress	$f = \left\{ \frac{\langle t_n \rangle}{t_n^0} \right\}^2 + \left\{ \frac{t_s}{t_s^0} \right\}^2 + \left\{ \frac{t_t}{t_t^0} \right\}^2$	*DAMAGE INITIATION,
		CRITERION=QUADS
Quadratic nominal strain	$f = \left\{ \frac{\langle \varepsilon_n \rangle}{\varepsilon_n^0} \right\}^2 + \left\{ \frac{\varepsilon_s}{\varepsilon_s^0} \right\}^2 + \left\{ \frac{\varepsilon_t}{\varepsilon_t^0} \right\}^2$	*DAMAGE INITIATION,
		CRITERION=QUADE