Modeling Fracture with Abaqus
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Modeling Fracture with Abaqus

~_

% Modeling Cracks

% Calculation of Contour Integrals

% Creating an XFEM Fracture Model




Crack Modeling Overview

~_

*A crack can be modeled as either

*Sharp j
*Small-strain analysis *

*Singular behavior at the crack tip

[

*Requires special attention
In Abaqus, a sharp crack is
modeled using seam geometry
*Blunted
Finite-strain analysis
*Non-singular behavior at crack tip
In Abaqus, a blunted crack is
modeled using open geometry

*For example, a notch




Crack Modeling Overview

~_

*The crack-tip singularity in small-strain analysis

 For mesh convergence in a small-strain analysis, the singularity at the

crack tip must be considered.

 Jvalues are more accurate if some singularity is included in the
mesh at the crack tip than if no singularity is included.

* The stress and strain fields local to the crack tip will be modeled
more accurately if singularities are considered.

In small-strain analysis, the strain singularity is:

1
ol 1 11 E C ——
Linear elasticity Jr
. 1
*Perfect plasticity &« -
1
Power-law hardening ¢

[N+l



Modeling Sharp Cracks in Two Dimensions

In two dimensions...

*The crack is modeled as an internal edge partition
embedded (partially or wholly) inside a face.
*This is called a seam crack
*The edge along the seam will have duplicate
nodes such that the elements on the opposite
sides of the edge will not share nodes.
*Typically, the entire 2D part is filled with a quad
or quad-dominated mesh.
*At the crack tip, a ring of triangles are
inserted along with concentric layers of
structured quads.
All triangles in the contour domains must be
represented as degenerated quads.
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Modeling Sharp Cracks in Two Dimensions
TN

Example: Slanted crack in a plate
* In Abaqus/CAE a seam is defined by through the
Crack option underneath the Special menu of
the Interaction module.
*The seam will generate duplicate nodes

along the edge.
Connector |S|:IEI:iaI_ Feature Tools Plug-ins Help K
— et A == £ |:

>

J: (H Emrln';IS.fDashpnts b Delete Seam...

m & Fasteners Manager. .,
Create... —
Edit [ 2
oy [
Eenanme [
Delete [
SUpprEsS [
Eesume [

Seam Create face partition to represent the
seam; assign a seam to the partition.



'@' Modeling Sharp Cracks in Two Dimensions
-

* To define the crack, you must specify
. ame: rack-
* Crack front and the crack-tip B

Type:  Contour inkegral

Domain:  Geometry

» Normal to the crack plane or the direction Gonerel | Sl
eneral | Singularity I

Of C raC k ad Van Ce [ On symmetry plane (half-crack model)

. . . Crack front: (Picked)
% The crack advance direction is called I
the q vector.

Crack tipfline: (Same as crack front) Fdir, |

— Crack Extensio

n Direction

Mormal to crack plane™N\(0. 707, 0,707, 07 Edit,
El ﬁ Assembly

. # (1§ Instances (1)
-~ P Position Constraints {0)

Data

& Features (2)

B Sets (2) |
@? Surfaces (0) ‘ \
Elﬂg Engineering Features

q vectors
P ——————— 1 E-:Iit...l
{0.707,0.707,0)

Crack tip
_ i?arz‘; o The crack extension direction (g
Select the vertex at either — vector) defines the direction in which

end as the crack front. this case the crack would extend if it were
(Repeat for the other end.) growing. It is used for contour

inteiral calculations.




'@' Modeling Sharp Cracks in Two Dimensions
TN

 Other options for defining the crack front and crack tip

Il Edit Crack

S GEe Crack tip for an
Type:  Contour integral orphan mesh
Domain:  Geometry

Crack front for a
geometric instance

|1
Wl

eral’) singularty | ‘

[T On symmetry plane (half-crack model)
Crack front: (Picked) Edit...

ack tipfline: (Picked) Edit. ..

Crack front may be:

Vertex/Node
Edges/Element edges
Faces/Elements Crack tip may be:
4 4 Vertex/Node
Geometric Orphan Geometric Orphan

Instances Mesh Instances Mesh




Modeling Sharp Cracks in Two Dimensions
TN

Example: crack on a symmetry plane

* If the crack is on a symmetry plane, you do not
need to define a seam.

* This feature can be used only for Mode I

fracture.

Mame: Crack-1
Tvpe: Contour inkegral

Domain: Geometry

General i |
v on symmetry plane (half-crack @ Crack normal

Crack Front: (Ficked) Edit...

Crack tipfline; (Same as crack Front)  Edit,

— Crack Extension Direction

% Mormal ko crack plane: (0,1,0% Edit...l
. q veckors

Crack tip




Modeling Sharp Cracks in Two Dimensions

—~_

« Modeling the crack-tip singularity with second-order quad elements
* To capture the singularity in an 8-node isoparametric element:
* Collapse one side (e.g., the side made up by nodes a, b, and ¢) so
that all three nodes have the same geometric location at the crack tip.
» Move the midside nodes on the sides connected to the crack tip to the
Y4 point nearest the crack tip.

s m@

v




Modeling Sharp Cracks in Two Dimensions

—~_

* If nodes 4, b, and care free to move independently, then

A B
E—>—+—=asr—0

ror

everywhere in the collapsed element.
* [f nodes 4, b, and care constrained to move together, A = 0:
* The strains and stresses are square-root singular (suitable for
linear elasticity).
* If nodes 4, b, and care free to move independently and the midside
nodes remain at the midsides, B=0:

* The singularity in strain is correct for the perfectly plastic case.
 For materials in between linear elastic and perfectly plastic (most metals), it is
better to have a stronger singularity than necessary.
* The numerics will force the coefficient of this singularity to be small.



Modeling Sharp Cracks in Two Dimensions

—~

» Usage:
Mame:  Crack-1
Type: Contour integral
Domain:  Georekry
General 5
- Second-order Mesh Options Quarter-point midside nodes
The crack tlp nodes are Midside node parameter (D<t<1): IIII.25 < on the sides connected to
independent: r - singularity Note: Crack tip is at t=0 the crack tip
— Degenerate Element Control at Crack Tip/Line —
(‘: e The crack tip nodes are
* Collapsed element side, single node < - R VA -
3 ‘f‘ Collapsed element side, duplicate nodes ConStralned' r Slngl”arlty
2
4 1, 2
OK | Cancel |
1,2,3,4 3 1
1,1,2,3
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Modeling Sharp Cracks in Two Dimensions

—~

* Aside: Controlling the position of midside nodes for orphan meshes

*Singularity controls cannot be applied to orphan meshes.
*Use the Mesh Edit tools to adjust their position.

B Edit Mesh [ X |
— Category — | [ Method
(¥ Node Create
" Element Edit
 Mesh Project
Delete

" Refinement
Merge

Adiust midside

~ Undo

[_::I Undao

= SIEJ Midside node parameter (D<t<1): ID.ZS

[~ Redo Settings. .. |

ST 0aSliils ~Olgins  gnis oKl 13 S SIS



Modeling Sharp Cracks in Two Dimensions

—~

« [f the side of the element is not collapsed but the midside nodes on the
sides of the element connected to the crack tip are moved to the % point:

*The strain is square root singular along the element edges but not in
the interior of the element.

*This is better than no singularity but not as good as the collapsed
element.

— Second-order Mesh Options
o

Midside node parameter (D <t<1

Mote: Cracktip is at t=0

ent Control at Crack Tip/Line —|

ement side, single node

" Collapsed element side, duplicate nodes

nodes moved to Y4 points
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Modeling Sharp Cracks in Two Dimensions

—~

*Example: Slanted crack in a plate

* To enable the creation of degenerate quads, you must create swept meshable regions
around the crack tips (using partitions) and specify a quad-dominated mesh.

& yﬁlf?\ ‘

24 elements around  x
/@ i

“_ crack tip: 15° angles

1

[ 1

' CPESR elements; typical nodal
connectivity shows repeated node at
crack tip:

8, 8, 583, 588, 8, 1969, 1799, 1970
All crack-tip elements repeat node 8 in
this example (nodes are constrained).

1
Quad-dominated mesh + swept Quadratic element
technique for the circular regions  type assigned to part
surrounding the crack tips
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Example: Slanted crack in a

plate; Alternate meshes
* No degeneracy:

Degenerate Element Control at Crack Tip/Line
(" Collapsed element side, single node —‘

(" Collapsed element side, duplicate nodes

With swept meshable region: With arbitrary mesh,
CPEGM elements at crack tip- singularity only along edges
cannot be used for fracture connected to crack tip.
- Degenerate with studies in Abaqus.

duplicate nodes: CPESR elements at crack tip but no repeated

nodes:1993, 1992, 583, 588, 2016, ...

" Mo degeneracy

Degenerate Element Control at Crack Tip/Line
" Collapsed element side, single node —‘

& Collapsed element side, duplicate nodes:

Coincident nodes
located at crack tip
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Modeling Sharp Cracks in Two Dimensions

—~_

*Example: Slanted crack in plate; Deformed shape

 Focused mesh * Arbitrary mesh




Calculation of Contour Integrals

~_

 Different contours (domains) are
created automatically by Abaqus.

» The first contour consists of the
crack front and one layer of
elements surrounding it.

Ring of elements from one crack surface
to the other (or the symmetry plane). Contour 1 Contour 2

« The next contour consists of the
ring of elements in contact with the
first contour as well as the
elements in the first contour.

 Each subsequent contour is defined
by adding the next ring of elements

. . : Contour 3 Contour 4
In contact with the previous contour.




Calculation of Contour Integrals
TN

» The J-integral and the C.-integral at steady-state creep should be path
(domain) independent.

 The value for the first contour is generally ignored.

« Examples of contour domains:

2nd contour 1$t contour

crack-front nodes T
 Each subsequent contour is defined Crack-tip node

by adding the next ring of elements
In contact with the previous contour.



Calculation of Contour Integrals

~_

-Usage: E

- [ H-Oufpd
i [ Jeintegral

*CONTOUR INTEGRAL, CONTOURS= s ,
Il Edit History Output Request K-Factors
TYPE={J, C ’ T STRESS ’ K FACTORS} . | [ T-stress
Mame: J-inteqgral H

DIRECTION = {MTS, MERR, KIIO} Step: Step-1

Procedure: Static, General

Dornain: IC-:nntour integral | :ICrack—l

Frequency: |Every nincrements il

j A

Tirning: Io pub ak exact kimes

Murnbgy ©
Tyfe: ™ lintegra
" Ct-integral
O T-stress

" stress inkensity Factors

Specifies the number of contours (domains) on

which the contour integral will be calculated .
J This is the output

frequency in increments

» Note: In this lecture, we focus on the output-specific parameters of the *CONTOUR
INTEGRAL option. The crack-specific parameters SYMM and NORMAL were

discussed in the previous lecture.
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Calculation of Contour Integrals

~_

-Usage:
Mame: J-integral
*CONTOUR INTEGRAL, CONTOURS= n, Step: Ste"_"
TYPE={ J, C ) T STRESS ) K FACTORS} ) Procedure: Static, General
DIRECT ION — {MTS , MERR , KII 0 } Domain: ICDI‘II:DLIr integral :I : ICrEIEk.-l
Frequency: IEvervnincrements j iH |1
Timing: [Output at exact times ~|

Mumber of contours: |5

Type: ¢ J-integral
" Ct-integral
" T-stress

«J for J-integral output,
«C for C,-integral output.

" Stress intensity Factors

T STRESS to output T-stress calculations

K FACTORS for stress intensity factor output




Calculation of Contour Integrals

~_

¢ U Sag e Step: Step-1
Procedure: Static, General
Domain: IContour inteqral j ] ICrack—l
*CONTOUR INTEGRAL, CONTOURS= n, Frequency: [Every nincrements At
TYPE={J, C, T STRESS, K FACTORS}, Timing: [Output ot exect times <]
DIRECTION = {MTS, MERR, KIIO} Mumber of contours: [5
Type: { Jintegral
" Ct-inkegral
" T-stress
. . ¥ Stress intensity Factors
Three Crltena '[O CaICUIate the CraCk > Crack initiation criterion: (% Maximum tangential stress
propagation direction at initiation £ | aximum energy Felease rats
" KI1=0

Use with TYPE=KFACTORS to specify the criterion to be used for estimating the
crack propagation direction in homogenous, isotropic, linear elastic materials:

» Maximum tangential stress criterion (MTS)

* Maximum energy release rate criterion (MERR)
* K,,= O criterion (K110)




Calculation of Contour Integrals

e Loads \

 Loads included in contour integral calculations:

 Thermal loads.

» Crack-face pressure and traction loads on continuum elements as well as
those applied using user subroutines DLOADand UTRACLOAD.
Surface traction and crack-face edge loads on shell elements as well as
those applied using user subroutine UTRACLOAD.

*Uniform and nonuniform body forces.

Centrifugal loads on continuum and shell elements.

* Not all types of distributed loads (e.g., hydrostatic pressure and gravity
loads) are included in the contour integral calculations.

 The presence of these loads will result in a warning message.



Calculation of Contour Integrals

~_

« Compact Tension Specimen

« Example

* This is one of five standardized specimens defined by the ASTM for the
characterization of fracture initiation and crack growth.

*The ASTM standardized testing apparatus uses a clevis and a pin to hold
the specimen and apply a controlled displacement.

CLEVIS
SPECIMEN

62.50
50

i
/ A ..
=y L

80

37.50

18
| &7
1
/!\@W
O \Al /
i
2.5




Calculation of Contour Integrals

« Example -\

* Plane strain conditions assumed.

« The initial crack length is 5 mm. Crack seam

Prescribed load line displacement '

» Elastic-plastic material

g-vector
1500.00
g
=
’ LN W
§ 100000 AR
g P
= 50000 - aNEm
: | 1Ar singularity modeled
P I B B ; - alamante  FIS
=R in the crack-tip elements

2.00

Logarithmic strain




'@' Calculation of Contour Integrals
TN

e Results
440.00 N I T T T T 440.00 B J
400.00 — P 15TH 400.00 __ i
— E---0 andezr=on -1
m.m - Comtonr 1 — m.w — -
32000 — | G - 32000 -
E ~ . Contonr 5 . E B 7]
E 28000 |- | oo 1 E 2000 - g
Z o000 | | oo - £ 24000 |- —
% m'm B Contonr 10 a % m.w N ]
5 10000 — -| E 16000 - "
™ 12000 | — ™ 12000 -
80.00 — — 80.00 L _—
40.00 '__ __ w.m == —
0.00 el b b b b 0.00 & A I R BRI B PR B
00 01 02 03 04 05 06 07 08 0.00 040 020 030 040 050 060 0.70 0.80
Load line displacement (mm) Load line displacement (mm)
* Small strain analysis * Finite strain analysis



Calculation of Contour Integrals

~_

* Results

PEEQ PEEQ

{ive. Crit.: 75%) [Ave. Crit.: 75%)
I%%SSE-FSQ +5. 688e+00
15 167e-02 13-989<-02
+5.333e-02 .
+7.500e-0z +1.1672-01
e e ioa
+5.000e-02 iz '91'75:01
+2.167e-02 5 Ehoe_01
+3.333e-02 .
+2 .500e-02 +2 .083e-01
iégggg:gg +1.667e-01
+0. 000e+00 %:%ggg:g%

Max +2.245e+00 +3 . 987e-02

at elem COMPACTTENSION-1.39 +0 . A0ne+00

Min +0.000e+00

at elewm COMPACTTENSIO Max +5.688e+00

at elem COMPACTTENSIION-1.33

Min +0.000e+00
at elem COMPACTTENSION-1

At small to moderate strain * Finite strain effects must be
levels, the small and finite considered to represent this
strain models yield similar level of deformation and
results. strain accurately.
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Mixed-Mode Fracture

« Abaqus uses interaction integrals to compute the stress intensity factors.

« This approach accounts for mixed-mode
loading effects.

 Note that the J-or C,integrals do not

distinguish between modes of loading.
 Usage:

*CONTOUR INTEGRAL,

TYPE=K FACTORS

« Stress intensity factors can only be

calculated for linear elastic materials.
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Il Edit History Output Request

Mame: crack-1-output
Skep: Skep-1

Procedure: Static, General

Domain: ICuntDur inteqgral j : ICrack—i
Frequency: IEvervnincrements :] i |1
Timing: IOutput ak exact times ~|
Mumber of contours: |4
Type:  J-integral
" Ct-integral

Efion: (% Maximum tangential stress
" Maximum energy release rate
" KIl=0

o §a¢§:‘&n



Mixed-Mode Fracture

—~_

« Example: Center slant cracked plate under tension

4]

1 4 3 |

i 5 Element K K
_||_ B Ci type KO KO
P=2S0TS | 2289 | CPE8 | 0.185(-2.9%) | 0.403 (~0.2%)
alb=05
- 22.5° | CPE8R | 0.185(-2.9%) | 0.403 (-0.2%)
b =500 mm 67.5° | CPES8 1.052 (+3.6%) | 0.373 (+1.0%)
67.5° | CPES8R | 1.053 (+3.8%) | 0.374 (+1.3%)
K,=o+7a
: ERESH *Values enclosed in parentheses
LS BAS ue are percentage differences with
i - / - -+ respect to the reference solution.
0 See Abaqus Benchmark
B a ; Problem 4.7.4 for more
~ it - information.
=225° _ oM a0
P B = 67.5° L
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