Computational Fracture Mechanics (4)
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fficult. Example:

Mesh design for crack problems
th FEM for crack problems

e Element edges must conform to the crack geometry: make such a mesh is time-

1

, especially for 3D problems.

consuming

What’s wrong w

e Remeshing as crack advances: d




Mesh design for crack problems

TN
Capturing/tracking cracks
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Crack tracking XFEM enriched  Crack/void capturing
elements by bulk damage
models

Fixed mesh




Fixed meshes \

Mesh design for crack problems

Nodal release method (typically done on fixed meshes)
« Crack advances one element edge at a time by releasing FEM nodes
« Crack path is restricted by discrete geometry

Also for cohesive elements they can be used for both extrinsic and
Intrinsic schemes. For intrinsic ones, cohesive surfaces between all
elements induces an artificial compliance (will be explained later)
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Mesh design for crack problems
Adaptive meshes N

« Adaptive operations align element
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boundaries with crack direction
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Element splitting:
Smoother crack path by element
splitting: cracks split through and

propagate between newly
generated elements

Cracks generated by
refinement options

Element edges move to
desired direction
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Extended Finite Element Method (XFEM)
TN

» Standard-FEM and Enriched-FEM:

Modeling of weak and strong discontinuities in the standard-FEM and enriched-FEM techniques:
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(a) Crack propagation in a plate with a hole: (b) The standard-FEM using an adaptive
mesh refinement in which the mesh conforms to the geometry of interfaces; (c) The
enriched-FEM technique using a uniform mesh in which the elements cut by the
interfaces are enriched.
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Extended Finite Element Method (XFEM)

~_

Belytschko and Black et al 1999

standard part enrichment part

S -set of enriched nodes

Partition of Unity (PUM): enrichment function

SNy ) =1 e 3 N (x)®(x) <(B(x)
J J

®(x) known characteristics of the problem (crack tip singularity,
displacement jump etc.) into the approximate space.




Extended Finite Element Method (XFEM)

~_

nodal support

Ni(x) %@

b

enriched nodes = nodes whose support is cut by the item to be enriched

) Ni(x)2(x) = $(x)
J

enriched node I: standard degrees of freedoms (dofs) and additional dofs




XFEM for LEFM

L crack tip with known displacement

r o 0
L = 149 =
2ﬂ_cos (h, + 2sin 2)

) 9
Ls1 — r.,—|—1—2<:os —
27 2 2

displacement: discontinuous across crack
crack edge - edge
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XFEM for LEFM

~_

Crack tip enrichment functions: _9( - 29)
kK—+1—2cos” —

J (ﬁ;—l—l—ZSin2 g)

B,| = {\/Fsin g,\/?cos g,ﬁsingsinﬁ,ﬁcos g sin 0

Crack edge enrichment functions:

[H(x) - { +1 if (x—x")-n> 0] §¢  blue nodes

—1 otherwise
- qt red nodes




XFEM for LEFM

Wells, Sluys, 2001

No crack tip solution is known, no tip
enrichment!!!

not enriched to ensure zero crack tip
opening!!!

+1 f(x—x*)-n>0

—1 otherwise




XFEM: examples

CENAERO, M. Duflot

Northwestern Univ.
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A various X-FEM enrichment functions for different classes of solid mechanics
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Field variable

Gradient of field

Kind of problem (displacement) variable (strain) X-FEM enrichment functions
Bimaterial interfaces, voids, Continuous Discontinuous Weamp(@ () = | (x)|
inclusions, grain boundaries
]lurldge ZNI’ |5P1‘_ ZN](“‘-)[PI
IeN IeN
Strong discontinuity, crack interfaces Discontinuous — Wiign(p(x)) = sign(ep(x))
Waep(p(X)) = Hlgp(x))
Brittle crack tip (isotropic material) Discontinuous High gradient wﬁ;‘“le (r0) = { \/_sm— \fcos— \/Fsing §inf. /rcos g ¢in 9}
Brittle crack tip (orthotropic material) Discontinuous High gradient P 0
°"h°"°p'°(r a) = \/Fsiné\/gl(é'), ﬁcosé\/gl(ﬂ),
. 92 6'2
Vrsin—=/g2(0), \/76085\/82(9)
Cohesive crack tip Discontinuous High gradient wi e (r,0)=rfsin§ (k=1,15,2)
Plastic crack tip Discontinuous High gradient
wlec(r, 0)= r# sin—, cos g, sin g siné,
up 2 2 2
4 7 [
cos 3 sinfl, sin 3 sin 36, cos 3 sin 3¢
Multiple cracks (discontinuous Discontinuous High gradient wjﬂfnction((p(x)) =JM(x)
junction function)
Firack tip perpendicular to bimaterial Discontinuous High gradient WﬂN{;bimuleriul(’.’ 0)= {wllip, Wﬁp, l!ff'ip, Wﬁp}
interface
={rfcos(A+1)0, r'sin(A+1)0, r*cos (A1), r*sin(1-1)0}
Crack tip terminating at a bimaterial Discontinuous High gradient O-bimaterial
' . g gh g v material (- g) = {Wup’ W[,pa - Wup}
interface

={r"*co% (A1 + 1)@, rhsin (4, +1)8, rhicos (4, =1)8, ' sin (2, -1)8,
r2cos (A2 +1)0. r2sin (A +1)0. r2cos (4, —1)0, r2sin (- 1)0}




A various X-FEM enrichment functions for different classes of solid mechanics

~_

Field variable

Gradient of field

Kind of problem (displacement) variable (strain) X-FEM enrichment functions
Bimaterial interfacial crack Discontinuous High gradient wggimacedal( )= {thip! thip’ wtlilzn}
—&f o; o —el ¢
=4 \/rcos(elogr)e sin 5. V/reos(elogr)e cos 5.
+efl o o +el o
Vreos(elogr)e sin Vreos (elogr)e cos 3,
el o o +ef o
Vreos(elogr)e smzsmﬂ, Vrcos (elogr)e cos > sin@,
. —ep .. O . e b
Vrsin(elogr)e™ sin5 ., /rsin(elogr)e cos >
. e O . sen 0O
Vrsin(elogr)e™® sinz, \/rsin (elogr)e cos 3,
H +e6 o3 . H +ed e .
Vrsin(elogrie sin 5 sind, v/rsin (elogr)e ™ cos 3 sin@
Grain junctions in polycrystalline Discontinuous High gradient w;};‘”“(r, 6)=r"¥(9)
structures
Multiple interfaces (junction ramp Continuous Discontinuous ijl;nClinn(w(x)) =J%(x) = |op; ()] ooy (x) |
function)
Dislocation (tangential jump function) Discontinuous — V/ftep (x)=h" Z Ny (x) [H(p®(x))—H(p" (x,))] H(9%(x))
JEN g
Dislocation (edge function) Discontinuous High gradient b”.
o= Y N (! (2 ) e e,
P 2n x| 2(1-v)(x?+y?)
1-2v =y
| —mP+ ) +— e,
3= ") e )¢
Dislocation (s functi Disconti High gradient b, -
islocation (screw function) iscontinuous igh gradien oo (1) = N, () (e, xe )tan' V(Y (e xe)
2n X
TEN G
Shear band localization Discontinuous Discontinuous Wiann(@(x)) = tanh(f - ¢(x))

Wexp(@(x)) = sign(gp(x))(1 — exp(~L - [p(x)]))




Cohesive models

~_

» Cohesive zone model has been widely used to solve crack propagation problems
Explicit representation of cracks giving clear physical picture.

» Fracture formation is regarded as a gradual phenomenon in which the separation
of the surfaces involving in the crack takes place across an extended crack tip,
or cohesive zone, and is resisted by cohesive tractions (Dugdale 1960,

Barenblatt 1962)
Cohesive zone
(Fracture process
one) /‘
m T —
I 7
Crack tip | |
Physical Cohesive
crack length  zonelength
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Cohesive models

~_

® Cohesive models remove stress singularity predicted by Linear Elastic
Fracture Mechanics (LEFM)

Macro-crack Tip

— ‘

Cohesive Zone 1

traction-free

LEFM
1 6 . Stress scale
O C—= o =aof (Au /9) .
\/F O . Displacement scale

Traction is related to displacement jump across fracture surface



Cohesive models

~_

» Traction Separation Relation (TSR): Relation between
traction (stress) and displacement jump & = &f (5 / 5) » J

Cohesive Zone l

» Parameters of a cohesive model (Only 2 out of 3 are
needed)

¢ Stress (traction) scale 5 : Maximum traction in TSR o !
< Displacement scale § :‘g N
“* Work of Separationq? :Area under o—¢ curve s é
the work needed to complete debond a unit surface :
area. This can he associated with G in LEFM theory. 5 (separation) 5
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Cohesive models

» Types of Cohesive models

- Intrinsic cohesive models:

*

It has an initial hardening o—¢ part
* o starts from O

*

Can be inserted in FEM mesh from the start of the simulation
(along certain lines or between all elements)

- Extrinsic cohesive models:

»

* Generally has only softening o—o6 behavior.
* o starts from maximum stress ( &)
* Should be adaptively inserted between

elements when traction between elements
approach &

o (traction) qq

) (separation) 5
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Cohesive models

~_

» The behavior of CZMs is governed by traction-separation law

» Exponential, bi-linear, trapezoidal, ...

G, = j050d5

Traction
F 3

& - Maximum traction
0y, O : Initial and final separation
G, : Fracture energy

K : Initial stiffness

» Separation
o)
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Cohesive models

e Cohesive model shape \

- Can have important influence on the response of cohesive model
-The shape can he based on ductile/brittle response of TSR and can make it intrinsic
or extrinsic

cubic polynomial trapezoidal smoothed trapezoidal
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Cohesive models

~_

 Continuum Cohesive Zone Model

A O

o |-
/\ 5
o)

(a) CZM Law
* Discrete Cohesive Zone Model
‘ O
Oy }--
Kip,
G. 5
/ (a) CZM Law
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b) Compliant Layer

X X1 X XT X X| X x
X X2 X X1 X XL X X

(c) Continuum Element

(b) Spring Foundation

T = =

(c) Discrete Element
o §:. iig&a



Cohesive models

~_

« Traction-Separation Law (Mixed Mode)

Tractionf
Damage initiation criterion

Mode | response
Normal
Mode 11 (I1]) response sepatatign
. - -
o T - Mixed-mode response
> & Damage propéation criterion

Mixed-mode triangle traction-separation law.



