

دانشگاه صنعتی اصفهان دانشکده مکانیک

Computational Fracture Mechanics (2)

Computational fracture mechanics

- Introduction to Finite Element method
- Singular Stress Finite Elements
- ❖ Extraction of K (SIF), G
- ❖ J integral
- Finite Element mesh design for fracture mechanics
- Computational crack growth
- Traction Separation Relations

- K from local fields
 - 1. Displacement

$$\frac{u_y(r,\theta=\pi)}{\sqrt{2\pi}E'} \quad \Rightarrow \boxed{\frac{K_I}{I} = \lim_{r \to 0} \left[\frac{E'u_y}{4}\sqrt{\frac{2\pi}{r}}\right]} \quad (\theta=\pi) \qquad E' = \begin{cases} E & \text{plane stress} \\ \frac{E}{1-\nu^2} & \text{plane strain} \end{cases}}$$

or alternatively from the first quarter point element:

Recall for 1D:

$$u = u_1 + \frac{\sqrt{x}}{\sqrt{L}} \left(-3u_1 - u_2 + 4u_3 \right) + \frac{2x}{L} \left(u_1 + u_2 - 2u_3 \right)$$

K from local fields

1. Displacement

$$v = K_{\rm I} \frac{\kappa + 1}{2G} \sqrt{\frac{r}{2\pi}}$$

$$u' = \overline{u}'_A + \left(-3\overline{u}'_A + 4\overline{u}'_B - \overline{u}'_C\right)\sqrt{\frac{r}{L}} + \left(2\overline{u}'_A + 2\overline{u}'_C - 4\overline{u}'_B\right)\frac{r}{L}$$

$$v' = \overline{v}'_A + \left(-3\overline{v}'_A + 4\overline{v}'_B - \overline{v}'_C\right)\sqrt{\frac{r}{L}} + \left(2\overline{v}'_A + 2\overline{v}'_C - 4\overline{v}'_B\right)\frac{r}{L}$$

$$K_{\rm I} = \frac{2G}{\kappa + 1} \sqrt{\frac{2\pi}{L}} \left(-3\overline{v}_A' + 4\overline{v}_B' - \overline{v}_C' \right)$$

Mixed mode generalization:

$$\left\{ \begin{array}{c} K_{\mathrm{I}} \\ K_{\mathrm{II}} \end{array} \right\} = \frac{1}{2} \frac{2G}{\kappa + 1} \sqrt{\frac{2\pi}{L}} \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \left[\begin{array}{c} -3\overline{u}_{A}' + 4\left(\overline{u}_{B}' - \overline{u}_{D}'\right) - \left(\overline{u}_{C}' - \overline{u}_{E}'\right) \\ -3\overline{v}_{A}' + 4\left(\overline{v}_{B}' - \overline{v}_{D}'\right) - \left(\overline{v}_{C}' - \overline{v}_{E}'\right) \end{array} \right]$$

K from local fields

$$K_I = \lim_{r \to 0} \left(\sqrt{2\pi r} \ \sigma_{22}|_{\theta=0} \right) \quad ; \quad K_{II} = \lim_{r \to 0} \left(\sqrt{2\pi r} \ \sigma_{12}|_{\theta=0} \right)$$

or can be done for arbitrary angle (θ) taking σ angular dependence $f(\theta)$ into account

Stress based method is less accurate because:

- Stress is a derivative field and generally is one order less accurate than displacement
- Stress is singular as opposed to displacement
- Stress method is much more sensitive to where loads are applied(crack surface or far field)

• K from energy approaches

- 1. Elementary crack advance (two FEM solutions for a and $a + \Delta a$)
- 2. Virtual Crack Extension: Stiffness derivative approach
- 3. *J*-integral based approaches (next section)

After obtaining G (or J=G for LEFM) K can be obtained from:

$$K_I^2 = E'G$$
 $E' = \begin{cases} E & \text{plane stress} \\ \frac{E}{1 - v^2} & \text{plane strain} \end{cases}$

- K from energy approaches
 - 1. Elementary crack advance
- For fixed grip boundary condition perform two simulations (1, a) and (2, $a+\Delta a$): All FEM packages can compute strain (internal) energy U_i

Fixed grips:
$$\frac{dU_e}{da} = 0$$

$$\Rightarrow G = -\frac{1}{B} \frac{dU_{i}}{da} \approx -\frac{1}{B} \frac{U_{i}(a + \Delta a) - U_{i}(a)}{\Delta a}$$

Drawback:Requires two solutions

Prone to Finite Difference (FD) errors

K from energy approaches

2. Virtual crack extension

Potential energy is given by:

$$\Pi = \frac{1}{2} [u] [K] [u] - [u] \{p\}$$

$$-G = \frac{\partial \Pi}{\partial a} = \frac{\partial [u]}{\partial a} [K] [u] + \frac{1}{2} [u] \frac{\partial [K]}{\partial a} [u] - \frac{\partial [u]}{\partial a} \{p\} - [u] \frac{\partial \{p\}}{\partial a}$$

$$= \frac{\partial [u]}{\partial a} \underbrace{([K] [u] - \{p\})}_{0} + \frac{1}{2} [u] \frac{\partial [K]}{\partial a} [u] - [u] \frac{\partial \{p\}}{\partial a}$$

$$G = -\frac{1}{2} [u] \frac{\partial [K]}{\partial a} [u] + [u] \frac{\partial \{p\}}{\partial a}$$

Furthermore when the loads are constant:

$$G = \frac{K_I^2}{E'} = -\frac{1}{2} \left[u \right]^T \frac{\partial \left[K \right]}{\partial a} \left[u \right]$$

- K from energy approaches
 - 2. Virtual crack extension
- \triangleright Only the few elements that are distorted contribute to $\frac{\partial K}{\partial a}$.

- We may not even need to form elements and assemble **K** for a and $a+\Delta a$ to obtain $\frac{\partial K}{\partial a}$. We can explicitly obtain $\frac{\partial K^e}{\partial a}$ for elements affected by crack growth by computing derivatives of actual geometry of the element to parent geometry.
- ➤ This method is equivalent to J integral method (Park 1974)

- K from energy approaches
 - 2. Virtual crack extension: Mixed mode
- For LEFM energy release rates G_1 and G_2 are given by:

$$J_{1} = G_{1} = \frac{K_{I}^{2} + K_{II}^{2}}{E'} + \frac{K_{III}^{2}}{2\mu}$$

$$J_{2} = G_{2} = \frac{-2K_{I}K_{II}}{E'}$$

Using Virtual crack extension (or elementary crack advance) compute G_1 and G_2 for crack lengths a, $a + \Delta a$ (along $\theta = 0$, and determine G_1 and along $\theta = \pi$ determine G_2).

$$\theta = \frac{\pi}{2} \\
\underline{\Delta a} \\
\theta = 0$$

Obtain K_I and K_{II} from: $K_I = \frac{s \mp \sqrt{s^2 + \frac{8G_1}{\alpha}}}{4}$

Note that there are two sets of solutions!

$$K_{II} = \frac{s \mp \sqrt{s^2 + \frac{8G_2}{\alpha}}}{4}$$

that:
$$s = 2\sqrt{\frac{G_1 - G_2}{\alpha}},$$
$$\alpha = \frac{(1 - \nu)(1 + \kappa)}{E}$$

Uses of J integral:

1. LEFM: Can obtain K_I and K_{II} from J integrals (G = J for LEFM)

$$J_{1} = G_{1} = \frac{K_{I}^{2} + K_{II}^{2}}{E'} + \frac{K_{III}^{2}}{2u} \qquad J_{2} = G_{2} = \frac{-2K_{I}K_{II}}{E'}$$

- 2. Still valid for nonlinear (NLFM) and plastic (PFM) fracture mechanics.
- Methods to evaluate J integral:
 - Contour integral: $J = \int_{\Gamma} \left(w \, dy \mathbf{t} \, \frac{\partial \mathbf{u}}{\partial x} \, d \, \Gamma \right)$

- Equivalent (Energy) domain integral (EDI):
- Gauss theorem: line/surface (2D/3D) integral surface/volume integral
- Much simpler to evaluate computationally
- Easy to incorporate plasticity, crack surface tractions, thermal strains, etc.
- Prevalent method for computing J-integral

Contour integral

- Stresses are available and also more accurate at Gauss points
- Integral path goes through Gauss points

Cumbersome to formulate the integrand, evaluate normal vector, and integrate over lines (2D) and surfaces (3D) **Not commonly used**

Equivalent Domain Integral

General form of J integral

of J integral
$$J = \lim_{\Gamma_0 \to 0} \int_{\Gamma_0} \left[(w + T) \delta_{1i} - \sigma_{ij} \frac{\partial u_j}{\partial x_1} \right] n_i d\Gamma$$
Kinetic energy density

Can include (visco-) plasticity

Inelastic stress

$$T = \frac{1}{2} \rho \frac{\partial u_i}{\partial t} \frac{\partial u_i}{\partial t}$$

Can include (visco-) plasticity, and thermal stresses

$$\mathcal{E}_{ij}^{total} = \mathcal{E}_{ij}^{el} + \mathcal{E}_{ij}^{pl} + \alpha \Theta \delta_{ij} = \mathcal{E}_{ij}^{m} + \mathcal{E}_{kk}^{t}$$
Elastic Plastic Thermal (Θ temperature)

 $\Gamma_0 \rightarrow 0$: J contour approaches Crack tip

Accuracy of the solution deteriorates at Crack tip

Inaccurate/Impractical evaluation of J using contour integral

Equivalent Domain Integral

 \vec{e}_2 \vec{e}_1 \vec{e}_1 \vec{e}_1 \vec{e}_2 \vec{e}_1 \vec{e}_1 \vec{e}_1 \vec{e}_2 \vec{e}_1 \vec{e}_2 \vec{e}_3 \vec{e}_4 \vec{e}_4 \vec{e}_4 \vec{e}_5 \vec{e}_7 \vec{e}_8 \vec{e}_8

Original J integral

contour

Surface integral after using divergence theorem

Application in FEM meshes

$$\Gamma_0 \rightarrow 0$$
 2D mesh covers crack tip

- Contour integral added to create closed surface
- By using q = 0 this integral in effect is zero