Computational Fracture Mechanics (2)
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Computational fracture mechanics

~_

¢ Introduction to Finite Element method

% Singular Stress Finite Elements

s Extraction of K (SIF), G

¢ J integral

% Finite Element mesh design for fracture mechanics

% Computational crack growth

*» Traction Separation Relations




Extraction of K

~_

e K from local fields A

1. Displacement

AK 14/ E’ 2
uy(ri f=m)= f\/f_ = |K; = lim Uy ™ G=n) B — E plane stress
V2mb! r—=0 4 r %g plane strain

or alternatively from the first quarter point element:

Recall for 1D:
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Extraction of K

—~_

e K from local fields

1. Displacement

o' =T, + (—SELl + 4Ty — T,

r

v =T, 4 (—35;1 + 4T — Ty

- Ki= r.:gfl 2; (—3@14 + 4T, —ﬁ:j)

Mixed mode generalization:

K | _ 126 [2rfo 1]| —3uq+4(up—1p) - ﬁé_ﬁiﬂ,)
Kn [ 7 2s+1V L |1 0]|| —37,+4 (v, —7,) — ﬁé_%)




Extraction of K

~_

e K from local fields

2. Stress K; = 1i1]_1]':|I (V 2mr UQQ|5:C|) - K= 1in}j (\/% J]Q|g:{3)
— r—

or can be done for arbitrary angle (0) taking T T T =
o angular dependence 7(0) into account *

Stress based method is less accurate because:

 Stress is a derivative field and generally is one order less accurate than displacement

« Stress is singular as opposed to displacement

« Stress method is much more sensitive to where loads are applied(crack surface or far field)
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Extraction of K

~_

e K from energy approaches

1. Elementary crack advance (two FEM solutions for aand a+ AQ)
2. Virtual Crack Extension: Stiffness derivative approach
3. Jintegral based approaches (next section)

After obtaining G (or J=G for LEFM) K can be obtained from:

E plane stress
K?=EG E'—

plane strain
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Extraction of K

~_

e K from energy approaches

1. Elementary crack advance
> For fixed grip boundary condition perform two simulations (1, &) and (2, a+Aa):
All FEM packages can compute strain (internal) energy U,

Fixed grips: aJ, _, P11t Pttt
da
a L a + Aa
= G :—id&z_iui (a+4a)-U;(a)
» Drawback: l 2

Requires two solutions
Prone to Finite Difference (FD) errors
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Extraction of K

~_

e K from energy approaches
2. Virtual crack extension

Potential energy is given by: 1= %[U [[K][u]-[ul{p}

o|u o0|K o|u o,
6= 2 B S o o)) g 22

- - o+ 1) - 22

0)
1. 19[K] o{p;
Ly L8

Furthermore when the loads are constant: G = Ié'f =—%[u ]T ag;][u]
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Extraction of K

~_

e K from energy approaches
2. Virtual crack extension

» Only the few elements that are distorted contribute to A

» We may not even need to form elements and assemble K for a and a+Aa to

obtain %_K. We can explicitly obtain agae for elements affected by crack growth
a

by computing derivatives of actual geometry of the element to parent geometry.

» This method is equivalent to J integral method (Park 1974)
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Extraction of K

~_

e K from energy approaches
2. Virtual crack extension: Mixed mode

» For LEFM energy release rates G, and G, are given by:
K|2'|'K|2| K|2|| J. =G —_ZKlK"
= — T 2 T2 T '
E 2 E
Using Virtual crack extension (or elementary crack advance) compute G, and G, for
crack lengths g, a + Aa (along 6 = 0, and determine G, and along 6 = rt determine G,).

0=7%
__a_ lda, ,
_ |, 86,
S+,/S +—— Gl _Gz
> Obtain K, and K, from: K, = ; @ that: s =2 —
1-v)(1+«
Note that there are two S ;\/SzJFBGz a:( )E( )
sets of solutions! K — a
n - 4
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J integral

Uses of J integral: TN

1. LEFM: Can obtain K| and K|, from J integrals (G = J for LEFM)

__2K|K||
E’ 21 E’

® Methods to evaluate J integral:

/

< Contour integral: j_ L(""y ou j

< Equivalent (Energy) domain integral (EDI):

 Gauss theorem: line/surface (2D/3D) integral surface/volume integral
* Much simpler to evaluate computationally

« Easy to incorporate plasticity, crack surface tractions, thermal strains, efc.
 Prevalent method for computing J-integral
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J Integral

~_

e Contour integral } { { [ ‘ [
» Stresses are available and also more accurate ; S=Cest
at Gauss points (“’“’x S ~ \i% £
> Integral path goes through Gauss points e 4__:-\_\3____\\5;151_,; N
L . __r___ i \-. ' -.:l/ﬁu;
— . Gauss Point
[‘f (\ ,_//\ n /-' Numbering
S04 RARE PO " Sequence
see 'Y \_ — N ) }‘
ou
J=||wdy —t—dTI
| ( YT j
1= 1 Gxa—u+rx a—u+ﬂ +0o Gl @—[(0 n,+rz, n2) +(rx n,+o, nz)ﬂ} x + %y dn
2] “ox  Yloy ox Yoy |on g 0 on on
LS v ) -\ J J
=I_1|d77 W dy E)L: ES

Cumbersome to formulate the integrand, evaluate normal vector, and integrate over lines
(2D) and surfaces (3D) Not commonly used
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J integral

~_

e Equivalent Domain Integral

» General form of J integral | > W =|  oydg;

Inelastic stress Can include (visco-) plasticity,

p_ 1 0uidu and thermal stresses
2ot o
total | | t
g =& t& +0O =& +&
Elastic

Plastic Thermal (® temperature)

I'y = 0:J contour approaches Crack tip
Accuracy of the solution deteriorates at Crack tip

Inaccurate/Impractical evaluation of J using contour integral




J Integral

~_

e Equivalent Domain Integral
Divergence theorem: Line/Surface (2D/3D) integral —  Surface/Volume Integral

Application in FEM meshes

|+
N r
— __ A 0
€1 ) || F_ A*
Original J integral
contour Surface integral after
using divergence theorem [, —0 )y 2D mesh covers

crack tip

« Contour integral added to create closed surface
« By using g =0 this integral in effect is zero
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