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FE Analysis of 1D Bars

The DE is in the form of _i(EAd_“)_q:o
dx dx
gis the distributed load and 4(0) = u,, (EAg—u)X:L _0Q,
@, Is the axial force. X
o(X)

— —> —> —> " — — — ?

Physical Model

FE Model




FE Analysis of 1D Bars

N

Weak form

In FE analysis, we seek an approximation solution over each element.

14 dul ‘ du
j—» Am===B Q=B T QR
X

T(EAd_Wd_u —Wq)dx—W(XA)QA ~wW(X5)Q, =0
dx dx

XA

B(w,u) = I(EA(Z—Wg—ujdx
. X dx

mm) B(w,u)=1(w)

| (W) — T\qux + W(XA)QA + W(XB)QB
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FE Analysis of 1D Bars

Approximation of the solution

1- The approximation solution should be continuous and differentiable
as required by the weak form. (nonzero coefficient matrix)

2- It should be a complete polynomial (capture all possible States, e.g.

constant, linear, ....)

3- It should be an interpolant of variables at the nodes (satisfy EBCs)

1 [ ) a 2
First order

2

1e ) 3
Second Order

dl,:."lia oM‘:-QL@LA L) ol &sils

<

/

U=a+bx, U(x)=u,U(Xx,)=u,
< U =Ny, +N,u,
N,=1-X/¢, N,=X//

N
(U =a+bx+cx®, U(x)=u,U(x,)=u,,U(x,)=u,

U =N,u, + N,u, + N,u,

N, = (1-X/£)(1-2%/0), N,=4%/0(-X/0), N, =—X/((1—2%/7)
N—
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FE Analysis of 1D Bars
\

FE Model

UzU:Z;,Uij and j(EAd—Wg—u—wqjdx W(X,)Qn —W(X5)Qp =0
j= dx dx

: If 7> 2 then the above integral should modify to

include interior nodal forces

fXB dN dN n
EA—) u.—L—N q]dx— N,(x.)Q, =0
x{ dx ; Pax Z; S Stifere\ss matrix Force vector
2 dN
%J = Zq]dx ZN (X)Q =0 ‘ ZKIJUJ_f_Q 0
dN, aN; n _ Secondary nodal
xj[ dx ;uj dx _N”q]dx_jZ;‘N”(X")Qj =0 Primgrcy)godal DO>|;
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FE Analysis of 1D Bars

N

FE Model

g ~dN
where K. =j ea dN: O, dx = B(N;,N;)
. A dx dx

f; = J‘qudX =1(N;)

Note _,iNj(Xi)Qj :Qi

Note that the problem has Zn unknowns for each element, i.e. u;
and @, so it cannot be solved without having another 7
conditions. Some of these will be provided by BCs and the
remainder by balance of the secondary variables (forces) at node
common to several element. (assembling process)
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FE Analysis of 1D Bars
\

FE Model (Linear Element)
U =N,u, +N,u,
N, =1-X/¢, N,=X/¢

4

K,, = :(EA)(—llf)(—llé)dx = AE /¢

ql—x/¢)dx =1/2q¢

K, = | (EA)=1/0)@A/ ¢)dx =—AE /¢

q(x/¢)dx =1/2q9#¢

K,, = | (EA)L/0)@A/ 0)dx = AE [ ¢

.. AE[1 -1 ()1
| Eventuallyfor_ K ]:{ } {f}ZQ{}
Linear shape function ¢ 1-1 1 2 |1
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FE Analysis of 1D Bars
N

FE Model (Quadratic Element)
U = N,u; + N,u, + N,u,
 =@-x/0)A-2x/¢), N,=4x/¢Q-x/7?), N,=-x/¢(1-2x/7)

¥
_j EA)—3/¢+4x/0?)(—3/¢+4x/¢?)dx =7AE /3¢
0

¥4
K, =K,, j(EA)( —3/0+4x/0?)(4]¢—8x/¢)dx =—8AE /3¢
0

S

L = [a@—3x/¢+2(x/)*)dx =1/6q¢

0

, = [a(4x/ )1 —x/ 0)dx = 4/ 6q¢

o




FE Analysis of 1D Bars
N

FE Model (Quadratic Element)

For quadratic Shape function

7 -8 1] 1)
-8 16 -8 {f}:%ﬂm
1 -8 7 1

_AE

[K*1="~




FE Analysis of 1D Bars

N

Assembly (or connectivity) of elements

In driving the element equation

-Isolate the element from mesh
-Formulate weak form (variational form)
-Developed its finite element model

To solve the total problem

-put the element in its original position

-Impose continuity of PVs at nodal points
e+1 Qe Qe+l
u —_ u Qe—>‘ o— —Q o—
! 2Q; 71 2 Q"
-Balance of SVs at connecting nodes

0 if no external pointsource Is applied (*)
Q, If an external point source of Q, Is applied.

Q + Qe+1 {

il 8082315 - gl aro sl 10 3995 sl oy



FE Analysis of 1D Bars
\

Assembly (or connectivity) of elements (For linear element n=2)

The interelement continuity of the primary variables is imposed by
renaming the two variable ¢ ¢ and v*at x=x, as one and same,
namely the value of v at the global node N ue ue+1 iy

o N

where N=(n-1e+1

For a mesh of £ linear finite elements (n=2):

Sl Sils - gl _inio oKLl 11 39308 sl5] gy



FE Analysis of 1D Bars

N

Assembly (or connectivity) of elements (For linear element n=2)

To enforce balance of secondary variables Q¢ , eq. (*), we must
add rth equation of the element Q¢ to the first equation of the
element Q&+ ;

ZKHJ =1

and
z Ke+1 (_e+1 f e+l 4 Qe+1
to give i
Z(Keue n Ke+1ue+1) + fe+1+(Q +Qe+1)
j=1

nj—J

. e e+1
=f +f " +Q,

This process reduces the number of equations from 2E£to E+1.
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FE Analysis of 1D Bars

N

Assembly (or connectivity) of elements (For linear element n=2)

The first equation of the first element and the last equation of the
last element will remain unchanged, except for renaming of the
primary variables. The left-hand of the equation can be written in
terms of the global nodal values as

(KSUS + Ko Us +--- + KEus) + (K ul™ + K us™ +--- + K us)
=(K U, +K U+ +K U )+
(Kfflu N-+n-1 + KfS_lU N+n s Kfr‘]"lu N+2n—2)
— Knlu + KnZUN+1 s Kr?(n 1)UN+n—2 T

e+1 e+1 e+l
(K +K11 )UN+n 1+K12 U +K1n UN+2n—2

N+n

where N=(n-1)e+1
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FE Analysis of 1D Bars

N

Assembly (or connectivity) of elements (For linear element n=2)
For a mesh of £linear finite elements (n=2):

KU, +K U, = f£+Q;  (unchanged)
KU, +(K5, + KU, + KU, = £+ f2+Q; +Q;
KU, + (K2, +K))U, + KU, = f7+f°+Q7 +Q;

Ko U, +(K, "+ KU +K U, = T+ £ 5 +Q, 7+ Q)
KU +K U.,=f"+Q;  (unchanged)

Sl Sils - gl _inio oKLl 14 39308 sl5] gy



FE Analysis of 1D Bars
\

Assembly (or connectivity) of elements (For linear element n7=2)
In matrix form

_K111 K112 | (Ul )
Kllz Kzlz + K121 K122 0 U,
KL KEKG Ju, |

1 e 1 3
f; Q;

1 2 1 2
fo+ f, Q, +Q;
f24f 2+ Q’

= 2 1 >+<Q2 Ql 9

.|:2E—1+ flE Q2E—1+QE




FE Analysis of BEAM
N

The DE is In the form of

2
d (bd Ty=f(x) 0<x<L

MW




FE Analysis of BEAM
\

Weak form
d d?w d?w
. e Qf=[ [b ﬂ ;Qs{b }
( )—fjd X —0 dx dx . dx .
e | df, d*w e | diw
SRR F G IS L

><c_‘

or
BCs
S d?v d*w o dv . dv o
)_(“( dX dX _ijdx_v(xe)Ql ( j Qz V(Xe+1)Q3 _(_&jxeﬂQ4:O
where
1 d2%y d3w
B(V, W) = j (b AV de

Xe+1

I(v) = jvfdx+v(xe)Qf+[ j QS +V(X,.1)Q5 + [ ;’Xj Q:

Xe
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FE Analysis of BEAM
\

Approximation of the solution

1- The approximation solution should be continuous and differentiable
as required by the weak form. (nonzero coefficient matrix)
2- It should be a complete polynomial (capture all possible States, e.g.

constant, linear, ....)
3- It should be an interpolant of variables at the nodes (satisfy EBCs)

2 3
1 L2 W =C, +C,X + C,X" +C,X

First order W(Xe) =W, W(Xe+1) — W2,9(Xe) — 6)1’ Q(Xeﬂ) — 82

W =C, +C,X+C;X* +C,X°

or dw
u; =w(x,),u; = ‘U =W(X,,),U; =——

Xe Xe+1

il 8082315 - gl aro sl 18 3995 sl oy



FE Analysis of BEAM
\

Shape Functions

Calculating Ci and substituting in the equation for w

4
we(x)=> uiN,
=1

The interpolation functions in term of local coordinates are

X ; X ’ X ;
ot 2 oo o)
h h h

X ’ X ’ X i X
N3:3— —2— ,N4:—X — -
h h h h
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FE Analysis of BEAM

Hermite cubic interpolation function
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FE Analysis of BEAM

FE Model
4 Xei1 dZN dZN Xei1
b | Ldx u. —( | N. fdx +0f)=0
,le[ < dx?  dx? ‘ (J ! Q)
N\ W,
- — Y
or > Kyu, —F =0
j=
For b=EI constant and also a constant f over the element.
6 —-3h —6 —3h] 6 | (Q,]
—3h 2h* 3h h? —h
[K]=2E3I {F}=m< >+%Q2>
h —6 3h 6 3h 12 |6 Q,

—3h h? 3h 2h? h | |Q,
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FE Analysis of 1D FIN
\
Model Boundary Value Problem

The DE is In the form of _di(kACC'I_T)Jr PAT = Aq+ PAT.
X X

k 1s thermal conductivity oT

[ is convection heat transfer coefficient  T(0)=T,, Q=-kA—=0Q,
T, is the ambient temperature OX

g 1s the heat energy generated per unit volume

P, Perimeter

Physical Model

A\, Cross section
?* FE MOdel
1 2 3 4 5 6



FE Analysis of 1D FIN
N

Weak form

B A dN; dN;
Ki = || KA— L+ PAN. N [dx
! j[ dx dx AN ‘j

XA

f, = [ N, (aA+ PST, )dx

dT dT
e _(_kadT) . oro[_kall
@ ( dxij ~ ( dxij

Assume the lateral surfaces of the bar are isolated and the BCs

_4a
dx
T0)=T, T(L)=T,

kAl - aq
dx



FE Analysis of 1D FIN

N

Approximation of the solution

1- the approximation solution should be continuous and differentiable
as required by the weak form. (nonzero coefficient matrix)

2- 1t should be a complete polynomial (capture all possible States, e.qg.

constant, linear, ....)
3- it should be an interpolant of variables at the nodes (satisfy EBCs)

1 [ ) a 2
First order

2 3

Second Order

1=

dl,:."lia oM‘:-QL@LA L) ol &sils

<

/

T=a+bx, T(x)=T,T(x,)=T,
< T=N,T,+N,T,
N,=1-X/¢, N,=X//

N—
T=a+bx+cx?, T(x)=T,T(X,)=T,T(x,)=T,

T =NT,+N,T, +N,T,
N, =(@A—-X/0)@-2%/¢), N,=4%/¢(L—%X/¢), N,=-X/((1—2%/0)

/

—
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FE Analysis of 1D FIN
\

FE Model

Evaluating the integral using linear shape function
[K*KT}={f"}+{Q"}

KA[ -I][T] _Agrfr] @
el-1 Tl 2 Y |
For a uniform mesh ¢ =L/ N and after assembling

A (

1 -1 0 . 1] [Qf
kA|-1 2 -1 ... ||T, Agl |2 Q;+Q12>

— 3 F=——19. ¢ t1

2 T I F 2 ;
O 0 -1 1] \Ty,] 1) kQN

1
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FE Analysis of 1D FIN
\

FE Model

Boundary conditions at nodes 7 and N+1
T,=T

TN+1 :TN+1
Heat balance at global nodes 2,3,....,.N
Q*+Qf =0 for e=23,...,N
After applying the above conditions:

(1 -1 0 ..](T ) 1) (@)
1 2 -1 ..||T 2| |0
kA 17 >:ﬂ%, SHED N
L e T 2 |: :
0 0 -1 1](T,. 1) Q"
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Virtual work as the ‘weak form’ of equilibrium

equations for analysis of solids
\

In a general three-dimensional continuum the equilibrium
equations of an elementary volume can be written in terms of the
components of the symmetric cartesian stress tensor as

- )

0
0o, N Ty N or,, +b =0
N ox oy 0z

L
0 0 0
L%, 9% 0%y ol L(u(x)=0
ox oy oz '
L or, 071, 0o
24—2+—2+ph =0
| OX o0y 0z

b=[b, b, b ]T The body forces acting per unit volume

u=[u v w]  The displacement vector

il 8082315 - gl aro sl 27 3995 sl oy



Virtual work as the ‘weak form’ of equilibrium
equations for analysis of solids

N

The weighting function vector defined as su=[du 6V §w]T

We can now write the integral statement of equilibrium equations as

T _ aGx aTXY az-xz
[, ou’ L(u)dv = j\[&( ~ Py +— +bxj+5v(L2)+5W(L3)}dv

=0
Integrating each term by parts and rearranging we can write this as

[, |:@O'X +(a5u + 85ij_xy + - —oub, —ovb, —5sz}dv

OX oy OX
+jr[5u (o, +7,N, +7,0,)+0V(.)+ 5W(..)]dr —0

(*)

il 8082315 - gl aro sl 28 3995 sl oy



Virtual work as the ‘weak form’ of equilibrium
equations for analysis of solids

N

e 3 r A

L, on +7,N, +7,N, | are tractions acting per unit area
where t=4t, e=<s7,N, +0,N +7,N,¢ of external boundary surface I
of the solid

rn+rn+o-n

Y7 ) XZ' X

In the first set of bracketed terms in eg. (*) we can recognize
Immediately the small strain operators acting on ou, which can be
termed a virtual displacement.

We can therefore introduce a virtual strain defined as
58T:{85u OOV OOW 0Odu a5v 85v OOW OOV 85w} _Dsu T

6x’ayaz@y682 oy ot oy

Arranging the six stress components in a vector o In an order
corresponding to that used for dg, we can write Eq. (*) simply as

il 8082315 - gl aro sl 29 3995 sl oy



Virtual work as the ‘weak form’ of equilibrium
equations for analysis of solids

N

|, de'odv—] Su'bdv—| Su'tdl'=0

we see from the above that the virtual work statement is precisely
the weak form of equilibrium equations and is valid for non-linear
as well as linear stress—strain (or stress—strain rate) relations.

il 8082315 - gl aro sl 30 3995 sl oy



Appendix

N

From “Energy Principles and Variational Methods in Applied Mechanics”, by: J. N. Reddy,
2nd ed., John Wiley (2002). (pp. 441--447)

9.2.4 Wealy Form

-y /
Having egﬁﬁl,‘fs%{’ed a systematic way of derivin ;hé/ approximation functions needed
for the Ritz solution over an element, we no t#f our attention to developing the
weak form of the governing equation (9.1) over the domain Q¢ = (x4, xp) = (%] - x5)
of a typical element. A typical element with n nodes and nodal displacements is shown
in Fig. 9.6a, while Fig. 9.6b contains the n-node element with forces (i.e., a free-body
diagram of the element). The forces and displacements at the end nodes are defined by

u(xy) = uf, u(xy) = uy,
d d 9.20
(—a—u) = I, (a—i) = P, 200
d.x X=Xf d.x X=Xf;
The nodal forces P¢, PS, ..., P¢ . areexternally applied (i.e., known) forces, if any.
2° 13 n—1 PP

The variational statement for the bar element in Fig. 9.6 is provided by the principle
of minimum total potential energy,“

W[ E A, (du\*  ce,
0_8[/x,, |: > (E) +3(u) —fu]dx

— Pfu§ — Pyu§ — -+ — p"?u:;l
T ddu du n
=/xu (EeAeg;d—; +C98uu—f8u)dx—ZP;’3ui, 9.21)

k=1

where § is the variational symbol, and the subscript e on the variables indicates that
the variables are defined in element Q€.
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Appendix

Since ?ﬁ odel equgtion (9.1) agsj{a%’éé"sl in fields other than solid and structural
méc{;ﬁi% : /t@’f'ﬁ(d’ﬁﬁﬁt‘lve to discuss the procedure by which we can obtain the weak
form (9.21) from Eq. (9.1) directly. As discussed in Chapter 7, we use the three-step
procedure to construct the weak form. We have

Xb d du
0=./;u wl:—(—j; (aa)+cu—f]dx
%[ dwdu du\ 7™
= s — dx — |a—
/Xd |“x dx TS ] ! [w (adx)]xa

[ dwdu - du\ T+
= Ny - dx — Z i gz
/xa _adx e + cwu wf] x [w (adx)]

k=1 X

(9.22a)

[ dwdu "
=‘£ﬂ {GZE-*-Cwu_whf]dx_I;w(xf)Pke,

where x{ = x4, x{; = xp, and

d d
(—ad—“) =Pt [a—"] =Pt (k=2,....,n—1), (—“) =Pe,
dx/,, dx X dx /.

9 (9.22b)

n ~”
and [-]p denotes the ﬁﬁ‘nf in the enéféﬁéﬁ qua/anig at point P. Equation (9.22b)
is the same as Eq. (9.21) with the weight function w replaced by su and a = E A.

9.2.5 Finite Element Equations

We seek approximation of u(x) in the form

u@) Nue(x) = Y wYi(x),  w=du()~ Y Sufyi(x),  (9.23)

j=1 i=1

where 1//;’ are the approximation functions derived earlier; they can be linear (n = 2)
quadratic (n = 3), or higher (n > 3).
Substitution of Eq. (9.23) into Eq. (9.21) yields

X n dvs; n dl/f n n
0=./x E.A, (Z}suf%) u; d_xj) +cCe (Zsufllfi) (Z”;‘”i
a = j=1 i=l

Jj=1
n n
s f (Z(Sufl/fi) dx— Z PfSu
i=l i=1
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" . o B - The coefﬁc_ien_t'maut_rj_x [K¢] is_called the stiffness matrix, and {F¢} = {ff} + {Pf}

= Z sut ‘Z [ f ( o Ae;—' et 1/,]9) d x] uj. = f fvi dx—Pf is the force vector. Equation (9.25a) is often referred to as the finite element model of
izl Xa x dx Xa the differential equation (9.1), and it provides n linear algebraic equations relating n

nodal values u;, (= 1520 i)

e - e e re_ pe 9.24 The coefficient matrix [K €], which is symmetric, and the source vector { f¢} can
=Z‘S“i Z Kijuj =Ji=F |- 9:24) be evaluated for a given element type (i.e., linear, quadratic, etc.) and element data
==l i (@e, Ce, and f,). For element-wise constant values of a,, ce, and fe, the coefficients
., 8u¢ are arbitrary and the above equation must hold for all . K Z and f{ can easily be evaluated. For linear and quadratic elements, these matrices

j=1

Since duf,dus, ..

i=1,2, v, 0, WE obtain f;t are presented below.
e L ’ Linear Element For a typical linear element of length he = xp — Xa, W€ have
i e s
0= Z Kfju‘}’. —ff-Pf= Z K‘-"ju‘} - Ff, (9.25a) S 1 1 o a
j=1 j=1 eq_ Ge = Celle
[K]—he[—l 1]+-——6 [1 2], (9.262)
where b
1
" Jue dve (fy==21:1.  a=EA. (9.26b)
e 1//1 J. e.e 2 1
~a 1 If a = a. - x and ¢ = c., the coefficient matrix [K¢] for a linear element can be
he dye Ay - evaluated as
= / E (£)A:(X)— J 4 cyfys ) dx,
0 dx dx 4

e Ge x{ + x5 S | che [2 1
o " | ””‘he( 2 )[—1 1]+ 6 [1 2]’ -
i =/ fe(x)Y{ dx =/0 fe(X)¥{(X) dx. (9.25b) ¢
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where (x{,x$) are global coordinates of 1 1 and node 2 of the element
Qf =(x4, xp) = (xf, x§). The reader should%¥erify this. Note that [K¢] in Eq. (9.27)
is the same as that in Eq. (9.26a) with a, replaced by the average value

1
avg = (85 + x5)ac.

For example, in the study of bars with linearly varying cross section A but constant
modulus of elasticity E, we have

S e
AT .
fa(x) =EA(x)=E (A‘l’ o M

he

N

where X is the local or element coordinate with origin at node 1, and A¢ and AS are
areas of cross section at nodes 1 and 2, respectively. Then the element stiffness matrix

is the same as that of a constant cross-section bar with the cross-sectional area being »

_the average of the two ends, Ay = (fﬁ + AD2.
When a(x) = a, = constant, and f(x) = f, = constant, and ¢, = 0, the finite
element equations corresponding to the linear element reduce to

(9.28a)

ae I -1 u‘l’_fehel+Pf
he |-1 1]|ug) — 2 1 P

or
a a 1
—uf — h—eug = 2fehe + P{,
he ¢ | (9.28b)
a a
—iui + h—iug = 3 fehe + P§

Quadratic Element For a quadratic element Q¢ = (x4, xp) = (x7,x5), he =
Xp — Xq = x5 — x|, we have

; 7 -8 1] ., 4 2 ~I
[K]=-—2]|-8 16 -8|+—=2| 2 16 2|, (9.29a)
el 1 =8 7] 30 |1 2 4
1
{fe}=% 4% . (9.29b)

1

For arbitrary variation of the data a,, c,, and f,, numerical integration may be
used to evaluate the coefficients K fj and f (see Reddy [4]).
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9.2.6 Assembly (or Connectivity) of Elements

The finite eleme%a}/ions (9.25a) can be specialized to each one of the elements
in the mesh by a g g ‘ng the values of x,, xp, @, c., etc. Because each of the ele-
ments in the mesh is connected to its neighboring elements at the global nodes,-
and the displacement is continuous from one element to the next, om’elf‘a%ﬁr?;a;)té'
the nodal values of displacements at the interelement connecting nodes. T5 fhisend,
let U; denote the value of the displacement u(x) at the /th global node. Then we
have the following correspqus:nce between U; and uj’. (see Fig. 9.7a) of a linear
element mesh: g

355 uév = UN+|,
(9.30)

1
ul = Uy, o =t = Usyy, .

where N is the total number of linear elements connected in series. Equation (9.30)
relates the global displacements to local displacements and enforces interelement
continuity of the displacements (see Fig. 9.7a). !

The assembly of element equations is based on the satisfaction of the principle of
minimum total potential energy for the whole system:

N+1

S= )"

I=1

oIl

—8U; =0 .oN+1, (931
T or + (9.31)

Finite element solution, u.(x)

Exact solution, u(x)

A : Element node e+l

L
ug numbers

=y

(e + 1)st element 3

1 ethelement 2

- he > ho1 »  Global node
~ () numbers
PZe + Ple-d»l= Pe+l
— e+l
P f 1 e 2 Pze Ple+1 1 e+ 1 5 P2
1 2 2 3

(b)

Figure 9.7 Connectivity of elements in one dimension. (a) Element-wise linear approximation
of the displacement and interelement continuity of the displacements. (b) Balance of element
forces at common nodes.
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446 THE FINITE ELEMENT METHOD
where IT is the sum of I1° fore = 1,2, ..., N: )
N N 1 2
— e __ e _ € _—
n=3ne =33 uf 520 Kius - |
e=1 e=1 i=l j=1

= %Z u§(K§yu§ + K§pus — 2FF) 4+ u5 (K5 u§ + K5,us - 2F;)]
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where, in arriving at the last line, the correspondence in Eq. (9.30) is used to
replace the element nodal displacements by the global nodal displacements. Using
Eq. (9.32) in Eq. (9.31), we obtain
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] Using the symmetry of the element stiffness matrices, K¢, = K. and the fact that
{F¢} = {f¢} + {P¢}, we can write the above equations in Y the matnx form
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It is clear from Eq. (9.33b) that the diagonal elements of stiffness matrices of
elements ¢ and Q¢*! add up at the common global node I = ¢ + 1, and the global
stiffness coefficient K is zero if global nodes / and J do not belong to the same
element. Thus th ut )
banded, i.e., all diagonal parallel to the main diagonal, helow and
above, are zero. This is a feature of all finite element equations, irr ﬁ:xcm‘e‘ of the
differential equation being solved, and is a result of the piecewise definition of the
coordinate functions. Keeping in mind the general pattern of the assembled stiffness
matrix and force column, one can routinely assemble the element matrices for any

number of elements.

The assembly procedure for a general case is based on the following two

requirements:

&'ﬁesgbltin | stiffness matrix is not only symmetric, but is also
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s Comty of the priﬁ\’gl)'y variable(s) at the interelement boundary, as expressed
by Eq. (9.30).
2. Balance of secondary variables; i.e., the secondary variables from the elements
connected at a global node should add up to the value of the externally applied
secondary variable at the node.

The second condition for the mesh of two linear elements shown in Fig. 9.7b
[uires

PE4+ Pt =P (9.34)
rere P, is the value of ex:;@?l}y applied force at node e + 1 (see Fig. 9.7b).
iese conditions require the a#dition of the second equation of element Q¢ to the
st equation of element Q°*! so that we can replace P5 + P +1 with P,y . This
duces 2N equations to N +-1 equations, where N is the number of linear elements
ynnected in series, as shown in Fig. 9.7a. mif the ith node of element ¢ is
snnected to the jth node of element 27, the balance of secondary variables requires

Pt + P/ = F, (9.35)

where K is the global node number of the ith node of element ¢, which is the same
as the jth node of element Qf.



Galerkin’s Method in Elasticity
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Galerkin’s Method in Elasticity
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Integrate by part...
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Galerkin’s Method in Elasticity Virtual Work

Virtual Total Potential Energy
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Compare to Total Potential Energy
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