Finite Element Method
Integral Formulation




Some Mathematical Concepts
\

Simply connected domain. If any two points of the domain can be
Joint by a line lying entirely within the domain

Class of a domain.: A function of several variables iIs said to be of
Class C"(©) in a domain if all its partial derivatives up to and
Including the /mth order exist and are continuous in Q

C” == £is continuous (i.e. &f /ox, éf /18y exist but may not be
continuous.)

Boundary Value Problems. A differential equation (DE) is said to be
a BVP If the dependent variable and possibly its derivatives are
required to take specified values on the boundary.

d  _du du
Example: ~-—(@—)=f 0<x<1, u(0)=d ,(x_j -
P dX( dX) <X< (0)=d, dx ) Jo
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Some Mathematical Concepts
\

Initial Value Problem. An IVVP is one in which the dependent
variable and possibly its derivatives are specified initially at /=0

2

Example: pd—g+au:f 0<t<t,, u(0) =u,, (duj =V,
dt dt ).

Initial and Boundary Value Problem.

Example: —6( auj+p2t—u—f(xt) for 0<x<land O<t<t,

OX\_ OX
u(0,t) =dy(t), ( Zij =0o(t), u(x,0)=uy(x)
Eilgenvalue Problem. the problem of determining value A of such that

—d( duj AU O<x<l1
Example: A Eigenvalue dx\  dx
u Eigenfunction 4(0) =0, (duj 0
dx
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Some Mathematical Concepts
\

Integration-by-Part Formula:

First
d dw dv dv
&( )= W= _[W dx = —jv—dX+W(b)V(b) w(a)v(a)
Next

du dw du du
jw—dx_ j——d w(b)~-(b) - w(a) _(a)

Similarly

-T d*w dwdvOI dW(a)dV(a
. dx

2 dx? dx?
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Some Mathematical Concepts
N .

Gradient Theorem
j grad F dxdy = j VF dxdy = § AFds
Q Q r

But aF' oF j, A=ni+n,j

Thus j(—l+—]jdxdy f J+n, )Fds
Q

i (&)dxdy = ;{ Fn, ds
g[ [%jdxdy = i Fn,ds

or



Some Mathematical Concepts
\

Divergence Theorem

j divG dxdy = j V.G dxdy = § A.Gds
Q Q r

oG
I[ﬁGX +— jdxdy = §(nXGX +n,G,)ds
‘L ox oy !

Using gradient and divergence theorem, the following relations can
Be derived! (Exercise)

j (VG)wdxdy =— j (Vw)dedy+§ AWGds (*)  and

Q Q

_ j (V2G)wdxdy = j (Vw) .(ve)dxdy—§ (2—(§st

r
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Some Mathematical Concepts

The components of equation (*) are:

J’@dedy :—j %dedy+ § n wGds
r

5, OX 5, OX

J‘@dedy :—j %dedy+ i n,wGds

Q Q




Some Mathematical Concepts
\

Functionals

An integral in the form of

| (u) = jl F(x,u,u')dx, u=u(x), u'= 3—?(

where integrand Ax,u,¢) Is a given function of arguments x, u, u’
Is called a functional (a function of function) .

A functional is said to be //nearif and only if:
| (cu+ ) =cd (U)+ A (V) a, p are scalars

A functional B(u,V) is said to be bi//inearif it is linear in each of its
arguments

B(au, + Au,,v) =aB(u,,v) + /B(U,,v)  Linearity in the first argument

B(u,av; + pv,) =aB(u,v;) + B(U,V,)  Linearity in the second argument
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Some Mathematical Concepts
N .

Functionals

A bilinearform B(u,V) is symmetricin its arguments if

B(u,v) = B(v,u)

Example of linear functional is
L
dv
| (v) = | vfdx+—(L)M
(v) j — (LM,

Example of bilinear functional is

L
B(v,w)=jaﬂd—wdx
> dx dx



Some Mathematical Concepts
\

The Variational Symbol

Consider the function F = F(x,u,u") for fixed value of x, Fonly
depends on u,u’

The change a v in u, where « Is constant and vis a function, is
called variation of ¢and denoted by:

Variational Symbol — U =V

In analogy with the total differential of a function
oF oF
é]: —_- 5U + ~ 5Ul
ou ou

dF :a—Fdx+5—qu+aF

OX ou ou
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Some Mathematical Concepts
\

The Variational Symbol
Also  6(F = F,) =3R4,

5(F1F2) — FzéFl + FléFz
(ij _ FZéFl_ Fl&ZZ
%Fz Fzz
S|(F)"|=n(F)" e,

o

Furthermore

d d dv du
— (W) =— () =a—=aV'=U'=0(—
dx( ) dx( ) adx (dx)

5iu(x)dx :i ou(x)dx
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Weak Formulation of BVP
N

Weighted — integral and weak formulation

Consider the following DE

~ Transverse deflection of a cable
Axial adeformation of a bar
Heat transfer
Flow through pipes
Flow through porous meadia
H(O) =, (a&jﬂ = \_ Electrostatics




Weak Formulation of BVP
\

There are 3steps in the development of a weak form, if exists,
of any DE.

STEP 1:

Move all expression in DE to one side, multiply by w (weight
function) and integral over the domain.

: d ., du
! w[— ™ (a dx) _ q}dx ~0 (+)

Weighted-integral or weighted-resiaual

N linearly independent equation for wand
obtain Aequation for C;,...,Cy

N
u=U, :ch¢j + @,
j=1
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Weak Formulation of BVP

\
STEP 2

1-The integral (+) allows to obtain Aindependent equations

2- The approximation function, ¢, should be differentiable as many
times as called for the original DE.

3- The approximation function should satisfy the BCs.

4- If the differentiation is distributed between w and ¢ then the
resulting integral form has weaker continuity conditions.

Such a weighted-integral statement is called weak form.

The weak form formulation has two main characteristics:

-requires weaker continuity on the dependent variable and often
results in a symmetric set of algebraic equations.

- The natural BCs are included in the weak form, and therefore the
approximation function is required to satisfy only the essential BCs.
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Weak Formulation of BVP
—

Returning to our example:

L d du dW du du L
- - (242 ]

Secondary Variable (SV):
Coefficient of weight function and its derivatives

du
Q= (c’:la)ﬂX ——> Natural Boundary Conditions (NBC)

Primary Variable (PV): The dependent variable of the problem

U C—— > Essential Boundary Conditions (EBC)
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Weak Formulation of BVP
\

<(dw du
a——wq [dx—(w —(wW =0
!(dx — qj (WQ), —(WQ),
n=-1 x=0
Note that n =1 x=L
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Weak Formulation of BVP

\
STEP 3:

The last step is to impose the actual BCs of the problem whas to
satisfy the /iomogeneous form of specified EBC.

In weak formulation whas the meaning of a virtual change in PV.
If PV Is specified at a point, its variation Is zero.

u(0) =u, =>w(0)=0

du du
(a&nxj =(a&j =Q, NBC
Thus x=L x=L

L(dw du j [ du } [ du }

_[ a—-—-wqg dx—-|wa—n, | —|wa—n, =0
-Ldx  dx dx ], _, dx ~ |,

L

!
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[_1near and Bllinear Forms

dx dx

\ J

dea dujdx—_L[wqu —w(L)Q, =0
0 ° ) Bwu)-l(w)=0

/)

v

B(w,u) |(;V3

B(w,u) Bilinear and symmetric in wand v

[(w) Linear

Therefore, problem associated with the DE can be stated as one of
finding the solution «such that B(w,u) =1(w)

holds for any wsatisfies the homogeneous form of the EBC and
continuity condition implied by the weak form
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[_1near and Bllinear Forms

Assume U=U" +W | Satisfy the homogeneous
- — Form of EBC
Variational solution Actual solution
Satisfy EBC Satisfy EBC+NBC

Looking at the definition of the variational symbol, wis the variation of the
solution, 1.e. W= AU

Then B(w,u) =l (W) = B(u,u) = I(su) (#)
déu du cal(du du du
B(SU,u) = J'a—X&d —5!5{(&” =—5j ——d —5[B(u,u)]

[(SU) = _[5uqu+ ou(L)Q, = §ﬁuqu+ u(L)QO} =o[l(u)]
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[_1near and Bllinear Forms

Substituting in (#), we have:
B(ou,u)—-1(cu)=0= 5[% B(u,u)—l(u)} =0=31(u)=0

| (u) :%B(u,u)—l(u) (##)

1
In general, the relation B(du,u) =§ﬂ3(u,u) holds only if

B(w,u) Is bilinear and symmetric and I(w) is linear

If B(w;,u) 1s not linear but symmetric the functional /) can
be derived but not from (##). (see Oden & Reddy, 1976, Reddy 1986)
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[_1near and Bllinear Forms

Equation ol1(U)=0 represents the necessary condition for the
functional /() to have an extremum value. For solid mechanics,
/() represents the total potential energy functional and the
statement of the fofal potential enerqy principle.

Of all admissible function v, that which makes the total potential
energy /A &) a minimum also satisfies the differential equation and
natural boundary condition in (+).

il 8082315 - gl aro sl 21 3995 sl oy



Some Examples
—

Example 1

Consider the following DE which arise in the study of the deflection

of a cable or heat transfer in a fin (when ¢= 0).
d , du

——(a—)-cu+x*=0 for 0<x<1
dx = dx
u(0) =0, (aj—uj =1
X
Step 1 =
1
'fw[— d (adu)—cu+x2}dx=0
A dx = dx
S’[ep 2 u(0)=0 EBC
1 1 du
J'( d—Wd——cuw+wx de—(waduj :O‘ (a&jxlzl NBC
0 dx /g W(0) =0
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Some Examples
—

Example 1
Step 3 J'( deu—CUWjdX—I—J‘WXZdX_W(l):O
oL dx dx
or B(w,u) = J-(a—d——CUWjdX

dx dx
) B(w,u)-I(wW)=0

(W) =— j wx2dx + w(l)

0
B s bilinear and symmetric and /is linear! (prove)
Thus we can compute the quadratic functional form

| (u) —j[ (jij —cu’ +2ux2]dx—u(1)

0
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Some Examples
—

Example 2

Consider the following fourth-order DE (elastic bending of beam)

2
d (b‘jj"")—f(x) 0  for D<x<L
X

dx’
2 2
(O)_dw(O) 0 [d\;v] M. d(bd\;v) 0
dx dx® ) | dx{ dx® ) |
Step 1
P (| d®>  d’w
[V~ (b=—5)—f [dx=0
> | dx® T dx®
Step 2

L 2 200\
j( d"jd b AWt x| v p W] —g
S dxJdx o dx ax{ dx® /|
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Some Examples

Example 2
L 2 2 2 2 L
jbd\zld\;v—vf dx + vd bd\;v _dvbd\;v =0
o\ dx® dx dx\ dx dx dx” |
2
d bd\gv =V (Shear force) (O)_dw(O) =0
dx| dx dx
dv(O) 0

d2W ] v(0
b =M Bending moment v(0) =
dXZ ( g ) B C :

=0
dx( dx? ij

2
[b ‘ \;Vj =M,
dx L




Some Examples
—

Example 2
Step 3 L7 d2v g2
p j(bd \2/d W—vf)d {dv} M. =0
- dx® dx® dx |,
B(v,w) = j ( dXV (iijdx

or B(v,w)=I(v) where

X |\

dv
1(v) = _[vfdx{d LMO

Symmetric&Bilinear Linear
The functional /(w) can be written as:

L 2. \2
(W)= [ E(d ‘;Vj —wf dx+[dw} M,
AN dx |,
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Some Examples
—

Example 3 Steady heat conduction in a two-dimensional domain

Consider a 2D heat transfer problem

5 5 g, uniform heat generation
_ k[5 T, ot j _ in O k . conductivity of the isotropic material
— M0

_|_

x> oy’ T : temperature
Y 4=0 Insulated
A D
or _ or
a X b KT = p(r-T,)
or OX
K—=4(y) _
OX | Convection
B T=T, (X) C X
< ) >
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Some Examples
-~

Example 3
Step 1 P
W o [dxdy =0
J { ( ayj q} .
Step 2

j{k(awaTJréwaTj qu}dxdy [_ﬂwk(—-rn +£n ]ds=0 (*)
| L ox ox oy oy OX oy

k(@T 6T VJ k or _ =q, T=Primary variable
OX on g, =Secondary variable (heat flux)

on I = AB (n, =-1,n, =0) =q(y)
on I, =BC (n, =0,n, =-1) =T,(x)

on [, =CD (n,=14n _O):>k2—T+ﬂ(T -T,.)=0

onI,=DA(n, =0,n, =1) :g—T 0
n
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Some Examples
—

Example 3
Step 3

:fwk gnx Jr@ny ds =§Wk(£jds —
OX oy on

I r

Wk(%}js _iW[ﬂ(T —Tw)}js + iW(O)ds _

wshould satisfy o o i
g i j w(0, y)d(y)dy ﬂ{ w(a, y)[T (a,y)-T, Hy

Substituting In (*) we have

!2 HZ\QI 21 + Z\;V 2; ] —qu}dxdy + ! w(0, y)q(y)dy + 5 ! w(a, y)[T(a,y)-T,Jdy=0

B(w, T)=1(w)
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Some Examples
—

Example 3

B(w,T)= ﬂk(g\;\l 21 + Z\;V 2; ﬂdxdy +,B_([W(a, V)T (a, y)dy
I(w) = | wa,dxdy - w(0, y)d(y)dy + B[ w(a, y)T..dy

The quadratic functional is given by:

M= [@U {f}U ]dxdy [Tacecy + J T, y)q(y)dy+ﬂj T2 (a,y)— 2T (2, )T, by

Q
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[_1near and Bllinear Forms

Conclusions

1- The weak form of a DE is the same as the statement of the total
potential energy.

2- Outside solid mechanics /) may not have meaning of energy but
It is still a use mathematical tools.

3- Every DE admits a weighted-integral statement, or a weak form
exists for every DE of order two or higher.

4- Not every DE admits a functional formulation. For a DE to have
a functional formulation, its bilinear form should be symmetric in its
argument.

5- Variational or FE methods do not require a functional, a weak
form of the equation is sufficient.

6- If a DE has a functional, the weak form is obtained by taking its
first variation.
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