

Finite Element Method Integral Formulation

Simply connected domain: If any two points of the domain can be Joint by a line lying entirely within the domain

Class of a domain: A function of several variables is said to be of Class $C^m(\Omega)$ in a domain if all its partial derivatives up to and including the *m*th order exist and are continuous in Ω

 $C^0 \longrightarrow F$ is continuous (i.e. $\partial f / \partial x$, $\partial f / \partial y$ exist but may not be continuous.)

Boundary Value Problems: A differential equation (*DE*) is said to be a BVP if the dependent variable and possibly its derivatives are required to take specified values on the boundary.

Example:
$$-\frac{d}{dx}(a\frac{du}{dx}) = f \quad 0 < x < 1, \quad u(0) = d_0, \left(x\frac{du}{dx}\right)_{x=1} = g_0$$

Initial Value Problem: An IVP is one in which the dependent variable and possibly its derivatives are specified initially at t = 0

Example:
$$\rho \frac{d^2 u}{dt^2} + au = f$$
 $0 < t \le t_0$, $u(0) = u_0$, $\left(\frac{du}{dt}\right)_{t=0} = v_0$

Initial and Boundary Value Problem:

Example:
$$-\frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) + \rho \frac{\partial u}{\partial t} = f(x,t) \text{ for } 0 < x < 1 \text{ and } 0 < t \le t_0$$

$$u(0,t) = d_0(t), \left(a\frac{\partial u}{\partial x}\right)_{x=1} = g_0(t), \ u(x,0) = u_0(x)$$

Eigenvalue Problem: the problem of determining value λ of such that

Example:

Eigenfunct ion

$$-\frac{d}{dx}\left(a\frac{du}{dx}\right) = \lambda u \quad 0 < x < 1$$

$$u(0) = 0, \left(\frac{du}{dx}\right)_{x=1} = 0$$

Integration-by-Part Formula:

First

$$\frac{d}{dx}(wv) = \frac{dw}{dx}v + w\frac{dv}{dx} \Rightarrow \int_{a}^{b} w\frac{dv}{dx}dx = -\int_{a}^{b} v\frac{dw}{dx}dx + w(b)v(b) - w(a)v(a)$$

Next

$$\int_{a}^{b} w \frac{d^{2}u}{dx^{2}} dx = -\int_{a}^{b} \frac{du}{dx} \frac{dw}{dx} dx + w(b) \frac{du}{dx}(b) - w(a) \frac{du}{dx}(a)$$

Similarly

$$\int_{a}^{b} v \frac{d^{4}w}{dx^{4}} dx = \int_{a}^{b} \frac{d^{2}w}{dx^{2}} \frac{d^{2}v}{dx^{2}} dx + \frac{d^{2}w}{dx^{2}} (a) \frac{dv}{dx} (a) - \frac{d^{2}w}{dx^{2}} (b) \frac{dv}{dx} (b) + v(b) \frac{d^{3}w}{dx^{3}} (b) - v(a) \frac{d^{3}w}{dx^{3}} (a)$$

Gradient Theorem

$$\int_{\Omega} \operatorname{grad} F \, dxdy = \int_{\Omega} \nabla F \, dxdy = \oint_{\Gamma} \hat{n} F ds$$

But

$$\nabla F = \frac{\partial F}{\partial x}i + \frac{\partial F}{\partial y}j, \quad \hat{n} = n_x i + n_y j$$

Thus

$$\int_{\Omega} \left(\frac{\partial F}{\partial x} i + \frac{\partial F}{\partial y} j \right) dx dy = \int_{\Gamma} \left(n_x i + n_y j \right) F ds$$

or

$$\int_{\Omega} \left(\frac{\partial F}{\partial x} \right) dx dy = \oint_{\Gamma} F n_x ds$$

$$\int_{\Omega} \left(\frac{\partial F}{\partial y} \right) dx dy = \oint_{\Gamma} F n_{y} ds$$

Divergence Theorem

$$\int_{\Omega} divG \ dxdy = \int_{\Omega} \nabla .G \, dxdy = \oint_{\Gamma} \hat{n}.Gds$$

$$\int_{\Omega} \left(\frac{\partial G_{x}}{\partial x} + \frac{\partial G_{y}}{\partial y} \right) dx dy = \int_{\Gamma} (n_{x} G_{x} + n_{y} G_{y}) ds$$

Using gradient and divergence theorem, the following relations can Be derived! (Exercise)

$$\int_{\Omega} (\nabla G) w \, dx dy = -\int_{\Omega} (\nabla w) G dx dy + \oint_{\Gamma} \hat{n} w G ds \qquad (*)$$
 and

$$-\int_{\Omega} (\nabla^2 G) w \, dx dy = \int_{\Omega} (\nabla w) . (\nabla G) \, dx dy - \oint_{\Gamma} \frac{\partial G}{\partial n} \, w ds$$

The components of equation (*) are:

$$\int_{\Omega} \frac{\partial G}{\partial x} w \, dx \, dy = -\int_{\Omega} \frac{\partial w}{\partial x} G \, dx \, dy + \oint_{\Gamma} n_x w G \, ds$$

$$\int_{\Omega} \frac{\partial G}{\partial y} w \, dx \, dy = -\int_{\Omega} \frac{\partial w}{\partial y} G \, dx \, dy + \oint_{\Gamma} n_y w G \, ds$$

Functionals

An integral in the form of

$$I(u) = \int_{a}^{b} F(x, u, u') dx, \quad u = u(x), \quad u' = \frac{du}{dx}$$

where integrand F(x,u,u') is a given function of arguments x, u, u' is called a <u>functional</u> (a function of function).

A functional is said to be <u>linear</u> if and only if:

$$I(\alpha u + \beta v) = \alpha I(u) + \beta I(v)$$
 α, β are scalars

A functional B(u, v) is said to be <u>bilinear</u> if it is linear in each of its arguments

$$B(\alpha u_1 + \beta u_2, v) = \alpha B(u_1, v) + \beta B(u_2, v)$$
 Linearity in the first argument

$$B(u, \alpha v_1 + \beta v_2) = \alpha B(u, v_1) + \beta B(u, v_2)$$
 Linearity in the second argument

Functionals

A <u>bilinear</u> form B(u, v) is <u>symmetric</u> in its arguments if

$$B(u,v) = B(v,u)$$

Example of linear functional is

$$I(v) = \int_{0}^{L} v f dx + \frac{dv}{dx}(L) M_{0}$$

Example of bilinear functional is

$$B(v,w) = \int_{0}^{L} a \frac{dv}{dx} \frac{dw}{dx} dx$$

The Variational Symbol

Consider the function F = F(x, u, u') for fixed value of x, F only depends on u, u'

The change αv in u, where α is constant and v is a function, is called variation of u and denoted by:

Variational Symbol
$$\longrightarrow \delta u = \alpha v$$

In analogy with the total differential of a function

$$\delta F = \frac{\partial F}{\partial u} \delta u + \frac{\partial F}{\partial u'} \delta u'$$

Note that

$$dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial u} du + \frac{\partial F}{\partial u'} du'$$

The Variational Symbol

Also
$$\delta(F_1 \pm F_2) = \delta F_1 \pm \delta F_2$$
$$\delta(F_1 F_2) = F_2 \delta F_1 + F_1 \delta F_2$$
$$\delta\left(\frac{F_1}{F_2}\right) = \frac{F_2 \delta F_1 - F_1 \delta F_2}{F_2^2}$$
$$\delta\left[(F_1)^n\right] = n(F_1)^{n-1} \delta F_1$$

Furthermore

$$\frac{d}{dx}(\delta u) = \frac{d}{dx}(\alpha v) = \alpha \frac{dv}{dx} = \alpha v' = \delta u' = \delta (\frac{du}{dx})$$

$$\delta \int_{a}^{b} u(x) dx = \int_{a}^{b} \delta u(x) dx$$

Weighted - integral and weak formulation

Consider the following DE

$$-\frac{d}{dx} \left[a(x) \frac{du}{dx} \right] = q(x) \quad 0 < x < L$$

$$u(0) = u_0, \left(a \frac{du}{dx} \right)_{x=L} = Q_0$$

Transverse deflection of a cable
Axial deformation of a bar
Heat transfer
Flow through pipes
Flow through porous media
Electrostatics

There are 3 steps in the development of a weak form, if exists, of any DE.

STEP 1:

Move all expression in DE to one side, multiply by w (weight function) and integral over the domain.

$$\int_{0}^{L} w \left[-\frac{d}{dx} \left(a \frac{du}{dx} \right) - q \right] dx = 0 \tag{+}$$

Weighted-integral or weighted-residual

$$u = U_N = \sum_{j=1}^{N} c_j \phi_j + \phi_0$$
 Nlinearly independent equation for w and obtain N equation for c_1, \ldots, c_N

STEP 2

- 1-The integral (+) allows to obtain N independent equations
- 2- The approximation function, ϕ , should be differentiable as many times as called for the original DE.
- 3- The approximation function should satisfy the BCs.
- 4- If the differentiation is distributed between w and ϕ then the resulting integral form has weaker continuity conditions.
- Such a weighted-integral statement is called *weak form*.

The weak form formulation has two main characteristics:

- -requires weaker continuity on the dependent variable and often results in a symmetric set of algebraic equations.
- The *natural BCs* are included in the weak form, and therefore the approximation function is required to satisfy only the *essential BCs*.

Returning to our example:

$$\int_{0}^{L} \left\{ w \left[-\frac{d}{dx} \left(a \frac{du}{dx} \right) \right] - wq \right\} dx = 0 \Rightarrow \int_{0}^{L} \left(\frac{dw}{dx} a \frac{du}{dx} - wq \right) dx - \left[wa \frac{du}{dx} \right]_{0}^{L} = 0$$

Secondary Variable (SV):

Coefficient of weight function and its derivatives

$$Q = (a \frac{du}{dx})n_x$$
 Natural Boundary Conditions (NBC)

Primary Variable (PV): The dependent variable of the problem

u Essential Boundary Conditions (EBC)

$$\int_{0}^{L} \left(\frac{dw}{dx} a \frac{du}{dx} - wq \right) dx - \left[wa \frac{du}{dx} \right]_{0}^{L} = 0$$

$$\int_{0}^{L} \left(\frac{dw}{dx} a \frac{du}{dx} - wq \right) dx - \left[wa \frac{du}{dx} n_{x} \right]_{x=0} - \left[wa \frac{du}{dx} n_{x} \right]_{x=L} = 0$$

$$\int_{0}^{L} \left(\frac{dw}{dx} a \frac{du}{dx} - wq \right) dx - (wQ)_{0} - (wQ)_{L} = 0$$

Note that

$$n_x = -1 \quad x = 0$$
$$n_x = 1 \quad x = L$$

STEP 3:

The last step is to impose the actual BCs of the problem whas to satisfy the *homogeneous form* of specified EBC.

In weak formulation w has the meaning of a virtual change in PV. If PV is specified at a point, its variation is zero.

$$u(0) = u_0 \Longrightarrow w(0) = 0$$

$$\left(a\frac{du}{dx}n_x\right)_{x=L} = \left(a\frac{du}{dx}\right)_{x=L} = Q_0 \text{ NBC}$$

Thus

$$\int_{0}^{L} \left(\frac{dw}{dx} a \frac{du}{dx} - wq \right) dx - \left[wa \frac{du}{dx} n_{x} \right]_{x=0} - \left[wa \frac{du}{dx} n_{x} \right]_{x=L} = 0$$

$$\int_{0}^{L} \left(\frac{dw}{dx} a \frac{du}{dx} - wq \right) dx - w(L)Q_{0} = 0$$

$$\int_{0}^{L} \left(\frac{dw}{dx} a \frac{du}{dx} \right) dx - \int_{0}^{L} wqdx - w(L)Q_{0} = 0$$

$$B(w,u) \qquad \qquad B(w,u) - l(w) = 0$$

B(w,u) Bilinear and symmetric in w and u

l(w) Linear

Therefore, problem associated with the DE can be stated as one of finding the solution u such that B(w,u) = l(w)

holds for any w satisfies the homogeneous form of the EBC and continuity condition implied by the weak form

Assume

Satisfy the homogeneous Form of EBC

Variational solution Satisfy EBC Actual solution
Satisfy EBC+NBC

Looking at the definition of the variational symbol, w is the variation of the solution, i.e. $w = \delta u$

Then
$$B(w,u) = l(w) \Rightarrow B(\delta u, u) = l(\delta u)$$
 (#)

$$B(\delta u, u) = \int_{0}^{L} a \frac{d\delta u}{dx} \frac{du}{dx} dx = \delta \int_{0}^{L} \frac{a}{2} \left[\left(\frac{du}{dx} \right)^{2} \right] dx = \frac{1}{2} \delta \int_{0}^{L} a \frac{du}{dx} \frac{du}{dx} dx = \frac{1}{2} \delta \left[B(u, u) \right]$$

$$l(\delta u) = \int_{0}^{L} \delta u q dx + \delta u(L) Q_{0} = \delta \left[\int_{0}^{L} u q dx + u(L) Q_{0} \right] = \delta [l(u)]$$

Substituting in (#), we have:

$$B(\delta u, u) - l(\delta u) = 0 \Rightarrow \delta \left[\frac{1}{2} B(u, u) - l(u) \right] = 0 \Rightarrow \delta I(u) = 0$$

$$I(u) = \frac{1}{2}B(u,u) - l(u) \tag{##}$$

In general, the relation $B(\delta u, u) = \frac{1}{2} \delta B(u, u)$ holds only if

B(w,u) is bilinear and symmetric and l(w) is linear

If B(w,u) is not linear but symmetric the functional I(u) can be derived but not from (##). (see Oden & Reddy, 1976, Reddy 1986)

Equation $\delta I(u) = 0$ represents the necessary condition for the functional I(u) to have an extremum value. For solid mechanics, I(u) represents the total potential energy functional and the statement of the *total potential energy principle*.

Of all admissible function u, that which makes the total potential energy I(u) a minimum also satisfies the differential equation and natural boundary condition in (+).

Example 1

Consider the following DE which arise in the study of the deflection of a cable or heat transfer in a fin (when c = 0).

$$-\frac{d}{dx}(a\frac{du}{dx}) - cu + x^2 = 0 \qquad for \quad 0 < x < 1$$

$$u(0) = 0, \quad \left(a\frac{du}{dx}\right)_{x=1} = 1$$

Step 1

$$\int_{0}^{1} w \left[-\frac{d}{dx} \left(a \frac{du}{dx} \right) - cu + x^{2} \right] dx = 0$$

Step 2
$$\int_{0}^{1} \left(a \frac{dw}{dx} \frac{du}{dx} - cuw + wx^{2} \right) dx - \left(wa \frac{du}{dx} \right)_{0}^{1} = 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$=$$

Example 1

Step 3
$$\int_{0}^{1} \left(a \frac{dw}{dx} \frac{du}{dx} - cuw \right) dx + \int_{0}^{1} wx^{2} dx - w(1) = 0$$
or
$$B(w, u) = \int_{0}^{1} \left(a \frac{dw}{dx} \frac{du}{dx} - cuw \right) dx$$

$$l(w) = -\int_{0}^{1} wx^{2} dx + w(1)$$

$$B(w, u) - l(w) = 0$$

B is bilinear and symmetric and I is linear! (prove)

Thus we can compute the quadratic functional form

$$I(u) = \frac{1}{2} \int_{0}^{1} \left(a \left(\frac{du}{dx} \right)^{2} - cu^{2} + 2ux^{2} \right) dx - u(1)$$

Example 2

Consider the following fourth-order *DE* (elastic bending of beam)

$$\frac{d^{2}}{dx^{2}}(b\frac{d^{2}w}{dx^{2}}) - f(x) = 0 for 0 < x < L$$

$$w(0) = \frac{dw(0)}{dx} = 0, \quad \left(b\frac{d^2w}{dx^2}\right)_{x=L} = M_0, \quad \frac{d}{dx}\left(b\frac{d^2w}{dx^2}\right)_{x=L} = 0$$

Step 1

$$\int_{0}^{L} v \left[\frac{d^{2}}{dx^{2}} \left(b \frac{d^{2}w}{dx^{2}} \right) - f \right] dx = 0$$

Step 2

$$\int_{0}^{L} \left[\left(-\frac{dv}{dx} \right) \frac{d}{dx} \left(b \frac{d^{2}w}{dx^{2}} \right) - vf \right] dx + \left[v \frac{d}{dx} \left(b \frac{d^{2}w}{dx^{2}} \right) \right]_{0}^{L} = 0$$

Example 2

$$\int_{0}^{L} \left(b \frac{d^2 v}{dx^2} \frac{d^2 w}{dx^2} - vf \right) dx + \left[v \frac{d}{dx} \left(b \frac{d^2 w}{dx^2} \right) - \frac{dv}{dx} b \frac{d^2 w}{dx^2} \right]_{0}^{L} = 0$$

$$\frac{d}{dx} \left(b \frac{d^2 w}{dx^2} \right) = V \quad (Shear force)$$

$$b\frac{d^2w}{dx^2} = M \quad (Bending \quad moment)$$

$$w(0) = \frac{dw(0)}{dx} = 0$$

$$v(0) = \frac{dv(0)}{dx} = 0$$

B.C
$$v(0) = \frac{dv(0)}{dx} = 0$$
$$\frac{d}{dx} \left(b \frac{d^2 w}{dx^2} \right)_{x=L} = 0$$

$$\left(b\frac{d^2w}{dx^2}\right)_{x=I} = M_0$$

$$\left(b\frac{d^2w}{dx}\right)_{x=L} = M_0$$

Example 2

Step 3
$$\int_{0}^{L} \left(b \frac{d^{2}v}{dx^{2}} \frac{d^{2}w}{dx^{2}} - vf \right) dx - \left[\frac{dv}{dx} \right]_{x=L} M_{0} = 0$$

$$B(v, w) = \int_{0}^{L} \left(b \frac{d^{2}v}{dx^{2}} \frac{d^{2}w}{dx^{2}} \right) dx$$
or
$$B(v, w) = l(v) \quad \text{where}$$

$$l(v) = \int_{0}^{L} v f dx + \left[\frac{dv}{dx} \right]_{x=L} M_{0}$$
Symmetric&Bilinear
Linear

The functional I(w) can be written as:

$$I(w) = \int_{0}^{L} \left[\frac{b}{2} \left(\frac{d^{2}w}{dx^{2}} \right)^{2} - wf \right] dx + \left[\frac{dw}{dx} \right]_{x=L} M_{0}$$

Example 3 Steady heat conduction in a two-dimensional domain Ω Consider a 2D heat transfer problem

$$-k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) = q_0 \quad in \quad \Omega$$

 q_0 : uniform heat generation

k: conductivity of the isotropic material

T: temperature

Example 3 Step 1

$$\int_{\Omega} w \left[-k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) - q_0 \right] dx dy = 0$$

Step 2

$$\int_{\Omega} \left[k \left(\frac{\partial w}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial T}{\partial y} \right) - w q_0 \right] dx dy - \prod_{\Gamma} w k \left(\frac{\partial T}{\partial x} n_x + \frac{\partial T}{\partial y} n_y \right) ds = 0$$
 (*)

$$k\left(\frac{\partial T}{\partial x}n_x + \frac{\partial T}{\partial y}n_y\right) = k\frac{\partial T}{\partial n} = q_n$$

T=Primary variable q_n =Secondary variable (heat flux)

on
$$\Gamma_1 = AB$$
 $(n_x = -1, n_y = 0) \Rightarrow \hat{q}(y)$
on $\Gamma_2 = BC$ $(n_x = 0, n_y = -1) \Rightarrow T_0(x)$
on $\Gamma_3 = CD$ $(n_x = 1, n_y = 0) \Rightarrow k \frac{\partial T}{\partial n} + \beta (T - T_\infty) = 0$
on $\Gamma_4 = DA$ $(n_x = 0, n_y = 1) \Rightarrow \frac{\partial T}{\partial n} = 0$

Example 3

Step 3
$$\oint_{\Gamma} wk \left(\frac{\partial T}{\partial x} n_{x} + \frac{\partial T}{\partial y} n_{y} \right) ds = \oint_{\Gamma} wk \left(\frac{\partial T}{\partial n} \right) ds = \oint_{\Gamma} wq_{n} ds + \oint_{\Gamma_{2}} 0k \left(\frac{\partial T}{\partial n} \right) ds - \oint_{\Gamma_{3}} w \left[\beta(T - T_{\infty}) \right] ds + \oint_{\Gamma_{4}} w(0) ds = \underbrace{\int_{\Gamma_{1}} wq_{n} ds + \oint_{\Gamma_{2}} 0k \left(\frac{\partial T}{\partial n} \right) ds - \oint_{\Gamma_{3}} w \left[\beta(T - T_{\infty}) \right] ds + \oint_{\Gamma_{4}} w(0) ds = \underbrace{\int_{\Gamma_{1}} wq_{n} ds + \oint_{\Gamma_{2}} 0k \left(\frac{\partial T}{\partial n} \right) ds - \oint_{\Gamma_{3}} w \left[\beta(T - T_{\infty}) \right] ds + \underbrace{\int_{\Gamma_{4}} w(0) ds - \oint_{\Gamma_{4}} w(0) ds - \oint_{\Gamma_{3}} w(0) dy - \underbrace{\int_{\Gamma_{3}} w(0) dy - \int_{\Gamma_{3}} w(0) dy - \int_{\Gamma_{3}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{3}} w(0) dy - \int_{\Gamma_{3}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{3}} w(0) dy - \int_{\Gamma_{3}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{3}} w(0) dy - \int_{\Gamma_{3}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \int_{\Gamma_{4}} w(0) dy - \underbrace{\int_{\Gamma_{4}} w(0) d$$

the EBC

Substituting in (*) we have

$$\int_{\Omega} \left[k \left(\frac{\partial w}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial T}{\partial y} \right) - w q_0 \right] dx dy + \int_{0}^{b} w(0, y) \hat{q}(y) dy + \beta \int_{0}^{b} w(a, y) \left[T(a, y) - T_{\infty} \right] dy = 0$$

$$B(w,T) = l(w)$$

Example 3

$$B(w,T) = \int_{\Omega} \left[k \left(\frac{\partial w}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial T}{\partial y} \right) \right] dx dy + \beta \int_{0}^{b} w(a,y) T(a,y) dy$$

$$l(w) = \int_{\Omega} wq_0 dx dy - \int_{0}^{b} w(0, y)\hat{q}(y) dy + \beta \int_{0}^{b} w(a, y)T_{\infty} dy$$

The quadratic functional is given by:

$$I(T) = \frac{k}{2} \int_{\Omega} \left[\left(\frac{\partial T}{\partial x} \right)^{2} + \left(\frac{\partial T}{\partial y} \right)^{2} \right] dx dy - \int_{\Omega} T q_{0} dx dy + \int_{0}^{b} T(0, y) \hat{q}(y) dy + \beta \int_{0}^{b} \frac{1}{2} \left[T^{2}(a, y) - 2T(a, y) T_{\infty} \right] dy$$

Conclusions

- 1- The weak form of a *DE* is the same as the statement of the total potential energy.
- 2- Outside solid mechanics I(u) may not have meaning of energy but it is still a use mathematical tools.
- 3- Every *DE* admits a weighted-integral statement, or a weak form exists for every DE of order two or higher.
- 4- Not every DE admits a functional formulation. For a DE to have a functional formulation, its bilinear form should be symmetric in its argument.
- 5- Variational or FE methods do not require a functional, a weak form of the equation is sufficient.
- 6- If a DE has a functional, the weak form is obtained by taking its first variation.

References

- 1- An Introduction to the Finite Element Method, by: J. N. Reddy, 3rd ed., McGraw-Hill Education (2005). (chapter 2)
- 2- Energy Principles and Variational Methods in Applied Mechanics, by:
- J. N. Reddy, 2nd ed., John Wiley (2002). (chapter 7)