Weighted Residual
Methods




Formulation of FEM Model

Direct Method
Formulation of FEM Model Variational Method

Weighted Resiauals

 Several approaches can be used to transform the physical
formulation of a problem to its finite element discrete analogue.

o If the physical formulation of the problem is described as a
differential equation, then the most popular solution method is
the Method of Weighted Residuals.

« If the physical problem can be formulated as the minimization
of a functional, then the Variational Formulationis usually used.

RaSila -ladal [N nlSuila 5
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Formulation of FEM Model

Finite element method is used to solve physical problems
Solid Mechanics
Fluid Mechanics
Heat Transfer
Electrostatics
Electromagnetism

Physical problems are governed by differential equations which satisfy
Boundary conditions
Initial conditions

One variable: Ordinary differential equation (ODE)
Multiple independent variables: Partial differential equation (PDE)

naSiila -|ladal |Nada AlSukila 3 sl 1
BilsSn d0dan L§ljal Lwg)



Physical problems

A(X) = cross section at x
H(X) = body force distribution

(force per unit length)
] e e s L5 X EX) =Young’s modulus
i X ‘ ((x) = displacement of the bar at x
x;O xX=L

Differential equation governing the response of the bar

i(AEd—uj+b:O; O<x<L
dx dx

Second order differential equations

Requires 2 boundary conditions for solution

naSulila -[jladal |Neisa nlSkila 4 sl 1
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Physical problems

Axially loaded elastic%

Y
i
|
i

_______ —» - ——p».— - . . —— X

| X

»
>

x;O X=L
Boundary conditions (examples)

u=0 at x=0 Dirichlet/ displacement bc
u=1 at x=L
u=0 at x=0

EAd_” —F atx=L Neumann/ force bc

dx
Differential equation + Boundary conditions = Strong form of the

“boundary value problem”
RSl -ladal |Maiua nlSuila
1SS s
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Physical problems

Flexible string

S =tensile force in string

p(x) = lateral force distribution
(force per unit length)

w(x) = lateral deflection of the
string in the y-direction

Y

A
I
I
I
I
I

Differential equation governing the response of the bar

2
s9V p_o  0<x<lL
dx?

Second order differential equations

) quwes 2 boundary conditions for solution
nasauila uln.n uuuanlﬁmla T
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Physical problems

i
; A(X) = cross section at X

- Q(xX) = heat input per unit length per
_______ |______________ ~mmmmmm s X ime [3/sm]
: X , k(x) = thermal conductivity [J/°C ms]
x=0 X=L 7(xX) =temperature of the fin at x

Differential equation governing the response of the fin

d(Akd—TjJrQ 0; O<x<L
dx dx
Second order differential equations

) quwes 2 boundary conditions for solution
nasauila uln.n uuuanlﬁmla T
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Physical problems

HeaAt conduction In afin\

_______ '_______ —_—_——— = = X
|
I

X0 : x=L
M‘ Q(X)

Boundary conditions (examples)

T=0 at x=0 Dirichlet/ displacement bc

dr

k= h at x=L Neumann/ force bc

I-‘oul .| . | . . |It'--|



Physical problems

NG

Fluid flow through a porous medium (e.g., flow of water through a dam)

%
i
2 A(X) = cross section at X
- y Q(x) = fluid input per unit volume
_____________________ S X Uit time
: X , k(x) = permeability constant
x=0 X=L @(X) = fluid head
i Boundary conditions (examples)
lefergntlaldequatlon =0 at x=0 Known head
k=P +Q =0; O<x<L do _
dx\ dx — kd— =h at x = L Known velocity
X
Second order differential equations
Requires 2 boundary conditions for solution
naSiila -|ladal |Nada AlSukila s
9 agaan |51jal Lwg)

1SS s



Table 4.1

NG

Physical problems

Examples of second-order differential equations

Differential equation

Physical problem

Quantities

Constitutive law

d dT
—| Ak—}+ 0 =0
1:[1'( dx) 2

d de
._(,.m_) +0=0
ux dx

RaSila -ladal [N nlSuila
B s

One-dimensional
heat flow

Axially lnaded
elastic bar

Transversely loaded
fReaible string

One-dimensional
dilfusion

T= temperature
A = area

_k = thermal conductivity

Q = heat supply

i = displacement

A = area

E = Young's modulus
b = axial loading

w = deflection
§ = string force
p = lateral loading

¢ = iron concentration
A = darea

D = diffusion coefficient
Q = ion supply

Fourier
g=—kdT/dx
q = heat fux
Hooke

¢ = Edu/dx

0 = slress

Fick

g= —Ddcfdx
g = ion flux

agaan L51jal pig)



NG

Physical problems

Table 4.1 Examples of second-order differential equations

Differential equation

Physical problem

Quantities

Constitutive law

d dV
| Ay— |+ 0 =10
1'\'( Td'[) Q

| D d
p A—-—F) +0Q =0
dvy R2udx

One-dimensional
electric current

Laminar fow in pipe
[ Paiseuille Row)

V= vollage

A =area

w = electric conduchivily
() = electric charge supply

P = pressure

A = area

D = diameter
fi = viscosily

@ = fluid supply

Ohm
g=—yd¥idx
¢ = electric charge flux

g=—(D*/32y)dp/dx
g = volume flux
g = mean velocily

RaSila -ladal [N nlSuila
B s
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Formulation of FEM Model

Observe:

1. All the cases we considered lead to very similar differential
equations and boundary conditions.

2. In IDit is easy to analytically solve these equations

3. Not so in 2 and 3D especially when the geometry of the domain is
complex: need to solve approximately

4. We’ll learn how to solve these equations in 1D. The approximation
techniques easily translate to 2 and 3D, no matter how complex the
geometry

naSilila -(ladal [Maia AlSbila 12 p——
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Finite Element Method
Integral Formulation




Some Mathematical Concepts
"

Simply connected domain. If any two points of the domain can be
Joint by a line lying entirely within the domain

Class of a domain.: A function of several variables i1s said to be of
Class C"(®») in a domain if all its partial derivatives up to and
Including the /mth order exist and are continuous in Q

C® == Fis continuous (i.e. &f /dx, of /8y exist but may not be
continuous.)

Boundary Value Problems. A differential equation (DE) is said to be
a BVP if the dependent variable and possibly its derivatives are
required to take specified values on the boundary.

d , du du
Example: ~——(@-—)=f 0<x<1, u(0)=d,|x—| =
p 85 (0) o( dxjm Jo

RaSila -ladal [N nlSuila
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Some Mathematical Concepts

/nitial Value Problem. An IVVP is one in which the dependent
variable and possibly its derivatives are specified initially at 7= 0

2
Example: pd—lz'l+au:f 0<t<t,, u(0) =u, (duj =V,
dt dt J._,
Initial and Boundary Value Problem.
Example: —a( auj pa—u—f(xt) for 0<x<land O<t<t,
ox\  oX ot

u(0,t) = (t)[ gij — gy(1), U(X.0) = Uy(¥)

Eilgenvalue Problem. the problem of determining value A of such that

—d( duj AU 0<x<l1
Example: A Eigenvalue dx | dx

u Eigenfunction 0(0) = O(duj 0o
dX x=1

RaSila -ladal [N nlSuila
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Some Mathematical Concepts

Integration-by-Part Formula:

First b

% (wv) = z—\)/(vv + W g\; = a W% dx = —JVZ—\)’(V dx +w(b)v(b) —w(a)v(a)
Next

jw—dx——jd—”d—""d (b)g—i(b)—w(a)g—i(a)

Similarly

o S o S-S S

naSiila -|ladal |Nada AlSukila 16 lial 1
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Some Mathematical Concepts

Gradient Theorem

j grad F dxdy = j VF dxdy = 3( AFds
Q Q r

But —aF' oF j, A=nid+n j

Thus j(—w—dexdy §(n,i+n, j)Fds
Q

i ( — jdxdy §Fn ds

!2 (%}dxdy = fFnos

17 agaan |5ljal uiin)
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Some Mathematical Concepts

Divergence Theorem

j divG dxdy = j V.G dxdy = § A.Gds
Q Q r

oG
j (aex Y jdxdyz § (G, +n,G,)ds
e\ OX oy a

Using gradient and divergence theorem, the following relations can
Be derived! (Exercise)

[ (VG)wdxdy =— [ (Vw)Gdxdy+§fiwGds  (*)  and
Q I

Q

- j (V2G)wdxdy =[ (Vw) .(VG)dxdy—§ %G s
Q O r on

RaSila -ladal [N nlSuila
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Some Mathematical Concepts

The components of equation (*) are:

I@dedy — —J' @dedy+ § n wGds
r

o OX Q

j@wdxdy = —J' %dedw i n,wGds

Q Q

OX




Some Mathematical Concepts
"

Functionals

An integral in the form of

| (u) :TF(x,u,u')dx, u =u(x), u':g—i

where integrand A x,u,u”) 1s a given function of arguments x, u, u’
Is called a functional (a function of function) .

A functional is said to be /inearif and only If:
| (cu+ V) =ad (U) + [l (V) a, [ are scalars

A functional B(u,Vv) is said to be bi//inearif it is linear in each of its
arguments

B(au, + A,,v) =aB(u,v)+ /B(u,,v)  Linearity in the first argument

B(u,ov; + ;) =aB(u,v,) + B(U,v,)  Linearity in the second argument

naSiila -|ladal |Nada AlSukila 20 sl 1
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Some Mathematical Concepts
N .

Functionals

A bilinearform B(u,V) is symmetricin its arguments if

B(u,v) = B(v,u)

Example of linear functional is
L
dv
| (v) = | vfdx+—(L)M
(v) j — (LM,

Example of bilinear functional is

L
B(v,w):jaﬂd—wdx
> dx dx

I-‘oul -| . | . . |It'--|



Some Mathematical Concepts
"

4.4.1 The Variational Operator

The delta operator § used in conjunction with virtual quantities has special importance
in variational methods. The operator is called the variational operator because it is
used to denote a variation (or change) in a given quantity. In this section, we discuss
certain operational properties of § and elements of variational calculus. Using these
tools, we can study the energy and variational principles of general problems.

Letu = u(x) be the true configuration (i.c., the one corresponding to equilibrium)
of a given mechanical system, and suppose that # = i on boundary S; of the total
boundary §. Then an admissible configuration is of the form

U =u-+oy f {(4.62)

everywhere in the body, where v is an arbitrary function that satisfies the homogeneous
geometric boundary condition of the system

v =0 on Sy. (4.63)

RaSila -ladal [N nlSuila
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Some Mathematical Concepts

u(x) , _
u(x) = () + oy}
T o A
---------------- i
""""""" I
......... |
|
I
T S i
i u(x) !
| H
I i
C !
! v(x} I
i A t
! P ¢
W "u ol
tt b

Figure 4.13 The variations of u(x}.

the space of admissible variations, as already mentioned. Figure 4.13 shows a typical

competing function u(x) = u{x)

RaSila -ladal [N nlSuila
B s

+ av(x) and a typical admissible variation v(x).
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Some Mathematical Concepts
"

Here «rv 18 a variation of the given configuration u. It should be understood that the
variations are small enough (1.e., o 18 small} not to disturb the equilibriuum of the
system, and the variation is consistent with the geometric constraint of the system.
Equation (4.62) defines a set of varied configurations; an infinite number of con-
figurations i can be generated for a fixed v by assigning values to «. All of these
configurations satisfy the specified geometric boundary conditions on boundary S,
and therefore they constitute the set of admissible configurations. For any v, ail con-
figurations reduce to the actual one when « 1s zero. Therefore for any fixed x, av can
be viewed as a change or variation in the actual configuration u. This variation is
often denoted by du:

3 S(clu) (dv) d{ov) ddiu (4.64)
U= oV, V=l — ) = - '
dx dx dx dx

and Su 1s called the first variation of u.

RaSila -ladal [N nlSuila
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Some Mathematical Concepts
N

Next, consider a function of the dependent variable « and its derivative v’ =
du/dx:

F=F(,uu). ' (4.65)

For fixed x, the change in F associated with a variation in u# (and hence ') is

AF = F{x,u+av,u +av)— Fx,u,u)

= F(x,u,u) + -i—)—{ozv + 9—1-:——&1)’
o du’
(@v)? 8°F  2(av)(av) 9*F
+ 2! du? + 21 dudu’

OF I F
= vt v 4+ 0@, (4.66)
o du’

dove— F(x,u,u)

I-‘oul .| . | . . |It'--|



Some Mathematical Concepts
N

where O(e?) denotes terms of order «” and higher. The first total variation of
F(x,u,u’) is defined by

. AF
OF =« [hm }

o—0 o

agF _;_SF ,
=®i —Vv+—v
Ju du’

JF N aF
= — — v
duav du’ “

gF aF
= —3%u + —§L£ (4.67a)
dit i’




Some Mathematical Concepts

Alternatively, the first variation may be defined as

SF o {dF(u +av, u +cw")}
={)

dor

3 F aF

du dut’

oF g F
= —d8u + —du'. (4.67b)
du dit’

There is an analogy between the first variation of F and the total differential of F.
The total differential of F is

dF gF aF
dF = —dx + —du + — du’. (4.68)
ax g1t g’ ,

I-‘oul -| . | . . |—I 2 -|



Some Mathematical Concepts

If G = G(u, v, w) is a function of several dependent variables (and possibly their
derivatives), the total variation is the sum of partial variations:

oG =6,G+ 8,6+ 5,G, (4.70)

where, for example, §,, denotes the partial variation with respect to u. The variational
operator can be interchanged with differential and integral operators:

0 5(d—“-):ad—”:i(au)— d

Ste).
dx dx dx d.x( )

f o [} f)
2) & (/ U d:c) = uff vdx = f av dx = f Su dx. (4.71)
G (0 0 0

RaSila -ladal [N nlSuila o8
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Some Mathematical Concepts

The Variational Symbol

Consider the function F = F(x,u,u’) for fixed value of x, Fonly

depends on u,u’

The change a v in u, where « 1s constant and vis a function, is

called variation of «and denoted by:

Variational Symbol — oU =V

In analogy with the total differential of a function

oF :a—Fﬁu +8—F5u'
ou ou’

dF :a—Fdx+6—qu +8—qu'
OX ou ou’

RaSila -ladal [N nlSuila 29
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Some Mathematical Concepts

The Variational Symbol
Also  o(F tF,) =06k £dF,

6(RF,) = F,dF + FdF,
éfij _ FzéFl - F1é1:2
\Fz Fz2
5|(R)"J=n(R)oF,

Furthermore

d d dv du
— (W) =—(N)=a—=aV'="'=0(—
dx( ) dx( ) adx (dx)

5iu(x)dx :i5u(x)dx

RaSila -ladal [N nlSuila
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Weak Formulation of BVP
NG

Weighted — integral and weak formulation

Consider the following DE

~ Transverse deflection of a cable
Axial adeformation of a bar
Heat transfer
Flow through pipes
Flow through porous media

d du
—&[a(x)&} =g(x) O0<x< L<

du

u(0) = uy, (a&jﬂ =Q \_ Electrostatics




Weak Formulation of BVP
—

There are 3steps in the development of a weak form, if exists,
of any DE.

STEP 1:

Move all expression in DE to one side, multiply by w (weight
function) and integral over the domain.

: d  du
! w[— ~ (a dx) —q}dx -y (+)

Weighted-integral or weighted-residual

N linearly independent equation for wand
obtain N equation for Cj;...,Cy

N
u=U, =ch¢j +d,
j=1

RaSila -ladal [N nlSuila
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Weak Formulation of BVP

\
STEP 2

1-The integral (+) allows to obtain A independent equations

2- The approximation function, ¢, should be differentiable as many
times as called for the original DE.

3- The approximation function should satisfy the BCs.

4- If the differentiation is distributed between w and ¢ then the
resulting integral form has weaker continuity conditions.

Such a weighted-integral statement is called weak form.

The weak form formulation has two main characteristics:

-requires weaker continuity on the dependent variable and often
results in a symmetric set of algebraic equations.

- The natural BCs are included in the weak form, and therefore the
approximation function is required to satisfy only the essential BCs.

RaSila -ladal [N nlSuila
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Weak Formulation of BVP
—

Returning to our example:

L
W[— d (a du)} w( rdXx = O:J(dw du wqjdx—[wad—u} =0
dx = dx dx dx |,

Secondary Variable (SV):
Coefficient of weight function and its derivatives

du
Q=(a &)nx —> Natural Boundary Conditions (NBC)

O e

Primary Variable (PV): The dependent variable of the problem
U C—— > Essential Boundary Conditions (EBC)

RaSila -ladal [N nlSuila
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Weak Formulation of BVP
—

Note that

RaSila -ladal [N nlSuila
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Weak Formulation of BVP

\
STEP 3:

The last step is to impose the actual BCs of the problem whas to
satisfy the homogeneous form of specified EBC.

In weak formulation whas the meaning of a virtual change in PV.
If PV Is specified at a point, its variation Is zero.

u(0)=u, = w(0) =0
du du
(a&nx) :(a&j =Q, NBC
Thus x=L x=L

¢( dw _du du du
_[ a——wq dx—|wa—n | —lwa—n, =0
~Ldx  dx dx "], dx ~ |,

<(dw  du
a——wq dx—w(L =0
!(dx — qj (L)Q,

naSiila -|ladal |Nada AlSukila 26 sl 1
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L 1near and Bllinear Forms

J'(;IW a ju jdx—jwqu —w(L)Q, =0
o\ UX X ’ ) :> B(w,u)—1(w) =0

\ J

v

B(w,u) |(;V3

B(w,u) Bilinear and symmetric in wand v

(W) Linear

Therefore, problem associated with the DE can be stated as one of
finding the solution «such that B(w,u) =1(w)

holds for any w satisfies the homogeneous form of the EBC and
continuity condition implied by the weak form

naSiila -|ladal |Nada AlSukila 37 lial 1
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L 1near and Bllinear Forms

Assume U=U" +w | Satisfy the homogeneous
— Form of EBC
Variational solution Actual solution
Satisfy EBC Satisfy EBC+NBC

Looking at the definition of the variational symbol, wis the variation of the
solution, i.e. W= A

Then B(w,u)=I1(w)= B(du,u) =1(s) (#)
dou du du du
B(Su,u) = ja ¥ _5j K ” —5j A 0x —5[B(u,u)]

1(8u) = j sugdx + Su(L)Q, = 5{ j uqu+u(L)QO} = 5[1(U)]

naSdila -ladal [N nlSuila
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L 1near and Bllinear Forms

Substituting in (#), we have:
B(ou,u)—Il(ou)=0= 5{% B(u,u)—l(u)} =0=01(u)=0

| (u) :%B(u,u)—l(u) (##)

1
In general, the relation B(du,u) =§éB(U,U) holds only if

B(w,u) Is bilinear and symmetric and I(w) is linear

If B(w,u) is not linear but symmetric the functional /A«) can
be derived but not from (##). (see Oden & Reddy, 1976, Reddy 1986)

RaSila -ladal [N nlSuila
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L 1near and Bllinear Forms

Equation ol(u)=0 represents the necessary condition for the
functional /() to have an extremum value. For solid mechanics,
/(u) represents the total potential energy functional and the
statement of the fotal potential enerqy principle.

Of all admissible function ¢, that which makes the total potential
energy /(&) a minimum also satisfies the differential equation and
natural boundary condition in (+).

RaSila -ladal [N nlSuila
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Some Examples
—

Example 1

Consider the following DE which arise in the study of the deflection
of a cable or heat transfer in a fin (when ¢ = 0).

_d (adu)—cu+x2=0 for 0<x<1
dx = dx
u(0) =0, (azuj =1
X
Step 1 -
1
jw[— d (adu)—cu+x2}dx:0
A dx = dx
Step 2 u(@)=0 EBC
1
j(ade—cuw+wx jdx (waj =0 ‘ ( j NBC
- dx dX W(0) =0
RaSila -ladal [N nlSuila a1 S————
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Some Examples
—

Example 1
1 1
Step 3 j(adeu—cuwjdx+ij2dX—W(1) =0
-\ dx dx
or B(W,u) = j(ad—cuwjdx

dx dx
) B(w.u)-I(w)=0

(W) = — j wxZdX + w(l)

0
B s bilinear and symmetric and /is linear! (prove)
Thus we can compute the quadratic functional form

| (u) —j{ (;‘U —cu’ +2ux2de—u(1)

0

RaSila -ladal [N nlSuila
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Some Examples
—

Example 2

Consider the following fourth-order DE (elastic bending of beam)

2
d (b(ilw)—f(x) 0  for O<x<L
X

dx*
2 2
(@—M 0, [‘”jj - M,, d(bd‘;vj -0
dx dx® ) | dx{ dx® ) |
Stepl | 2 dqow
[V (=) f [dx=0
| dx® T dX
Step 2

L 2 2 L
j( dvjd bd\;v —vf dx+ vi bd\év =0
oL dxJdx| dx dx{ dx® )|

RaSila -ladal [N nlSuila
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Some Examples

Example 2
L 2 2 2 2 L
_fbd\zld\év—vf dx + vd bd\;v _dvbd\;v =0
-\ dx® dx dx\ dx dx dx® |
d(, d°w dw(0)
b =V (Shear force _ )
dx( dXZ j ( ) (O) X 0
dv(O) _0

b d'w _ M (Bending moment) v(0) =
dx’ BC ¥

02)

dx|  dx? N
d

25, ™
X x=L

44 agaan |5ljal ulo)
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Some Examples
-

Example 2
Step 3 L’ d?v g2
P j(bd‘z’dw—vfjdx [d"} M, =0
- dx® dx® dx |,
B(v,w) = J‘ ( dXV (ilijdx

or  B(v,w)=I(v) where

dv
V) = | vfdx+[XmL M,

Symmetric&Bilinear Linear

The functional /(w) can be written as:

ARYEETY dw
I(w):j S — wf dx{dx} M,
x=L

0

RaSila -ladal [N nlSuila
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Some Examples
—

Example 3 Steady heat conduction in a two-dimensional domain €

Consider a 2D heat transfer problem

5 5 g,: uniform heat generation
—k(a T 8 Tj in O k . conductivity of the isotropic material
M0

ox> ayz T : temperature
Y g=0 Insulated
A D

g 8T
on 8x b k@_T _ —,B(T _T )
2L () X

OX | Convection

B T =T,(x) C X
nasila -[ladal Mg nleuiila 46 agaan ljal -
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Some Examples
-

Example 3
Step 1 , ,
'[ —k(az g Tj qo}dxdy 0
o ox* oy’
Step 2
j{k(ﬁwm +6W6Tj qu}dxdy [ﬂwk(—Tn +gn jds:O (*)
0 OX OX oy oy OX oy "’
kLGT 8T yj kg q, T=Primary variable
OX on g, =Secondary variable (heat flux)
on I} = AB (n, =-1,n, =0) =4(y)
on I, =BC (n, =0,n, =-1) =T,(X)
on I, =CD (n, =1,n,=0) :kg—T+[)’(I' -T.)=0
onI,=DA (n,=0,n, =1) :g—-rr]—o
RaSila -ladal [N nlSuila 47 e i)
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Some Examples
—

Example 3
Step 3

ox "oy on

r T

fnefo T il o

wshould satisfy . .
o j w(0, y)d(y)dy ﬁ! w(a, Y)[T (. y) T, By

Substituting In (*) we have

owoT  ow T b A b
i H o ox o ayj—wqo}dxdw ! w(O, y)q(y)dy+ﬁ£ w(a, y)[T (a,y)-T,Jdy =0

B(w,T) =I(w)

naSidila -jjladal (Naia niSdila .
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Some Examples
—

Example 3

B, T) = {k(?}’(\l = ‘;"yv f; dedy+ B wia, y)T (@, y)dy

|(w) = [ waydxdy—[ w(0, y)a(y)dy + B[ w(a, y)T..dy

The quadratic functional is given by:

=] K@Tj (ZU }dxdy [Taucecy+ jT(o y)q(y)dy+ﬁj r(a,y)-2r @ y)T, By
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L 1near and Bllinear Forms

Conclusions

1- The weak form of a DE is the same as the statement of the total
potential energy.

2- Outside solid mechanics /) may not have meaning of energy but
It is still a use mathematical tools.

3- Every DE admits a weighted-integral statement, or a weak form
exists for every DE of order two or higher.

4- Not every DE admits a functional formulation. For a DE to have
a functional formulation, its bilinear form should be symmetric in its
argument.

5- Variational or FE methods do not require a functional, a weak
form of the equation is sufficient.

6- If a DE has a functional, the weak form is obtained by taking its
first variation.
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