NG

Finite Element
Analysis of Boundary
Value Problem




FE Analysis of 1D Bars

\
o d du
The DE is in the form of —-— (EA—)-q=0
dx dx
gis the distributed load and W0)=u,, (EAM) g
0, is the axial force. ax
o(x)

— —> —> —> " — — ?

Physical Model

FE Model




FE Analysis of 1D Bars
—

Weak form

In FE analysis, we seek an approximation solution over each element.

14 dul du
ﬂ_’ A — > — B Ql - dx‘x:xA 'j- 2 Q2 B EA& X=Xg
X

T(EAdeu — WdeX — W(XA)QA — W(XB)QB =0
dx dx

XA

dw du

B(W,u)=x_[(EACb(lejdx s B(,0) = 1(1)
| (W) — TWC]dX + W(XA)QA + W(XB)QB
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FE Analysis of 1D Bars

Approximation of the solution

1- The approximation solution should be continuous and differentiable
as required by the weak form. (nonzero coefficient matrix)

2- It should be a complete polynomial (capture all possible States, e.g.

constant, linear, ....)

3- It should be an interpolant of variables at the nodes (satisfy EBCs)

1 [ ) a 2
First order

2

1m ) 3
Second Order
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U=a+bx, U(x)=u,U(x,)=u,
< U =Ny, +N,u,
N, =1-X/¢, N,=X//

N
U =a+bx+cx®, U(x)=u,U(x,)=u,,U(x,)=u,

U =N,u, + N,u, + N,u,

N, =(1-X/6)(1-2%/0), N,=4%/¢@L-X/¢), N, =-%/((1-2%/0)
N—
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FE Analysis of 1D Bars

N

FE Model

uzU=Zl:U,-N,- and J'(EAdW(;u—wqjdx W(X,)Q, —W(X5)Qg =0
j= dx dx

’ If 7> 2 then the above integral should modify to

include interior nodal forces

' dN n
j EAdNZujJ—qujdx—ZNl(Xj)Qj =0 _
dx 5 dx = Stiffr;eis matrix Fqrce vector

[ gpdN, dN;
B x ZquX ZN(X)Q -0 —»zKuUJ—f—Q =0

j=1
n Secondary nodal

Xp dNn n dNJ .
J (EA i 2 o _N”q]dx_,-lN”(X")Q" =" Primary nodal DOF
DOF
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FE Analysis of 1D Bars

FE Model

" - dN.

where K = j(EAdN' ‘jdx: B(N;, N;)
dx
fi = quidXZI(Ni)

Note — Z N; (x)Q; =Q,

Note that the problem has Zn unknowns for each element, i.e. ¢;
and @, so it cannot be solved without having another »
conditions. Some of these will be provided by BCs and the
remainder by balance of the secondary variables (forces) at node
common to several element. (assembling process)
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FE Analysis of 1D Bars
—_

FE Model (Linear Element)
U =N,u, + N,u,
N, =1-%/¢, N,=x/¢

0

K, = :(EA)(—1/€)(—1/€)dx = AE//

ql— x/0)dx =1/2q/¢

y~ O

K, = | (EA)—1/0)(A/ ¢)dx =—AE/ ¢

0 q(x/¢)dx =1/2q¢
l

K,, j (EA)A/ 0)@/ ¢)dx = AE/ ¢
0

.. AE| 1 -1 /11
| Eventuallyfor_ (K ]:{ } {f}:CI{}
Linear shape function ¢ 1-1 1 2 |1
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FE Analysis of 1D Bars

NG

FE Model (Quadratic Element)
U = N,u, + N,u, + N,u,

 =@A=-x/0)A-2x/7), N,=4x/0(1-x/?), Ny=—x/l(1-2x/7)

¥4
_j EA)—3/¢+4x/02)(—3/ ¢ +4x/ ¢?*)dx =7AE /3¢
0

¥4
j(EA)(—sle +4x/02)(41¢—8x/0)dx = —8AE /3¢
0
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FE Analysis of 1D Bars
N

FE Model (Quadratic Element)

For quadratic Shape function
7 -8 1 1)
A

[K']="2|-8 16 -8 {f}:q—;44>
1 -8 7 1)

E
3¢




FE Analysis of 1D Bars

NG

Assembly (or connectivity) of elements

In driving the element equation

-Isolate the element from mesh
-Formulate weak form (variational form)
-Developed its finite element model

To solve the total problem

-put the element in its original position

-Impose continuity of PVs at nodal points
e+1 Qe Qe+1
u = U, o @ O— —Q O—
1 2 Q Q"1 2 Q™"
-Balance of SVs at connecting nodes

0 if no external pointsource is applied (*)
Q, If an external point source of Q, Is applied.

Q + Qe+l {
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FE Analysis of 1D Bars
—

Assembly (or connectivity) of elements (For linear element 7=2)

The interelement continuity of the primary variables is imposed by
renaming the two variable ¢ ¢ and v* at x=x, as one and same,
namely the value of v at the global node N Ut =utt =U

| o N

n

where N=(n-1e+1

I
-

HNH

For a mesh of £ linear finite elements (n=2):

Il
= w

I
c C

- - -
NP NDMNEeE P
|l
c c

w
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FE Analysis of 1D Bars
—

Assembly (or connectivity) of elements (For linear element 7=2)

To enforce balance of secondary variables Q¢ , eq. (*), we must
add /th equation of the element Q¢ to the first equation of the
element Q¢*L -

n
> K = 1, +Q;
j=1

and

n
ZKle;rlu(J?H _ f1e+1 i f+1

: =1
to give i
Z(Ke_ug n Kf;rlu?l) _ .I:ne i fle+l+(Qr? +Qf+l)

nj—J
j=1

__f¢ e+l
=f +f " +Q,

This process reduces the number of equations from 2E£to £+1.
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FE Analysis of 1D Bars
—

Assembly (or connectivity) of elements (For linear element 7=2)

The first equation of the first element and the last equation of the
last element will remain unchanged, except for renaming of the
primary variables. The left-hand of the equation can be written in
terms of the global nodal values as

(KE U+ KEus +-++ + KEus) + (KHus + KSus™ +--- + KSHus)
= (KnlUN T KnZUN+1 Tt KnnUN+n—1) T
(Kfflumn—l T Kle2+1UN+n Tt KlerT1UN+2n—2)
= Kr?lu + Ks2UN+1 g Kr?(n 1)UN+n—2 +
(Ko + K Wy + KU -+ Koy Uzns

N+n

where N =(n-1e+1
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FE Analysis of 1D Bars
—

Assembly (or connectivity) of elements (For linear element 7=2)
For a mesh of £linear finite elements (n=2):

KU, +K U, = f'+Q;  (unchanged)
KiU, +(K;, + KU, + KU, = £/ + 7 +Q, +Q;
KU, + (K2, +K))U, + KU, = f7+ f°+Q7 +Q;

KU, + (K + KU +K U, = 57+ £ 5 4+Q, 7 +Qf
KyU. +K U, =f +QF  (unchanged)
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FE Analysis of 1D Bars
N

Assembly (or connectivity) of elements (For linear element 7=2)
In matrix form

_K111 K112 | (U1 )

K, K,+K] K2 0 U,
K221 K222 + Kfl J U, >

0 KE2T4KE  KE | Ve
i K, | U,

] [
f, + 1 Q+Q
£+ 1) Q +Q;




FE Analysis of BEAM
N

The DE i1s In the form of

dz G d” W)_f(x) O<x<L

MW




FE Analysis of BEAM
—

I
1
T
oS

N
XNE
I

. | d d*w e
Xe+1 2 Ql _|:dX [b dX2 j} ’Qz
j )— f ldx=0 " .

e | d d?w e d?w
Qs = [dx (b dx? HX Qs = [b dx? lm

or
BCs
< d?v d*w dv dv
—vf dx—-v(x.)QOF —| —— © —v(x S| —— °*=0
Xj ( v j (x)Qi [ dxjerZ (Xe1)Q5 [ dijMQ“
where
<t d?v d*w
B(v,w) = b dx
(v, w) = J( dx® dx? j
1) = [vidx+vix)Qe +[ -2 QHVX)QS M«
. © dx o dx .
RaSila -ladal [N nlSuila 17 S————

1SS s



FE Analysis of BEAM
—

Approximation of the solution

1- The approximation solution should be continuous and differentiable
as required by the weak form. (nonzero coefficient matrix)
2- It should be a complete polynomial (capture all possible States, e.g.

constant, linear, ....)
3- It should be an interpolant of variables at the nodes (satisfy EBCs)

2 3
1 L2 W =C, +C,X+C;X" +C,X

First order W(Xe) =W, W(Xe+1) =W,, ‘9(Xe) — 91’ Q(Xeﬂ) — 92

W =C, +C,X+C,X° +C,X°

or dw dw
e e . e e
u, =w(x,),u, =——/ ;u; =w(X_,),U, =——
dx|, dx|,
e e+l
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FE Analysis of BEAM
—

Shape Functions

Calculating Ci and substituting in the equation for w

The interpolation functions in term of local coordinates are

X ; X ’ X ;
NI BRI O
h h h

X\’ X\’ x)" X
h h h h
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FE Analysis of BEAM

Hermite cubic interpolation function

09
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FE Analysis of BEAM

\
FE Model
4 Xei1 dZNi dZNj Xei1 .
;Ub vt I (XjN,fdx+Q,) 0
I N J
4 /\f
or ZKijuj—FizO
j=1

For b=EIl constant and also a constant f over the element.

6 —-3h —6 —3h] 6 | (Q,]

—3h 2h? 3h h? —h
[K]:ZE?,I : {F}=E< >+<Q2>
h®| -6 3h 6 3h 12 |6 Q,
—3h  h* 3h 2h* h | Q.

L] . o
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FE Analysis of 1D FIN
—

Model Boundary Value Problem

The DE is in the form of _di(kp\il_T)Jr PAT = Aq+ PST.
X X

k 1s thermal conductivity oT

[ is convection heat transfer coefficient T(0)=T,, Q=-kA—=0Q,
T, is the ambient temperature OX

g is the heat energy generated per unit volume

P. Perimeter

Physical Model

A, Cross section
1 2 3 4 5 6
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FE Analysis of 1D FIN

Weak form
‘B, A dN; dN;
K, :X{[kA N +P,5Niijdx

f, = [ N,(qA+ PST, )dx

dT dT
P =| —kA— | ; > =| —kA—
@ =(wag) (e,

Assume the lateral surfaces of the bar are isolated and the BCs

d dT
——(kKA—)=A
dx( dx) q
TO)=T. TL)=T,

RaSila -ladal [N nlSuila
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FE Analysis of 1D FIN

NG

Approximation of the solution

1- the approximation solution should be continuous and differentiable
as required by the weak form. (nonzero coefficient matrix)

2- 1t should be a complete polynomial (capture all possible States, e.g.

constant, linear, ....)
3- It should be an interpolant of variables at the nodes (satisfy EBCs)

1 [ ) a 2
First order

2 3

Second Order

1=
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<

/

T=a+bx, T(x)=T,T(x,)=T,
< T=NT,+N,T,
N,=1-X/¢, N,=X//

\—
T=a+bx+cx®, T(x)=T,T(x,)=T,T(x,)=T,

T =NT,+N,T, +N,T,
N, = (1-X/0)(1-2%/0), N,=4%/((L—%/¢), N,=-X/((L—2%/0)

/

—
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FE Analysis of 1D FIN
—

FE Model

Evaluating the integral using linear shape function
[KEKT}={f"}+{Q"}

k_A\l_Tle—ﬂl_FQle
S N 1 v A2 S B Vo

For a uniform mesh ¢ =L/ N and after assembling

1 -1 0 T 1) [Q
. . 1 2
kA 1 2 1 ... <T2 _ Aq€<?>+<Q2+Q1 >
/2 IR | B 2 |: :
i O 0 -1 1 | \TN+1, 1 Ql'\'
RaSila -ladal [N nlSuila o5 S————
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FE Analysis of 1D FIN
—

FE Model

Boundary conditions at nodes 7 and N+1
T,=T

TN+1 :TN+1
Heat balance at global nodes 2,3,.....N
Q' +Qf =0 for e=23,...,N
After applying the above conditions:

1 -1 0 .M 1) (ot
-1 2 -1 ... ||T
k_A <.2 E——Aq€<2>+<o >
| O O _1 1 — \Tn‘i‘l) \1) leN
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Virtual work as the ‘weak form’ of equilibrium
equations for analysis of solids

N

In a general three-dimensional continuum the equilibrium
equations of an elementary volume can be written in terms of the
components of the symmetric cartesian stress tensor as

r )

0
0o, N Ty N or,, +b =0
AN ox oy oz
. or, Oo, Or
1L p=1—2+—2L+—24b =0 = L(u(x))=0,
) ox oy oz '
-0 | or, Or, Oo,
+ + +b, =
| ox oy o1
b=[b, b, b, ]T The body forces acting per unit volume
u=[u v w]T The displacement vector

RaSila -ladal [N nlSuila
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Virtual work as the ‘weak form’ of equilibrium
equations for analysis of solids

N

The weighting function vector defined as su=[su v ow]

We can now write the integral statement of equilibrium equations as

5
00, 9%y | 9% +bxj+5v(L2)+5W(L3)}dv

ox oy 0z

J,ou' L(u)dv=—| {&(

=0
Integrating each term by parts and rearranging we can write this as

[| 90U ([9OU, OV, . sub,—svb, —Swb, dv
VI ox oy ox )" '

+jr[5u(o-xnX +7, N, +7,0,)+0V(.)+ 5W(..)]d1“ —0

(*)
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Virtual work as the ‘weak form’ of equilibrium

equations for analysis of solids
\

( A ' A

L, on, +7,N +7,N, | are tractions acting per unit area
where t:Jty =<7, N +oN +7,N, of external boundary surface I
of the solid

rn+rn+an

L7 ) XZ' X

In the first set of bracketed terms In eg. (*) we can recognize
Immediately the small strain operators acting on ou, which can be
termed a virtual displacement.

We can therefore introduce a virtual strain defined as

P {8§u OOV 06w Odu 85v OOV aaw OOV aaw} DSy

X oy oz oy T e oy oz oy

Arranging the six stress components in a vector & in an order
corresponding to that used for o€, we can write Eq. (*) simply as

RaSila -ladal [N nlSuila 29 lial 1
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Virtual work as the ‘weak form’ of equilibrium
equations for analysis of solids

N

|, 0g'odv—]| Su'bdv—| sSu'tdl"=0

we see from the above that the virtual work statement Is precisely
the weak form of equilibrium equations and is valid for non-linear
as well as linear stress—strain (or stress—strain rate) relations.
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