Finite Element Modeling
Techniques (2)




GEOMETRY MODELLING

N

Where Finer Meshes Should be Used
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GEOMETRY MODELLING

N

e Reduction of a complex geometry to a manageable one.
e 3D? 2D? 1D? Combination?

|

Bulky solids 3-D solid element

Neutral surface

/ \ (Using 2D or 1D
—> makes meshing much
easier)

2-D shell element mesh

fy2 Centroid

Beam member 1-D beam element mesh
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GEOMETRY MODELLING

N

e Detailed modelling of areas where critical results are expected.
e Use of CAD software to aid modelling.
e Can be imported into FE software for meshing.

Mesh density

e To minimize the number
of DOFs, have fine mesh
at Important areas.

e In FE packages, mesh
density can be controlled
by mesh seeds.

(Image courtesy of Institute of High Performance
Computing and Sunstar Logistics(s) Pte Ltd (s))
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Element distortion

N

e Use of distorted elements in irregular and complex
geometry Is common but there are some limits to
the distortion.

e The distortions are measured against the basic
shape of the element
Square = Quadrilateral elements
Isosceles triangle = Triangle elements
Cube = Hexahedron elements
Isosceles tetrahedron = Tetrahedron elements
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Element distortion

N

e Aspect ratio distortion

a
—v—
) .
b
Rule of thumb: E < 3 Stress anaIyS|S
a (10  Displacement analysis
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Element distortion

N

b T Taper a

b<b5a

e Curvature distortion
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Element distortion

N

e Volumetric distortion

y /\ 45
Area outside distorted _3 4 p 3

element maps into an
Internal area — negative

volume integration

e Volumetric distortion (Cont’d
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Element distortion

N

Avoid 2D/3D Elements of Bad Aspect Ratio

Good Bad
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N

Elements Must Not Cross Interfaces

A physical interface, resulting from example from a change in material,
should also be an interelement boundary.

No OK

O ' O O

Physical interface

Element Geometry Preferences

Other things being equal, prefer

In 2D: Quadrilaterals over Triangles

In 3D: Bricks over Wedges, Wedges over Tetrahedral
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Direct Lumping of Distributed Loads
\

In practical structural problems, distributed loads are more common
than concentrated (point) loads. In fact, one of the objectives of a good

design is to avoid or alleviate stress concentrations produced by
concentrated forces.

Whatever their nature or source, distributed loads must be converted to
consistent noaal forces for FEM analysis. These forces eventually end
up in the right-hand side of the master stiffness equations.

The meaning of “consistent” can be made precise through variational
arguments, by requiring that the distributed loads and the nodal forces
produce the same external work. However, a simpler approach called
direct load lumping, or simply /load lumping, is often used by
structural engineers in lieu of the more mathematically impeccable but

complicated variational approach. Two variants of this technique are
described below for distributed surface loads.
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Node by Node (NbN) Distributed Load Lumping
\

Nodal force f; at 3 is setto P, the

magnitude of the crosshatched area Distributed load
under the load curve. This area intensity (load acts
goes halfway over adjacent downward on boundary)

element sides

Boundary
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Element by Element (EbE) Distributed Load Lumping
N

Force P has magnitude of Distributed load
crosshatched area under load intensity (load acts

C
curve and acts at its centroid. downward on boundary) f{) e (b/L)P I fg e) (a/L)P
v Y,

¥
(e/ centroid C of ’a t a .J* b

/ ~Crosshatched area L=a+b

()
f:: N ~ Loundm}, Details of element
3 =3

a0

) @, { {J) force computations
1 2 3 14 5 P
O O O O

Finite element
mesh
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Boundary Conditions (BCs)

N

The most difficult topic for FEM program users

Essential

Two types

Natural

1. If aBC involves one or more DOF in a direct way, it is essential and
goes to the Left Hand Side (LHS) of Ku=f

2. Otherwise it is natural and goes to the Right Hand Side (RHS) of Ku =f

Sl Sils - gl _inio oKLl 14 39308 sl5] gy



Boundary Conditions in Structural Problems

N

In mechanical problems, essential boundary conditions are those that involve
aisplacements (but not strain-type displacement  derivatives). The support
conditions for the truss problem furnish a particularly simple example. But there
are more general boundary conditions that occur in practice. A structural engineer
must be familiar with displacement B.C. of the following types.

Ground or support constraints. Directly restraint the structure against rigid body motions.
Symmetry conaitions. To Impose symmetry or antisymmetry restraints at certain points,
lines or planes of structural symmetry.

lgnorable freedoms. To suppress displacements that are irrelevant to the problem.

(In classical dynamics these are called /gnorable coordinates.) Even experienced users of
finite element programs are sometimes baffled by this kind. An example are rotational
degrees of freedom normal to shell surfaces.

Connection constraints. To provide connectivity to adjoining structures or substructures,
or to specify relations between degrees of freedom. Many conditions of this type can be
subsumed under the label multipoint constraints or multifreedom constraints, which can
be notoriously difficult to handle from a numerical standpoint.
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Boundary Conditions in Structural Problems

N

In structural problems, the distinguishes between essential and
natural BC is:

If it directly involves the nodal freedoms, such as displacements or
rotations, it is essential. Otherwise it Is natural.

Conditions involving applied loads are natural.

Essential BCs take precedence over natural BCs. The simplest
essential boundary conditions are support and symmetry conditions.
These appear in many practical problems. More exotic types, such as
multifreedom constraints, require more advanced mathematical tools.
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Boundary Conditions in Structural Problems

Minimum Support Conditions to Suppress Rigid Body Motions in 2D
(b) 4y (c) Ay
-
2D B B
A
A x A
o >
b
3D 5
— A C %x
z/_ = =
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Boundary Conditions in Structural Problems
TN

Example: Modelling I Beam with

of Supports “built-in end”

a) Full constraint
P only inthe
horizontal direction

b) Support provides
full constraint only
on the lower surface

c¢) Fully clamped
support

B




Boundary Conditions in Structural Problems
TN

Example: Modelling
of Supports | J (Prop support of beam)

A

b)

A

d)

242




Symmetry

N

A structure possesses symmetry if its components are arranged in a
periodic or reflective manner.
Types of Symmetry:
Mirror (Reflective, bilateral) symmetry
cyclical (Rotational) symmetry
Axisymmetry
Translational (Repetitive) symmetry

YV V.V V V

cautions.

In vibration and buckling analyses, symmetry concepts, in general, should
not be used in FE solutions (works fine in modeling), since symmetric
structures often have antisymmetric vibration or buckling modes.
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Symmetry
N\

Mirror symmetry

Consider a 2D symmetric solid:

[

U].X_ O I \ T /
UZX_ O i
2 >
Uy, =0 T
Single point 3$ X
constraints ! >

(SPC)




Symmetry

N

Mirror symmetry

Symmetric loading

Deflection = Free 8#
Rotation =0

7
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Symmetry

N

Mirror symmetry

Anti-symmetric loading

Deflection =0
Rotation = Free

il 8082315 - gl aro sl 23 3995 sl oy



Mirror symmetry
Symmetric

 No translational displacement normal to symmetry plane

 No rotational components with respect to the axis parallel to symmetry plane

Symmetry

Plane of
symmetry Y d W O 0, 0,
Xy Free Free  FIX FIx FiIx  Free
yz Fix Free Free Free  FiX FiX
oy Free Fix  Free  FIx  Free  FIX




Symmetry
N

Mirror symmetry
Anti-symmetric

 No translational displacement parallel to symmetry plane

 No rotational components with respect to the axis normal to symmetry plane

Plane of
symmetry u v w 0, 0, g,
Xy Fix Fix Free Free Free Fix
yz Free  Fix Fix Fix Free  Free

ZX Fix Free Fix Free Fix Free




Symmetry

N

Mirror symmetry

e Any load can be decomposed to a symmetric and an anti-symmetric load

y
P/2 ‘ P/2

vvvvvvvvvvvvvv Symmetric loading w -

P
— +
i Asymmetric loadin i
. . - _ '
“ | :
@ b—>f—"b = P/2 P/2
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Symmetry
N\

Mirror symmetry

7 -
A
7 TN

P/2

. ® >
P/2
Full frame structure i Anti-sym.
o 1 L




Symmetry

N

Mirror symmetry

P Py

P P
@ ® > 2— @ > 2_
Properties are
halved for this
/member\
o VM N _ X o ANt-Sym. N, X
All nodes on this line fixed against the All nodes on this line fixed
horizontal displacement and rotation. against vertical displacement.
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Symmetry
N

Mirror symmetry

e Dynamic problems (e.g. two half models to get full set of
eigenmodes in eigenvalue analysis)

.......... | LT e ®
- - ‘0 ) o« ®
motion symmetric Rotation dof =0
about this node at this node
o« .... "‘. ) ."‘” 'o,..
motion antisymmetric translational dof
about this node v = 0 at this node



Symmetry

Axial symmetry\

e Use of 1D or 2D axisymmetric elements
Formulation similar to 1D and 2D elements except the use of

polar coordinates

W, W» Z
W N VA
- >
/
/
\ l
[
\
\
\\
w =W sing

Cylindrical shell using 1D
axisymmetric elements
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3D structure using 2D
axisymmetric elements

Sgaca sli Gog,



Cyclic symmetry

uAn = UBn

Upt= Up;

Symmetry

Multipoint
constraints (MPC)

Side B

Re_prese ntative




Symmetry

Repetitive symmetry

& S,
— e R —
Upy= Upy e 1 /
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~
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B
P

Representative
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Symmetry

N

Example of Symmetry

P P
Py Y
X
P
X

Py Beam under symmetric load
Plane structure having | P IY | P
Reflective symmetry y
Py/2 .
A_I‘A— .

Px/2
Beam under unsymmetric load




Symmetry

N

£ Symmetry 'ﬁ Antisymmetry
(a) L. line (b) %ﬁ-;‘-if/line

displacement
vectors
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Symmetry

N

Example of Application of Symmetry BCs

1
(a)




Symmetry

N

y T
(a)

! B
T i}
—_ i :r
] i » X
—- s 5 Bk (':‘5 ------------ _f;% ----- A—>
P i el
- ' — -
i
by oo a A B
7 >

Vertical (y) motion
of C may be constrained
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Symmetry

N

Example of Symmetry




Global-Local Analysis (an instance of Multiscale Analysis)

N

Complex engineering systems 1- The whole system is first

are often modeled in a analyzed as a global entity,
multilevel ~ fashion  like . . ., | neglecting the detail
substructure, ... A related, but 2- Local details are then analyzed
not identical, technique is using the results of the global

multiscale analysis. analysis as boundary conditions.

Example structure: panel with small holes

coarse mesh finer meshes

Global analysis with a coarse mesh, ignoring holes, followed
by local analysis of the vicinity of the holes with finer meshes:
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Nature of Finite Element Solutions

N

> FE Model — A mathematical model of the real structure, based on many
approximations.

> Real Structure — Infinite number of nodes (physical points or particles),
thus infinite number of DOF’s.

> FE Model — finite number of nodes, thus finite number of DOFs.

— Displacement field is controlled (or constrained) by the
values at a limited number of nodes.

BNEEN

\ Recall that on an element :

4
u=y N,u,
=1
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Nature of Finite Element Solutions

N

Stiffening Effect:

»FE Model is stiffer than the real structure.

>1n general, displacement results are smaller in magnitudes than the exact values.
Hence, FEM solution of displacement provides a /ower bound of the exact solution.

L A (Displacement)

e mm———— - Gk — k= e — =

* Exact Solution
%

e FEM Solutions

No. of DOF’s



Numerical Error

N

Error # Mistakes in FEM (modeling or solution).

Types of Error:

* Modeling Error (beam, plate ... theories)

» Discretization Error (finite, piecewise ...)
* Numerical Error ( in solving FE equations)

Sl Sils - gl _inio oKLl 41
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Modeling Error

Modeling error

Error that arise from the description of the boundary value problem
(BVP). Geometric description, material description, loading, boundary
conditions, type of analysis.

m \What physical details are important in the BVVP description?

Should a mechanically fastened joint be modeled as a pin joint,
welded joint, or a flexible joint.

_Actual joint Pin joint Welded joint Flexible joint

(74

/|
/|
) [e )| ) (@) ’

: Beam and sprin
Axial Flements Beam Elements el pring
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Modeling Error

N

Should the properties of the adhesive be included or ignored in a bonded
joint?

Adhesive - P | I_z
- P - |
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Modeling Error
N

Should the material be modeled as isotropic or orthotropic?

3 \ \ ' \ 1 1 \ ]
1 LA\ '
{ \ \\ 4.\ e

. I ‘ "T 1 | ‘

!

/f [' Lk

How should the support be modeled? i.e., what are the appropriate
boundary conditions.

Fixed Elastic K
K

g = 0 Simple support
g = Fixed support

/ K9 D) /




Modeling Error

N

» What type of analysis should be conducted?

Should you conduct a linear or non-linear analysis?
1.Material non-linearity: Stress and strain are non-linearly related.
2.Geometric non-linearity: Strain and displacement non-linearly related.
(large deformation or strain)
3.Contact problem: The contact length changes with load.
(/) No friction.
(/) With friction—need the slip (F=um) and no slip
boundary(F:<pm). 5

A A

w

Should buckling analysis be conducted?
For time dependent problems should you conduct a dynamic or quasi-
static analysis? Should the material be modeled as elastic or viscoelastic?
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Discretization Error
TN

e Errors that arises from creation of the mesh.

»Elements in FEM are based on analytical models. All assumptions
that are made In the analytical models are applicable to FEM
elements.

» What type of elements should be used?
»Should 1-d element be used?

Rapidly varying load, 1-d Not OK

) peanh

L » b—1-d OK Very steep taper, 1-d Not OK
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Discretization Error
TN

»Should beam element, which is based on symmetric bending, be used?

Bending and torsion

Symmetric Bending Unsymmetrical Bending

« What type of 2-d (plane stress, plane strain) or 3-d element should you use.?

» What mesh density should you use?

»Too fine a mesh results in large computer time that may prevent
optimization or parametric studies or non-linear analysis. Too coarse a
mesh may result in high inaccuracies. Start with a coarse mesh, study the
results and then refine the mesh as needed.
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Discretization Error
TN

« How accurately should the geometry be modeled?

»Errors from modeling of geometric are generally small. For the same

computational effort higher returns in accuracy are obtained in better

modeling of displacement-Isoparametric elements are adequate.




Numerical Error

N

Errors that arise from finite digit arithmetic and use of numerical methods.
* Integration error

»Few Gauss points leads to numerical instabilities. Large number of
Gauss points are computationally expensive and may result in overly stiff
elements leading to higher errors.

e Round off error

»The finite digit arithmetic causes these errors, but the growth of round
off errors are dictated by several factors. Need to avoid: adding or
subtracting very large and very small numbers; dividing by small
numbers.

(i) The manner in which algorithms are written in the computer codes.
Non-dimensionalizing the problem will always help.

(i1) Large differences in physical dimensions.
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Numerical Error

Ig — o[ arge Kge» Kup Kse» Kep

H

Can BC be modeled as rigid?

V [|A Dp

7
(1) Large differences in stiffness caused my large differences in material
properties (or dimensions).

' P Can steel be modeled as rigid?
Soft Rubber Steel >

(iv) Elements with poor aspect ratio: ratio of largest to smallest dimension
In an element.
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Numerical Error

N

Good Aspect Ratio Poor Aspect Ratio

Example (numerical error):

O R




Numerical Error

FE Equations:

k, —k, |Ju, | _|P
—k, k 4k, |u, [ |of ==> DeK=kk,

The system will be singularif k,is small compared with &,.

U, =u P
2 — "M
ki
k,
U, = U
k, +k,
/
s
4 :
k> << k; (two lines close):
= System ill-conditioned.
/ =
/ F
P/k; "



2 6.0000
2 6

{2 6.0000

2 6

1}
1}

N

Numerical Error

=[
z[

8.0000
8

8.00002
8

1}~

|




Numerical Error

-~ kl

e - ”'
,d‘" kl +k2

P k> >> k; (two line apart):
= System well conditioned.

F Y -

Pk, u,

*» Large difference in stiffness of different parts in FE model may cause

Ill-conditioning in FE equations. Hence giving results with large errors.
% Ill-conditioned system of equations can lead to large changes in solution
with small changes in input (right hand side vector).
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Convergence Requirements

Convergence Requirements for Finite Element Discretization

Convergence: discrete (FEM) solution approaches the analytical (math
model) solution in some sense
Convergence = Consistency + Stability

Further Breakdown of Convergence Requirements

« Consistency
Completeness /nadividual elements
Compatibility element patches

« Stability
Rank Sufficiency /nadiviaual elements
Positive Jacobian /naiviadual elements
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Convergence Requirements

The Variational Index m

Bar

L
[T[u] =[ (%u’EAu’ —qu) dx m =1
0

Beam

L
o] =[ (V" EIV —qu) dx m=2
0




Element Patches

N

Nonconforming elements and the patch test

Conforming = compatible

Nonconforming = incompatible

ldeal: Conforming elements

Observation: Certain nonconforming elements also give good
results, at the expense of nonmonotonic convergence

Nonconforming elements.

o satisfy completeness

* do not satisfy compatibility

o result in at least nonmonotonic convergence If the element
assemblage as a whole Is complete, 1.e., they satisfy the
PATCH TEST
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Element Patches

N

PATCH TEST:

1. A patch of elements is subjected to the minimum displacement
boundary conditions to eliminate all rigid body motions

2. Apply to boundary nodal points forces or displacements which
should result in a state of constant stress within the assemblage

3. Nodes not on the boundary are neither loaded nor restrained.

4. Compute the displacements of nodes which do not have a
prescribed value

5. Compute the stresses and strains

The patch test is passed if the computed stresses and strains match
the expected values to the /imit of computer precision.
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Element Patches

[ d

NN OO OO




Element Patches

N

Patch Test - Procedure

Build a simple FE model

y
F
— g >

Consists of a Patch of
Elements

At least one Internal node

(a)

Load by nodal equivalent forces consistent with state of
constant stress

Internal Node is unloaded and unsupported
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Element Patches

N

Patch Test - Procedure

Fl r F =%(ath)

o gy H"‘T‘
H

Compute results of FE patch

(a)

If
(computed o) = (assumed o)
test passed



Element Patches

N

NOTES:

1. This Is a great way to debug a computer code

2. Conforming elements ALWAY'S pass the patch test

3. Nodes not on the boundary are neither loaded nor restrained.
4. Since a patch may also consist of a single element, this test
may be used to check the completeness of a single element

5. The number of constant stress states in a patch test depends
on the actual number of constant stress states in the
mathematical model (3 for plane stress analysis. 6 for a full 3D
analysis)
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Convergence Requirements

Completeness & Compatibility in Terms of m

Completeness

The element shape functions must represent exactly all polynomial
terms of order min the Cartesian coordinates. A set of shape
functions that satisfies this condition is call /m-complete

Compatibility
The patch trial functions must be C (M- continuous between
elements, and C™ piecewise differentiable inside each
Element.
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Convergence Requirements

Plane Stress: /m = 7 in Two Dimensions

Completeness
The element shape functions must represent exactly all polynomial
terms of order <=1 in the Cartesian coordinates. That means
any /inear polynomial in x, ywith a constant as special case

Compatibility
The patch trial functions must be C° continuous between
elements, andC*! piecewise differentiable inside each element
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Stability

Rank Sufficiency N

The discrete model must possess the same solution uniqueness attributes
of the mathematical model For displacement finite elements:

the rigid body modes (RBMS) must be preserved no zero-enerqy moades
other than RBMs can be tested by the rank of the stiffness matrix

Positive Jacobian Determinant
The determinant of the Jacobian matrix that relates cartesian and natural
coordinates must be everywhere positive within the element

Rank Sufficiency

The element stiffness matrix must not possess any zero-energy
Kinematic modes other than rigid body modes

This can be checked by verifying that the element stiffness matrix has
the correct rank:

correct rank = # of element DOF — # of RBMs

A stiffness matrix that has proper rank is called rank sufficient
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Rank Sufficiency for Numerically Integrated Finite Elements

N

Notation for Rank Analysis of Element Stiffness

ne number of element DOF
Ny number of independent rigid body modes

Ng number of Gauss points in integration rule for K
Ne order of E (stress-strain) matrix

o correct (proper) rank 7. — 1,

r actual rank of stiffness matrix

7 rank deficiency 7. — r

rank of K: r = min (n, —n,, N.N-)
General case B TETG
rank deficiency: d= (n, —ng)—r
n.=2n np=3 ng =3

Plane Stress, 7 nodes :
r = min (2n— 3, 3n;)
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Rank Sufficiency for Numerically Integrated Finite Elements

N

The element stiffness matrix must not possess any zero-energy
Kinematic mode other than rigid body modes.

This can be mathematically expressed as follows.

Let /7-be the number of element degrees of freedom, and 7, be
the number of independent rigid body modes.

Let rdenote the rank of K(e). The element is called rank
sufficient if r = n- —n,and rank deficient if r <n.—ny.

In the latter case, d =(n-—ng) —r Is called the rank deficiency.
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Rank Sufficiency for Numerically Integrated Finite Elements

N

If an isoparametric element is numerically integrated, let 77, be the
number of Gauss points, while 77-denotes the order of the stress-strain

matrix E.
Two additional assumptions are made:

(i) The element shape functions satisfy completeness in the sense that
the rigid body modes are exactly captured by them.

(i1) Matrix E is of full rank.

Then each Gauss point adds 77-to the rank of K(e), up to a maximum
of n- — n,. Hence the rank of K(e) will be r=min( n- —ns, nzng)
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Rank Sufficiency for Numerically Integrated Finite Elements

N

To attain rank sufficiency, n-n; must equal or exceed n- — ny,.

from which the appropriate Gauss integration rule can be selected.
In the plane stress problem, n.= 3 because
E1s a 3 x 3 matrix of elastic moduli;

Also n, = 3. Consequently r=min(n-— 3, 3n;)and 3n;>n-— 3.

il 8082315 - gl aro sl 69 3995 sl oy



Rank Sufficiency for Numerically Integrated Finite Elements

N

EXAMPLE

Consider a plane stress 6-node quadratic triangle.

Then n- =2 x 6 = 12. To attain the proper rank of
12—n,=12-3=9 n;=>3

A 3-point Gauss rule makes the element rank sufficient.

EXAMPLE

Consider a plane stress 9-node biquadratic quadrilateral. Then
n. =2x9 = 18. To attain the proper rank of

18—n, = 18—3 = 15, n; > 5. The 2x2 product Gaussrule is
Insufficient because 71, = 4. Hence a 3x3rule, which

yields n; = 9, is required to attain rank sufficiency.
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Rank Sufficiency for Numerically Integrated Finite Elements

N

Element n np np—3 Minng Recommended rule
3-node triangle 3 6 3 1 centroid®
6-node triangle 6 12 9 3 3-midpoint rule*
10-node triangle 10 20 17 6 7-point rule*
4-node quadrilateral 4 8 5 2 2x2
8-node quadrilateral 8§ 16 13 5 3x3
9-node quadrilateral 9 I8 15 5 3x3
16-node quadrilateral 16 32 29 10 4x4




Positive Jacobian Requirement

N

Displacing a Corner Node of 4-Node Quad

"Triangle'’




Positive Jacobian Requirement
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Positive Jacobian Requirement
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Convergence of FE Solution

N

As the mesh in an FE model is “refined” repeatedly, the FE solution
will converge to the exact solution of the mathematical model of the
problem (the model based on bar, beam, plane stress/strain, plate,
shell, or 3-D elasticity theories or assumptions).

Types of Refinement:

h-refinement. reduce the size of the element (“A” refers to the
typical size of the elements);

p-refinement. Increase the order of the polynomials on an element
(linear to quadratic, etc.; “/7” refers to the highest order In a
polynomial);

r-refinement. re-arrange the nodes in the mesh;

hp-refinement. Combination of the h- and p-refinements (better
results!).
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» Future of FE applications
» Automatic refinement of FE meshes until converged results are obtained

»User’s responsibility reduced: only need to generate a good initial mesh
Error Indicators:

Define,

o . element by element stress field (discontinuous),
o* :averaged or smooth stress (continuous),

o~ o-o* :the error stress field.
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M
: U=YU, U, =j1sTE—‘st;
Compute strain energy, p ;2
® M # # 1 B #
U =YU’, U'=[=s"E"s"dV;
i=1 2
u 1
U,=YU,, U, = jis "E's dV;
i=l V;

where M s the total number of elements, V; is the volume of the element /.
One error indicator --- the relative energy error:

B UE 1/2
n U+, | 0y <)
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The indicator 7 is computed after each FE solution.
Refinement of the FE model continues until, say

n<=0.05. =>converged FE solution.




