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Preprocessor
Geometry Properties (Nodes, Elements) , Material Properties
Boundary Conditions(displacements, Forces )

v

Definition of Stiffness Matrices (Local), k, for each Element

v

Definition of Strain-Displacement Matrices, B, for each Element

V

Calculation of Structure Stiffness Matrices (Global), K,

V

Definition of Primary External Nodal Forces Vector

¥

Apply the B.C.
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N

{

Solution of Equation “K U =F”

v

Calculation of Stress in Gaussian Points for each Element

V

Transportation of Stress from Gaussian Points to Element Nodes

V

Calculation of average Stress in Element Nodes

V

Analysis Results
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Finite Element Modeling
Techniques




Classification of Mechanical Finite Elements
\

e Primitive Structural

e Continuum

e Special

e Macroelements
Superelements

e Substructures




Primitive Structural Elements

N\

SPh}’SiCﬂgl Mathematical Finite Element
tructur Model Name Discretization
Component
/ bar —
]:% beam /
& tube, pipe /
@ e
shear panel
(2D version of above)




Continuum Elements

N\

Finite element Finite element
idealization Physical idealization

2
P

Physical

plates 3D solids

g
v

7 >
7 Q




Special Elements

N

e Crack tip elements

e Infinite elements

e Cohesive elements

double node

Infinity W

Crack Infinite Honeycomb
element element panel




Crack Tip Element

e Fracture mechanics — singularity point at crack tip.
e Conventional finite elements do not give good
approximation at/near the crack tip.

From fracture mechanics,

- : 0 ., 0
o 1-sin—sin— coS— (k —1+2sin° —
- H: K|S0 )
— | e in__cin
Oy |= e 008 5| Sinsin= V| 2G+2x Sing(K-l-l—ZCOSZg)
L7 | .6 . 30 - -
1+sin—sin— (Near crack tip)
i 2 2 Yy
-
?
(Mode | fracture) — 0
_—— X U
v
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Crack Tip Element
N

e Special purpose crack tip element with middle nodes
shifted to quarter position:




Crack Tip Element

x=-0.57 (1-n)x + (1+n)(1-n)x,+ 0.57 (1+n) X, A
5
u=-05n (L-nu+ (WL-Nu+05y A+ g, T
(Measured from node 1) i ‘4/rv
8e
Move node 2 to L/4 position -_./LQ/. X»
lle»|2 3
{ =0, x,=LI4, x,= L, 1, =0 L/ —
x=0.25(1+7)(1-n)L + 0.5 (1+n)L P — 7,
-1

u=1+n)(1-nu,+0.5n (1+n) u
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Crack Tip Element

Simplifying,

x=0.25(1+n)°L

U= (1+77)[(1'77)U2+O-577U3]

Along x-axis, x=r

r=0.25(1+n)?L  or (1+n)= 2\/E

= y=2(NmL) [(1-p)u, + 0.57u,] Note: Displacement is
proportional to Vr

ou ouon OX
— where == =05(1+7n)L = r/L
OX  0n OX on (d+7) vriL

Note: Strain (hence

Ju 1 1 1 stress) is proportional to
Therefore, = —2nu. + (= +nu /
Ix \/F /—L[ yLy (2 77) 3] 1/\//’
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Crack Tip Element

e Therefore, by shifting the nodes to quarter
position, we approximating the stress and
displacements more accurately.

e Other crack tip elements:

<— | —

L/4

Triangular crack tip A 3-D, wedge crack tip
elements element
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Methods for Infinite Domain

N

Methods for Infinite Domain

e Infinite elements formulated by mapping
(Zienkiewicz and Taylor, 2000)

e Gradual damping elements

e Coupling of FEM and BEM

e Coupling of FEM and SEM
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Infinite elements formulated by mapping
\

Use shape functions to approximate decaying sequence:

In 1D: s

<
><I
(@)
| Y]
<
QD
©
O
4
: =
Py,
=
8

9 . .
X = _E Xo + (1+ Ej 0 (Coordinate interpolation)

5 X
r=x-% = ¢£=1 —1—




Infinite elements formulated by mapping
\

If the field variable is approximated by polynomial,

U=a,+a,é+a,E8 + ol +...

Substituting & will give function of decaying form, & n sz n Cg to
rro r

For2D 3D):  y—__ S +(1+L)XQ1




Infinite elements formulated by mapping
\

Element
PP,QQ,RR;:

X = N(n)[ if [Hé]xcg}

+N0(’7)(‘iexol 155 Ql]

- 1+ 1-
with N1(77)=Tn, NO(U)ZTU



Infinite elements formulated by mapping
'\

Infinite elements are attached to
conventional FE mesh to
simulate infinite domain.




Finite Strip Elements

N

e Developed by Y. K. Cheung, 1968.

e Used for problems with regular geometry and
simple boundary.

e Key Is in obtaining the shape functions.




Finite Strip Elements

N

_ (Approximation of displacement function)
w= Y f (x)Y,
m=1 / \
(Polynomial) (Continuous series)

Polynomial function must represent state of constant strain in the x
direction and continuous series must satisfy end conditions of the strip.

Together the shape function must satisfy compatibility of displacements
with adjacent strips.
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N

Finite Strip Elements

Y0)=0, ¥710)=0, 4 =
Oand Y’(4) =0
1

}

Satisfies

Ym(y)=8i”(”2yj T

U,=m2m 37, ..., Mrx

fm(x):[cl C, C, (:4]<

r )
Cc C o C

1
®
. thy Uy
b

Mg wg v B3
. J




Finite Strip Elements

3 2

X
C,(x) " b

Therefore,

r

w(X,y)= Z(Cl(x)ulm +C, (x)uy +C;(x)ug +C, (x)uy )Ym(y)

m=1




Finite Strip Elements

N

r

w(xy)= 2 (Co(x)u" +C, (x)ug' +C, (x)u5' +C, (x)ul’ )Y, ()

-~
)

NS NSOND S

o
q
—~~
>
<
N
|
—
prd
=3
cC Cc Cc C
Mg wg vg Pg
4

I
.

where Nim (x, y) =C, (x)Ym (y) /1=1,2,3,4

The remaining procedure iIs the same as the FEM. The
size of the matrix is usually much smaller and makes
the solving much easier.
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Finite Strip Elements

N

STRIP ELEMENT METHOD (SEM)

e Proposed by Liu and co-workers [Liu et a/.,, 1994, 1995;
Liu and Xi, 2001].

e Solving wave propagation in composite laminates.

e Semi-analytic method for stress analysis of solids and
structures.

e Applicable to problems of arbitrary boundary conditions
Including the infinite boundary conditions.

e Coupling of FEM and SEM for infinite domains.
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Substructures

N

Substructuring is a process of analyzing a large structure as a collection
of (natural) components. The FE models for these components are called

substructures or superelements (SE).

Physical Meaning:
A finite element model of a portion of structure.

Mathematical Meaning:
Boundary matrices which are load and stiffness matrices reduced

(condensed) from the /nterior points to the exterior or boundary points.

One obvious advantage of this idea results if the structure is built of
several identical units. For example, the wing substructures S2 and S3
are largely identical except for a reflection about the fuselage
midplane, and so are the stabilizers S4 and S5.
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Substructures
TN

level two substructure

level one substructure

individual

element



Multistage Rockets Naturally
Decompose into Substructure

Short stack Apollo/Saturn

Lunar rocket

N

Substructures

COMMAND MODULE

SERVICE MODULE

ADAPTER

LUNAR MODULE

INSTRUMENT UNIT

THIRD STAGE
SIV-B




Substructures

Static Condensation \

Degrees of freedom of a superelement are classified into two groups:
Internal Freedoms. Those that are not connected to the freedoms of
another superelement. Node whose freedoms are internal are called
Internal nodes.

Boundary Freedoms. These are connected to at least another
superelement. They usually reside at bounadary nodes placed on the
periphery of the superelement.

The vertical stabilizer substructure S6
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Substructures
TN

Static Condensation
The assembled stiffness equations of the superelement are partitioned as follows:

I b A

where subvectors u, and u; collect bounaary and interior degrees of freedom,
respectively. Take the second matrix equation:

K Uy + Ky U= T,
Assume K;; Is nonsingular, we can solve for the interior freedoms:
_ -1
U; = Kii (fi - Kib ub)

Replacing into the first matrix equation of (*) yields the condensed stiffness
equations

z Kbb = Kbb — Kbi Ki;l Kib The condensed stiffness matrix
fb = fb — Kbi Kﬁl fi The condensed force vector
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Substructures
TN

Advantages of Using Substructures/Superelements:

-~ Large problems (which will otherwise exceed your computer capabilities)
~ Less CPU time per run once the superelements have been processed

(i.e., matrices have been saved)

~ Components may be modeled by different groups

- Partial redesign requires only partial reanalysis (reduced cost)

- Efficient for problems with local nonlinearities (such as confined plastic
deformations) which can be placed in one superelement (residual structure)
~ Exact for static stress analysis

Disadvantages:
- Increased overhead for file management
~ Matrix condensation for dynamic problems introduce new approximations

> | ] L] L]
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General FEM Modeling Rules
\

1- Use the simplest elements that will do the job.

2- Never, never, never use complicated or special elements
unless you are absolutely sure of what you are doing.

3- Use the coarsest mesh that will capture the dominant
behavior of the physical model, particularly in design

situations.
3 word summary: Keep It Simple
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