

Multi-Point Constraints

Multi-Point Constraints

- Single point constraint examples
 - $u_{x4} = 0$ linear, homogeneous $u_{y9} = 0.6$ linear, non-homogeneous

>Multi-Point constraint examples

 $u_{x2} = \frac{1}{2}u_{y2}$ $u_{x2} - 2u_{x4} + u_{x6} = 0.25$ $(x_5 + u_{x5} - x_3 - u_{x3})^2 + (y_5 + u_{y5} - y_3 - u_{y3})^2 = 0$

nonlinear, homogeneous

دانشگاه صنمتی اصفهان- دانشکده

Modelling of joints

Perfect connection ensured here

Modelling of joints

Mismatch between DOFs of beams and 2D solid – beam is free to rotate (rotation not transmitted to 2D solid)

Perfect connection by artificially extending beam into 2D solid (Additional mass)

- Modelling of joints
- Using MPC equations

Creation of MPC equations for offsets

**

Creation of MPC equations for offsets d_{6} d_8 α d_9 d_2 'd₁ d_5 $d_6 = d_1 + \alpha \, d_5$ or $d_1 + \alpha \, d_5 - d_6 = 0$ $d_7 = d_2 - \alpha d_4$ or $d_2 - \alpha d_4 - d_7 = 0$

 $d_8 = d_3$ or $d_3 - d_8 = 0$ $d_9 = d_5$ or $d_5 - d_9 = 0$

دانشگام صنعتی اصفهان- دانشکده

Modelling of joints **i**

Similar for plate connected to 3D solid

Modelling of symmetric boundary conditions

Enforcement of mesh compatibility

Use lower order shape function to interpolate

$$d_x = 0.5(1-\eta) d_1 + 0.5(1+\eta) d_3$$

$$d_y = 0.5(1-\eta) d_4 + 0.5(1+\eta) d_6$$

Substitute value of η at node 2

$$0.5 d_1 - d_2 + 0.5 d_3 = 0$$
$$0.5 d_4 - d_5 + 0.5 d_6 = 0$$

دانشگاه صنعتی اصفهان- دانشکده

1

Enforcement of mesh compatibility

Use shape function of longer element to interpolate

 $d_x = -0.5 \eta (1-\eta) d_1 + (1+\eta)(1-\eta) d_3 + 0.5 \eta (1+\eta) d_5$

Substituting the values of η for the two additional nodes

$$d_{2} = 0.25 \times 1.5 \ d_{1} + 1.5 \times 0.5 \ d_{3} - 0.25 \times 0.5 \ d_{5}$$

$$d_{4} = -0.25 \times 0.5 \ d_{1} + 0.5 \times 1.5 \ d_{3} + 0.25 \times 1.5 \ d_{5}$$
Quad
$$d_{9} \uparrow Quad$$

$$d_{9} \uparrow Quad$$

$$d_{10} \downarrow d_{5}$$

$$d_{10} \downarrow d_{10} \downarrow d_{10}$$

$$d_{10} \downarrow d_{10} \downarrow d_{10} \downarrow d_{10}$$

$$d_{10} \downarrow d_{10} \downarrow d_{10} \downarrow d_{10}$$

$$d_{10} \downarrow d_{10} \downarrow d_{10$$

<u>دانشگاه صنمتی اصفهان- دانشکده</u>

Enforcement of mesh compatibility

In *x* direction,

$$0.375 d_1 - d_2 + 0.75 d_3 - 0.125 d_5 = 0$$
$$-0.125 d_1 + 0.75 d_3 - d_4 + 0.375 d_5 = 0$$

In y direction,

0.375
$$d_6$$
- d_7 +0.75 d_8 - 0.125 $d_{10} = 0$
-0.125 d_6 +0.75 d_8 - d_9 + 0.375 $d_{10} = 0$

Modelling of constraints by rigid body attachment

$$d_{1} = q_{1}$$

$$d_{2} = q_{1} + q_{2} I_{1}$$

$$d_{3} = q_{1} + q_{2} I_{2}$$

$$d_{4} = q_{1} + q_{2} I_{3}$$

Eliminate q_1 and q_2

$$(I_2 / I_1 - 1) d_1 - (I_2 / I_1) d_2 + d_3 = 0$$
$$(I_3 / I_1 - 1) d_1 - (I_3 / I_1) d_2 + d_4 = 0$$

(DOF in *x* direction not considered)

- Sources of Multi-Point Constraints
 - > Skew displacement BCs
 - Coupling nonmatched FEM meshes
 - > Global-local and multiscale analysis
 - > Incompressibility

- MPC Application Methods
 - Master-Slave Elimination
 - > Penalty Function Augmentation
 - > Lagrange Multiplier Adjunction

Example 1D Structure to Illustrate MPCs

Multi-Point constraint:

$$u_2 = u_6$$
 or $u_2 - u_6 = 0$

Linear homogeneous MPC

Example *1D* Structure to Illustrate MPCs

Unconstrained master stiffness equations

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\ 0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} \\ 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \end{bmatrix}$$

 $\mathbf{K}\mathbf{u} = \mathbf{f}$

والسحام صنفتي اصمهان، والشكوم

Master Slave Method for Example Structure

Recall: $u_2 = u_6$ or $u_2 - u_6 = 0$

or

Taking u as master:

$$\begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6} \\ u_{7} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{7} \end{bmatrix}$$

Forming the Modified Stiffness Equations

Unconstrained master stiffness equations:

Master-slave transformation: $\mathbf{u} = \mathbf{T}\hat{\mathbf{u}}$

Congruential transformation:

 $\hat{\mathbf{K}} = \mathbf{T}^T \mathbf{K} \mathbf{T}$ $\hat{\mathbf{f}} = \mathbf{T}^T \mathbf{f}$

 $\mathbf{K}\mathbf{u} = \mathbf{f}$

Modified stiffness equations:

$$\hat{\mathbf{K}}\hat{\mathbf{u}}=\hat{\mathbf{f}}$$

- دانشگاه صنمتی اصفهان- دانشکده مکانیک

Modified Stiffness Equations for Example Structure

 u_2 as master and u_6 as slave DOF.

$-K_{11}$	K_{12}	0	0	0	0	$[u_1]$	$\int f_1$
<i>K</i> ₁₂	$K_{22} + K_{66}$	<i>K</i> ₂₃	0	<i>K</i> ₅₆	K_{67}	u_2	$f_2 + f_6$
0	K_{23}	<i>K</i> ₃₃	<i>K</i> ₃₄	0	0	u_3	f_3
0	0	<i>K</i> ₃₄	K_{44}	K_{45}	0	u_4	 f_4
0	K_{56}	0	K_{45}	K_{55}	0	u_5	f_5
0	K_{67}	0	0	0	K_{77}	$\lfloor u_7 \rfloor$	f_7

Modified Stiffness Equations for Example Structure

 u_6 as master and u_2 as slave DOF.

$$\begin{bmatrix} K_{11} & 0 & 0 & 0 & K_{12} & 0 \\ 0 & K_{33} & K_{34} & 0 & K_{23} & 0 \\ 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\ K_{12} & K_{23} & 0 & K_{56} & K_{22} + K_{66} & K_{67} \\ 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_3 \\ f_4 \\ f_5 \\ f_2 + f_6 \\ f_7 \end{bmatrix}$$

Although they are algebraically equivalent, the latter would be processed faster if a skyline solver is used for the modified equations.

Multiple MPCs

Suppose

 $u_2 - u_6 = 0,$ $u_1 + 4u_4 = 0,$ $2u_3 + u_4 + u_5 = 0$

take 3, 4 and 6 as slaves:

$$u_6 = u_2,$$
 $u_4 = -\frac{1}{4}u_1,$ $u_3 = -\frac{1}{2}(u_4 + u_5) = \frac{1}{8}u_1 - \frac{1}{2}u_5$

and put in matrix form:

$$\begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6} \\ u_{7} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{8} & 0 & -\frac{1}{2} & 0 \\ -\frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{5} \\ u_{7} \end{bmatrix}$$

دانشگام صنمتی اصفهان- دانشکدم

Nonhomogeneous MPCs

$$u_2 - u_6 = 0.2$$

In matrix form

$\mathbf{u} = \mathbf{T}\hat{\mathbf{u}} + \mathbf{g}$

Nonhomogeneous MPCs
modified system: $\hat{\mathbf{K}} \hat{\mathbf{u}} = \hat{\mathbf{f}}$

in which:
$$\hat{\mathbf{K}} = \mathbf{T}^T \mathbf{K} \mathbf{T}$$
, $\hat{\mathbf{f}} = \mathbf{T}^T \mathbf{f} - \mathbf{T}^T \mathbf{K} \mathbf{g}$

For the example structure

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} + K_{66} & K_{23} & 0 & K_{56} & K_{67} \\ 0 & K_{23} & K_{33} & K_{34} & 0 & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 \\ 0 & K_{56} & 0 & K_{45} & K_{55} & 0 \\ 0 & K_{67} & 0 & 0 & 0 & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + f_6 - 0.2K_{66} \\ f_3 \\ f_4 \\ f_5 - 0.2K_{56} \\ f_7 - 0.2K_{67} \end{bmatrix}$$

The General Case of MPCs

For implementation in general-purpose programs the master-slave method can be described as follows. The degrees of freedoms in \mathbf{u} are classified into three types: independent or uncommitted, masters and slaves.

$$\begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{um} & \mathbf{K}_{us} \\ \mathbf{K}_{um}^{T} & \mathbf{K}_{mm} & \mathbf{K}_{ms} \\ \mathbf{K}_{us}^{T} & \mathbf{K}_{ms}^{T} & \mathbf{K}_{ss} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{u} \\ \mathbf{u}_{m} \\ \mathbf{u}_{s} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{m} \\ \mathbf{f}_{s} \end{bmatrix}$$

The MPCs may be written in matrix form as

$$\mathbf{A}_m \mathbf{u}_m + \mathbf{A}_s \mathbf{u}_s = \mathbf{g} \quad \Longrightarrow \quad \mathbf{u}_s = -\mathbf{A}_s^{-1} \mathbf{A}_m \mathbf{u}_m + \mathbf{A}_s^{-1} \mathbf{g} = \mathbf{T} \mathbf{u}_m + \mathbf{g}$$

Inserting into the partitioned stiffness matrix and symmetrizing

$$\begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{um}\mathbf{T} \\ \mathbf{T}^{T}\mathbf{K}_{um}^{T} & \mathbf{T}^{T}\mathbf{K}_{mm}\mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{u} \\ \mathbf{u}_{m} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{u} - \mathbf{K}_{us}\mathbf{g} \\ \mathbf{f}_{m} - \mathbf{K}_{ms}\mathbf{g} \end{bmatrix}$$

دانشگاه صنمتی اصفهان- دانشکده

- > exact if precautions taken
- ▶ easy to understand
- retains positive definiteness
- >important applications to model reduction

DISADVANTAGES

- requires user decisions
- >messy implementation for general MPCs
- > sensitive to constraint dependence
- restricted to linear constraints

دانشگاه صنعتی اصفهان- دانشکده

Penalty Function Method, Physical Interpretation

Recall the example structure

under the homogeneous MPC

$$u_2 = u_6$$

27

Penalty Function Method, Physical Interpretation

Penalty Function Method, Physical Interpretation

Upon merging the penalty element the modified stiffness equations are

$-K_{11}$	K_{12}	0	0	0	0	0 7	$\int u_1$		$\lceil f_1 \rceil$
<i>K</i> ₁₂	$K_{22} + w$	<i>K</i> ₂₃	0	0	-w	0	u_2		f_2
0	<i>K</i> ₂₃	<i>K</i> ₃₃	<i>K</i> ₃₄	0	0	0	<i>u</i> ₃		f_3
0	0	<i>K</i> ₃₄	K_{44}	K_{45}	0	0	u_4	=	f_4
0	0	0	K_{45}	K_{55}	K_{56}	0	u_5		f_5
0	-w	0	0	K_{56}	$K_{66} + w$	<i>K</i> ₆₇	u_6		f_6
0	0	0	0	0	K_{67}	K_{77}	$\lfloor u_7 \rfloor$		$\lfloor f_7 \rfloor$

This modified system is submitted to the equation solver. Note that **u** retains the same arrangement of DOFs. Penalty Function Method - General MPCs

Premultiply both sides by $\begin{bmatrix} 3 & 1 & -4 \end{bmatrix}^T$

$$\begin{bmatrix} 9 & 3 & -12 \\ 3 & 1 & -4 \\ -12 & -4 & 16 \end{bmatrix} \begin{bmatrix} u_3 \\ u_5 \\ u_6 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}$$

Scale by *w* and merge:

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\ K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 \\ 0 & K_{23} & K_{33} + 9w & K_{34} & 3w & -12w & 0 \\ 0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\ 0 & 0 & 3w & K_{45} & K_{55} + w & K_{56} - 4w & 0 \\ 0 & 0 & -12w & 0 & K_{56} - 4w & K_{66} + 16w & K_{67} \\ 0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 + 3w \\ f_4 \\ f_5 + w \\ f_6 - 4w \\ f_7 \end{bmatrix}$$

دانشگا<mark>n صنمتی اصفهان- دانشکد</mark>n

Theory of Penalty Function Method - General MPCs

$$\mathbf{t} = \mathbf{C}\mathbf{U} - \mathbf{Q} \qquad \text{(Constrain equations)}$$
$$\boldsymbol{\Pi}_{p} = \frac{1}{2}\mathbf{U}^{T}\mathbf{K}\mathbf{U} - \mathbf{U}^{T}\mathbf{F} + \frac{1}{2}\mathbf{t}^{T}\boldsymbol{\alpha}\mathbf{t}$$

 $\alpha = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_m]$ is a diagonal matrix of 'penalty numbers'

stationary condition of the modified functional requires the derivatives of Π_p with respect to the \mathbf{U}_i to vanish

$$\frac{\partial \Pi_p}{d\mathbf{U}} = 0 \quad \rightarrow \quad \mathbf{K}\mathbf{U} - \mathbf{F} + \mathbf{C}^T \boldsymbol{\alpha}\mathbf{C}\mathbf{U} + \mathbf{C}^T \boldsymbol{\alpha}\mathbf{Q} = \mathbf{0}$$

$$[\mathbf{K} + \mathbf{C}^T \boldsymbol{\alpha} \mathbf{C}]\mathbf{U} = \mathbf{F} + \mathbf{C}^T \boldsymbol{\alpha} \mathbf{Q}$$

Penalty matrix

دانشگاه صنمتی اصفهان- دانشکده

Theory of Penalty Function Method - General MPCs

دانشگاه صنمتی اصفهان- دانشکده

Assessment of Penalty Function Method

ADVANTAGES

- > general application (inc' nonlinear MPCs)
- > easy to implement using FE library and standard assembler
- > no change in vector of unknowns
- retains positive definiteness
- insensitive to constraint dependence

DISADVANTAGES

- > selection of weight left to user
- > accuracy limited by ill-conditioning
- > the constraint equations can only be satisfied approximately.

Lagrange Multiplier Method, Physical Interpretation

Lagrange Multiplier Method

Because λ is unknown, it is passed to the LHS and appended to the node-displacement vector:

This is now a system of 7 equations and 8 unknowns. Needs an extra equation: the MPC.

دانشگاه صنعتی اصفهان- دانشکده

Lagrange Multiplier Method

Append MPC as additional equation:

$\begin{bmatrix} I \end{bmatrix}$	K_{11}	<i>K</i> ₁₂	0	0	0	0	0	0	$\begin{bmatrix} u_1 \end{bmatrix}$		$\lceil f_1 \rceil$	
	K_{12}	<i>K</i> ₂₂	<i>K</i> ₂₃	0	0	0	0	1	u_2		f_2	
	0	<i>K</i> ₂₃	<i>K</i> ₃₃	<i>K</i> ₃₄	0	0	0	0	u_3		f_3	
	0	0	<i>K</i> ₃₄	K_{44}	K_{45}	0	0	0	u_4		f_4	
	0	0	0	K_{45}	K_{55}	K_{56}	0	0	u_5	_	f_5	
	0	0	0	0	K_{56}	K_{66}	K_{67}	-1	u_6		f_6	
	0	0	0	0	0	K_{67}	K_{77}	0	u_7		f_7	
L	0	1	0	0	0	-1	0	0	λ		0	

This is the *multiplier-augmented system*. The new coefficient matrix is called the *bordered stiffness*.

IMPLEMENTATION OF MPC EQUATIONS

 $\mathbf{KU} = \mathbf{F}$ (Global system equation)

(Matrix form of MPC equations)

Constant matrices

 $\mathbf{CU} - \mathbf{Q} = \mathbf{0}$

Optimization problem for solution of nodal degrees of freedom:

Find U to Minimize: $\Pi_{p} = \frac{1}{2} \mathbf{U}^{T} \mathbf{K} \mathbf{U} - \mathbf{U}^{T} \mathbf{F}$ Subject to: $\mathbf{C}\mathbf{U} - \mathbf{Q} = \mathbf{0}$

Lagrange multiplier method

- $\boldsymbol{\lambda} = \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_m \end{bmatrix}^T$ (Lagrange multipliers)
- $\boldsymbol{\lambda}^{T} \{ \mathbf{C}\mathbf{U} \mathbf{Q} \} = 0 \qquad \text{Multiplied to MPC equations}$
- Find U and λ to Minimize: $L = \frac{1}{2} \mathbf{U}^T \mathbf{K} \mathbf{U} - \mathbf{U}^T \mathbf{F} + \lambda^T \{\mathbf{C} \mathbf{U} - \mathbf{Q}\}$ Added to functional The stationary condition requires the derivatives of *L* with respect to the U_i and λ_i to vanish.

دانشگاه صنمتی اصفهان- دانشکده

Lagrange Multiplier Method - Multiple MPCs

Three MPCs: <i>u</i>	$u_2 - u_6 =$	0,	$5u_2$	2 - 8i	$u_7 =$	3,	3и	<i>u</i> ₃ +	$u_5 -$	$4u_6$	= 1	
Recipe step #1: append the 3 constraints	$\begin{bmatrix} K_{11} \\ K_{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} K_{12} \\ K_{22} \\ K_{23} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 5 \\ 0 \\ \end{array} $	$ \begin{array}{c} 0\\ K_{23}\\ K_{33}\\ K_{34}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 3 \end{array} $	$egin{array}{c} 0 \\ 0 \\ K_{34} \\ K_{44} \\ K_{45} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ K_{45} \\ K_{55} \\ K_{56} \\ 0 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ K_{56} \\ K_{66} \\ K_{67} \\ -1 \\ 0 \\ -4 \end{array} $	$ \begin{array}{c} 0 & -8 \\ 0 \\ 0 \\ 0 \\ K_{67} \\ K_{77} \end{array} $		$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} =$	$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ 0 \\ 3 \\ 1 \end{bmatrix}$		
Recipe step #2: append multipliers symmetrize and fill	$\mathbf{S}, \qquad \begin{bmatrix} K_{11} \\ K_{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} K_{12} \\ K_{22} \\ K_{23} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 5 \\ 0 \\ \end{array} $	$ \begin{array}{c} 0\\ K_{23}\\ K_{33}\\ K_{34}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 3 \end{array} $	$ \begin{array}{c} 0\\ 0\\ K_{34}\\ K_{44}\\ K_{45}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ K_{45} \\ K_{55} \\ K_{56} \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ K_{56} \\ K_{66} \\ K_{67} \\ -1 \\ 0 \\ -4 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ K_{67} \\ K_{77} \\ 0 \\ -8 \\ 0 \\ 0 \end{array} $	0 1 0 0 -1 0 0 0 0 0	$ \begin{array}{c} 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ -8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 & - \\ 0 \\ 3 \\ 0 \\ 1 \\ -4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$	$ \begin{array}{c} f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \\ f_{5} \\ f_{6} \\ f_{7} \\ 0 \\ 3 \\ 1 \end{array} $

دانشگاه صنمتی اصفهان- دانشکده

Example: Five bar truss with inclined support

E = 70 Gpa, $A = 10^{-3}$ m², P = 20 kN.

دانشگام صنعتی اصفهان۔ دانشکدہ

Example: Five bar truss with inclined support

Equations for element 1

Example: Five bar truss with inclined support

Equations for element 2

E = 70000 A = 1000Element node Global node number Х 5 0 0 4 5000. 3000. 2 $x_1 = 0$ $y_1 = 0$ $x_2 = 5000.$ $y_2 = 3000.$ $L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 5830.95$ 0 Direction cosines: $\ell_s = \frac{x_2 - x_1}{L} = 0.857493$ $m_s = \frac{y_2 - y_1}{L} = 0.514496$ $\mathbf{k}^{(2)} = \begin{pmatrix} 8827.13 & 5296.28 & -8827.13 & -5296.28 \\ 5296.28 & 3177.77 & -5296.28 & -3177.77 \\ -8827.13 & -5296.28 & 8827.13 & 5296.28 \\ -5296.28 & -3177.77 & 5296.28 & 3177.77 \end{pmatrix}$

(m)

Example: Five bar truss with inclined support

Equations for element 3

E = 70000 A = 1000Element node Global node number x 2 $x_1 = 0$ $y_1 = 0$ $x_2 = 0$ $y_2 = 3000.$ $L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 3000.$ Direction cosines: $\ell_s = \frac{x_2 - x_1}{L} = 0$ $m_s = \frac{y_2 - y_1}{L} = 1.$ $\mathbf{k}^{(3)} = \begin{pmatrix} 0. & 0. & 0. & 0. \\ 0. & 23333.3 & 0. & -23333.3 \\ 0. & 0. & 0. & 0. \\ 0. & -23333.3 & 0. & 23333.3 \end{pmatrix}$

دانشگاه صنمتی اصفهان- دانشکده

Example: Five bar truss with inclined support

Equations for element 4

دانشگام صنمتی اصفهان۔ دانشکدہ

4

Example: Five bar truss with inclined support

Equations for element 4

دانشگام صنمتی اصفهان۔ دانشکدہ

4

2

Δ

Δ

Example: Five bar truss with inclined support

Equations for element 5

دانشگاه صنعتی اصفهان- دانشکده

Example: Five bar truss with inclined support

(1	7654.3	0	0	0	-8827.13	5296.28	-8827.13	-5296.28	$\left(\begin{array}{c} u_1 \end{array} \right)$	1	(0)
	0	29688.9	0	-23333.3	5296.28	-3177.77	-5296.28	-3177.77	\mathbf{v}_1		0
	0	0	14000.	0	0	0	-14000.	0	u ₂		0
	0	-23333.3	0	23333.3	0	0	0	0	\mathbf{v}_2		0
-	8827.13	5296.28	0	0	8827.13	-5296.28	0	0	u ₃	=	20000.
	5296.28	-3177.77	0	0	-5296.28	14844.4	0	-11666.7	v ₃		0
-	8827.13	-5296.28	-14000.	0	0	0	22827.1	5296.28	u ₄		0
(–	5296.28	-3177.77	0	0	0	-11666.7	5296.28	14844.4	$\left(v_{4} \right)$		$\left(\begin{array}{c} 0 \end{array} \right)$

Essential boundary conditions

Node	dof	Value
2	u_2	0
2	\mathbf{v}_2	0

After adjusting for essential boundary conditions

(17654.3	0	-8827.13	5296.28	-8827.13	-5296.28	$\left(u_{1}\right)$		$\begin{pmatrix} 0 \end{pmatrix}$
	0	29688.9	5296.28	-3177.77	-5296.28	-3177.77	\mathbf{v}_1		0
	-8827.13	5296.28	8827.13	-5296.28	0	0	u ₃		20000.
	5296.28	-3177.77	-5296.28	14844.4	0	-11666.7	V ₃	=	0
	-8827.13	-5296.28	0	0	22827.1	5296.28	u4		0
	-5296.28	-3177.77	0	-11666.7	5296.28	14844.4	$\left(v_{4} \right)$		$\left(\begin{array}{c}0\end{array}\right)$

Multipoint constraint due to inclined support at node 1: $u_1 \sin(\pi/6) + v_1 \cos(\pi/6) = 0$

The augmented global equations with the Lagrange multiplier are as follows.

Solving the final system of global equations we get

$$\{u_1 = 5.14286, v_1 = -2.96923, u_3 = 16.8629, v_3 = 12.788, u_4 = -1.42857, v_4 = 11.7594, \lambda = 80000.\}$$

Solution for element 1

Nodal coordinates

Element node Global node number x y
1 1 1 0 0
2 3 5000. -3000.

$$x_1 = 0$$
 $y_1 = 0$ $x_2 = 5000.$ $y_2 = -3000.$
 $L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 5830.95$
Direction cosines: $\ell_s = \frac{x_2 - x_1}{L} = 0.857493$ $m_s = \frac{y_2 - y_1}{L} = -0.514496$
Global to local transformation matrix
(0.857493 -0.514496 0 0)

$$T = \left(\begin{array}{ccc} 0 & 0 & 0 & 0.857493 & -0.514496 \end{array}\right)$$

<u>دانشگاه صنمتی اصفهان- دانشکده</u>

Element nodal displacements in global coordinates

$$d = \begin{pmatrix} u_1 \\ v_1 \\ u_3 \\ v_3 \end{pmatrix} = \begin{pmatrix} 5.14286 \\ -2.96923 \\ 16.8629 \\ 12.788 \end{pmatrix}$$
Element nodal displacements
in local coordinates
16.8629 (7.88048)

E = 70000 A = 1000

Axial strain, $\epsilon = (d_2 - d_1)/L = 0.000333197$ Stress Axial force 1 23.3238 23323.8 Axial stress, $\sigma = E\epsilon = 23.3238$ 2 23.3238 23323.8 Axial force = $\sigma A = 23323.8$ 3 69.282 69282. 4 -20.-20000.5 -12.-12000.وانشكام صنمتي اصفهان- وانشكوم 50 روش اجزای محدود مكانيكر

Assessment of Lagrange Multiplier Method

ADVANTAGES

- General application
- Constraint equations are satisfied exactly

DISADVANTAGES

- Difficult implementation
- >Total number of unknowns is increased
- > Expanded stiffness matrix is non-positive definite due to the presence of zero diagonal terms
- > Efficiency of solving the system equations is lower
- > sensitive to constraint dependence

دانشگاه صنمتی اصفهان- دانشکده مکانیک

MPC Application Methods: Assessment Summary

	Master-Slave Elimination	Penalty Function	Lagrange Multiplier		
Generality	fair	excellent	excellent		
Ease of implementation	poor to fair	good	fair		
Sensitivity to user decisions	high	high	small to none		
Accuracy	variable	mediocre	excellent		
Sensitivity as regards constraint dependence	high	none	high		
Retains positive definiteness	yes	yes	no		

References

1- Finite Element Method: A Practical Course by: S. S. Quek, G.R. Liu, 2003.

2- Introduction to Finite Element Methods, by: Carlos Felippa, University of Colorado at Boulder .
 http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/