Shape Functions generation,
requirements



Basic Concept of the Finite Element Method

~_

Any continuous solution field such as stress, displacement, temperature, pressure,
etc. can be approximated by a discrete model composed of a set of piecewise
continuous functions defined over a finite number of subdomains.

One-Dimensional Temperature Distribution
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. Basic Concept of the Finite Element Method
\

Discretization Concepts

Exact Temperature Distribution, T(X)
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Finite Element Discretization

Linear Interpolation Model Quadratic Interpolation Model
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Temperature Continuous but with Temperature and Temperature Gradients



Basic Concept of the Finite Element Method
\

Common Approximation Schemes
One-Dimensional Examples

Polynomial Approximation

Most often polynomials are used to construct approximation functions for each
element. Depending on the order of approximation, different numbers of element
parameters are needed to construct the appropriate function.

Linear Quadratic Cubic

Special Approximation

For some cases (e.g. infinite elements, crack or other singular elements) the approximation
function is chosen to have special properties as determined from theoretical considerations
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Requirements for Shape Functions
\

Requirements for shape functions are motivated by convergence: as the mesh is
refined the FEM solution should approach the analytical solution of the
mathematical model.

1. The requirement for compatibility: The interpolation has to be such that field

of displacements is :
1. continual and derivable inside the element
2. continual across the element border

The finite elements that satisfy this property are called conforming, or compatible.
(The use of elements that violate this property, nonconforming or incompatible
elements is however common)

2. The requirement for completeness: The interpolation has to be able to represent:
1. the rigid body displacement
2. constant strain state
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Requirements for Shape Functions

Requirement for Compatibility:
The shape functions should provide disp/acement continuity between elements.
Physically this insure that no material gaps appear as the elements deform. As the

mesh is refined, such gaps would multiply and may absorb or release spurious

Compatibility violation by using different types of elements.
a) Discretization and load; b) Deformed shape (left gap, right overlapping)

AN

]

INARANRRNAY

SilKe 0aStils - gl rmio oSl 6 sgamma slir! oy



Requirements for Shape Functions
\

Requirement for Completeness: The interpolation has to be able to represent:

1. The rigid body displacement

2. Constant strain state

a)
—~ 1/~ )
b) T ’
~__/ J

Rigid body translation  Rigid body rotation Deformation

a) Deformation of cantilever beam. b) Rigid body displacement and
deformation of hatched element



Requirements for Shape Functions
\

If the stiffness integrands involve derivatives of order /m, then requirements for

shape functions can be formulated as follows:

1. The requirement for compatibility: The shape functions must be -2
continuous between elements, and C7 piecewise differentiable inside each

element.

2. The requirement for completeness: The element shape functions must represent
exactly all polynomial terms of order < m in the Cartesian coordinates. A set of

shape functions that satisfies this condition is called m-complete.
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Requirements for Shape Functions

~_

Differential operator D_, for different types of physical or mechanical problems

Physical or

mechanical
problem

Heat conduction

Truss (N=1)

Two-dimensional problem

(N=2)

Three-dimensional

continuum (N=3)

Euler-Bernoulli beam
(N=1)
Thin plate (N=2)
(Kirchhoff plate)

Thick plates (N=2)
(Reissner-Mindlin plate)

Independent Temperature Displacements Transverse displacement | Transverse displacement 1
primary variables 1 N 1 Rotation N
0 o/éx 0 ]
Operator 0/ ox d/ox 0 0%/ ox? 0 0 o/oy
orE d/dy o/ox 26° / éxdy ofox 1 0
a/y 0 1]
Required co o c o
continuity




Requirements for Shape Functions
\

PROPERTIES OF THE SHAPE FUNCTIONS

1. Kronecker delta property: The shape function at any node has a value of 7 at
that node and a value of zeroat ALL other nodes.

2. Compatibility: The displacement approximation is continuous across element
boundaries

3. Completeness
Rigid body mode

Constant strain states

Compatibility + Completeness = Convergence
Ensure that the solution gets better as more elements are introduced
and, in the limit, approaches the exact answer.
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Lagrange Interpolation Functions

~_

Lagrangian Shape Functions:
Can perform this for any number of points at any designated

locations.
LM (&) = (E-&)(E-&)(E-&)E—Sn)t(E-&0) =ﬁ (é—é)_
‘ (gk _50)(§k _51)“'(§k _gk—l)(é:k _§k+1 (fk _é:m) :;g (gk _é:i)
No &-&, term! Lagrange
polynomial
of order m
at node k



Lagrange Interpolation Functions

Ni(gj):{
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0,i#]

~_
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}—»}; N2:§(1+(§)
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Lagrange Interpolation Functions

TN _ i B i 1 )
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Lagrange Interpolation Functions
\

Lagrangian Shape Functions:

Uses a procedure that automatically satisfies the Kronecker

delta property for shape functions.

Consider 1D example of 6 points; want function = 1 at&, =0.3 and
function = 0 at other designated points:

aaaaaaaaaaaaaaa m £ =1
& =—.15
G =2
Sy =-
Sy =
& =1

(-&)(E-8)(E-&)(E-4)(£-&)
(53 _650)(53 _51)(53 _52)(63 _54)(53 _55).

L (6)=
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Shape Functions of Plane Elements

~_

Classification of shape functions according to:
e the element form:
— triangular elements,
— rectangular elements.
 polynomial degree of the shape functions:
— linear
— guadratic
— cubic
* type of the shape functions
— Lagrange shape functions
— serendipity shape functions
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Rectangular elements — Lagrange family

~_

Lagrangian Elements:

Order nelement has (n7+1F nodes arranged in square-
symmetric pattern — requires internal nodes.

amtl [ (sl
=

Shape functions are products of /th order polynomials in each
direction. (“biquadratic”, “bicubic”, ...)

Bilinear quad is a Lagrangian element of order n= 1.

D e © e 2 s g O
Q o] O ﬁ
q o] o Q
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Rectangular elements — Lagrange family

~_

Lagrange interpolation polynomial

in one direction : m
{0, m) (IJ

rE =112
i=0 1 é:l
i#k
An easy and systematic method of generating shape
functions of any order now can be achieved by

simple products of Lagrange polynomials in the

(n, m) 1

two coordinates : 0.0) ) m0)
Na = NIJ =l}1(§1)l§’(§2)
where : 1 / i E
2(x —x, 2(y—-y,
£ = ( ) g =207 ) 7
a, b, 7

x,,), are coordinates of the center of the element

a,,b, are dimensions of the element
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Rectangular elements — Lagrange family
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Rectangular elements — Lagrange family

The Quadrilateral Lagrangian elements: The Quadrilateral Lagrangian elements:
a) bilinear, b) biquadratic c) bicubic a) quadratic-linear, b) linear-cubic c)
quadratic-cubic, d) quartic-quadratic




Rectangular elements — Lagrange family

~_

Complete two-dimensional Lagrange
polynomials in the Pascal triangle

[l
<

- (——— —— ——

] = ™ >
I

o S .

£



Rectangular elements — Lagrange family
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Rectangular elements — Lagrange family
\

The Four-Node Bilinear Quadrilateral
Check of compatibility

Assemblage of four bilinear
quadrilateral elements m)f/ ‘ 7

Partial derivatives with respect to x
and y of the shape functions N°

Derivative inside element exists, and on
the boundary has finite discontinuity

Change of N® along the edge is linear
and it is uniquely defined by two nodes



Rectangular elements — Lagrange family

~_

Check of completeness
A set of shape functions is complete for a continuum element if they can
represent exactly any linear displacement motions such as :

U, =0y +ox+a,y,  u,=pf+px+py (1)

The nodal point displacements corresponding to this displacement field are :

Uy =y +O0X; + 0V, Uy, =Fy+ [iX; + [y (2)
The displacements (1) have to be obtained within the element when the element

nodal point displacements are given by (2).
In the isoparametric formulation we have the displacement interpolation :

n n
. e . e
ux T ZuxiNi > uy T ZuyiNi

Computation for the displacement v,

e

n n n
U, = Z((Zo T aX; + a2yi)Nie = aOZNf + alzxiNie + azzyiNie

i=1 i=1 i=1 i=1
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Rectangular elements — Lagrange family

~_

Since in the isoparametric formulation the coordinates are interpolated in the
same way as the displacements, we can use :

x:Zn:xiNf, y:Zn:yiNf
i=1

i=1
to obtain :
n
U, =gy Ni +ox+a,y 3)
i=1

The displacements defined in (3) are the same as those given (1), provided that
for any point in the element :

2N =1 (4)

The relation (4) is the condition on the interpolation functions for the
completeness requirements to be satisfied.
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Rectangular elements — Lagrange family
\

The Nine-Node Biquadratic Quadrilateral

I E I N' = %(1 + flifl)flifl (I+ 98552 )98552

o

N =3(1-)1+§&)é&, & =0
N'=1(1-)1+&EE)EE . & =0

N’ =(1-&)(1-&)

V@)= -E)X1-£)6 & N@=21-8) & -4 N(§)=(-&)1-&)
| SeesSabegel garedals 25 el






Rectangular elements — Serendipity elements
\

Serendipity elements are constructed with nodes only on the element
boundary

pi / L p=0
& & | p=1

& 162 & lp=2

s

p=2 3 2 2 3
% %fsz/@:z &
Bl SNEiE Y i Kb &

1

Serendipity quadrilateral elements: Two dimensional serendipity polynomials
a) bilinear , b) biguadratique, c) bicubic of quadrilateral elements in Pascal triangle



Rectangular elements — Serendipity elements

(a) n=—1 (b)

Q
C
Q
Q
C

(©) ()

Rectangles of boundary node (serendipity) family: (a) linear, (b) quadratic, (c) cubic, (d) quartic.



For mid-side nodes a
lagrangian interpolation  of
quadratic x linear type suffices
to determine N' at nodes 5 to
8. For corner nodes start with
bilinear lagragian family (step
1), and successive subtraction
(step 2, step 3) ensures zero
value at nodes 5, 8

dl,:."lia oM‘A-QL@LA L) ol &sils

N*=11-&)1-&)

N’ :%(1_512)(1_52)

) o
=

0.5
Step 1 n
Aé

1.0

M = i(l_ﬁi)(l_ﬁfz)

‘ h—

0.5

Step 2 © ©
Ny —va Ny
05 o
Step 3 R

Ny = Ny -2 Ng —2 Ng
N =1(1-8)1-&)-1-20-&H1-&) -1 10-6)1-&) =
Ha-&)-&)M-1-4)-(1-5)]
N! :i(l_ 51)(1_ sz)(_l_fl - sz)
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Rectangular elements — Serendipity elements
\

Serendipity Biguadratic Shape functions

N' (&) =L11-&)1-&E)(-1-& = &) N (&) =11-&H1-&)
N(&) =11+ &)U+ EE) 1+ EE+EE)  N(E)=11-E)1+EE), for & =0
N'(&)=L1+&E)1-8), for & =0




Rectangular elements — Serendipity elements

Serendipity Shape functions

In general serendipity shape functions can be obtained with the following
expression:

N'(&.8)=3(1=E)INY(E-D+5(1+ EN(LE, )
+3(+ NS D+ 5(1=E)IN'(1.&,)
— 1= A=&IN' 1-1) = (1+ &)1 = &)N'(1,-1)
— 3+ E)A+EIN'(1L D) =5 (1= &)+ EIN'(-1,1)

where functions N/ (¢,—1), N’ (L& ) N7 (&£,1), N7 (—1,¢&, ) are
lagrangian interpolations along the corresponding boundary and values
N'(—1-1), N’ (1,-1), N' (1,1), N’ (-1,1) have values 0 or I and
represent values of interpolation on corners
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Rectangular elements — Serendipity elements
\

Example: Find shape function of the node N3

4 6 1.0
~ o 3
N(-L&) 7
| \Nj@ R N*(&.8) =161+ 5)1+&)

N3(§1,§2) =%(1 +§1)N3(1»§2)+%(1+ 52)N3(‘51»U_%(1+§1)(l+§2)N3(1»U=
3A+8) 31+ &) +5(1+ &) 251+ E) -1+ 51+ &) 1=
%51(1‘*' &+4,)



Rectangular elements — Serendipity elements

~_

Example: Find cubic serendipity shape function

A7 27 1
N, =L 1-&)E-&)a-
1 s =2 =59 -E)a-1)
i L 4 L 2 ®: 27 1
129 eou Ng :3_2(1_52)(§+§)(1_77)
9 ¢1w0 ¢ 1 2 1 2 1
‘et e Nl—z(l_g)(l_ﬂ)_gNs_gNs_§N9_§N12
(&) = @ E)Wnm)[ 9 +7)-10],  1-12,3,4
Ny(&.7) = (L )L+ )L+ 958, 1=5,6,7,8
N,(&7) = (L+66)A-n)(L+ 91, 1-9,10,11,12
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