

دانشگاه صنعتی اصفهان دانشکده مکانیک

The J integral

دانشگاه صنعتی اصفهان- دانشکده مکانیک

HRR theory

- Hutchinson [1968] and Rice and Rosengren [1968] independently evaluated the character of crack tip stress field in the case of power-law hardening materials.
- > J characterizes the crack-tip field in a non-linear elastic material.

Assumptions:

- Stress & strain fields near the tip of a stationary crack within plastic zone.
- Consider 2D plane strain / plane stress & Mode I loading.
- \bigcirc Material is characterized by small strain J₂ deformation theory of plasticity.

HRR theory

• For uniaxial deformation:

 $\frac{\varepsilon}{\varepsilon_0} = \frac{\sigma}{\sigma_0} + \alpha \left(\frac{\sigma}{\sigma_0}\right)^n$ Ramberg-Osgood equation

 σ_0 = yield strength $\varepsilon_0 = \sigma_0 / E$ α : dimensionless constant n : strain-hardening exponent material properties

Power law relationship assumed between plastic strain and stress.

For a linear elastic material n = 1.

elastic perfectly plastic

Hutchinson, Rice and Rosengren(HRR) solution

Near crack tip "plastic" strains dominate:

$$\frac{\varepsilon}{\varepsilon_0} = \alpha \left(\frac{\sigma}{\sigma_0}\right)^n \qquad (*)$$

• Assume the following *r* dependence for σ and ε

$$\sigma = \frac{c_1}{r^x}$$

$$\varepsilon = \frac{c_2}{r^y}$$
1. Bounded energy:
$$\sigma \varepsilon \propto \frac{1}{r} \implies x + y = 1$$
2. $\varepsilon - \sigma$ relation (*)
$$y = nx$$

$$x = \frac{1}{1 + n}$$

$$y = \frac{n}{1 + n}$$

دانشگاه صنعتی اصفهان- دانشکده مکانیک

• Asymptotic field derived by Hutchinson Rice and Rosengren:

$$\varepsilon_{ij} = A_2 \left(\frac{J}{r}\right)^{n/(n+1)} \qquad \sigma_{ij} = A_1 \left(\frac{J}{r}\right)^{1/(n+1)} \qquad u_i = A_3 J^{n/(n+1)} r^{1/(n+1)}$$

 A_i are regular functions that depend on θ and the previous parameters.

The $1/\sqrt{r}$ singularity is recovered when n = 1.

Path independence of $J \implies$ The product $\sigma_{ij} \varepsilon_{ij}$ varies as 1/r:

From
$$J = r \int_{-\pi}^{\pi} \left[w(r,\theta) \cos \theta - T_i(r,\theta) \frac{\partial u_i(r,\theta)}{\partial x} \right] d\theta$$

 $\sigma_{ij} \varepsilon_{ij} \rightarrow \frac{f(\theta)}{r} \quad as \quad r \rightarrow 0$

J defines the amplitude of the HRR field as K does in the linear case.

دانشگاه صنعتی اصفهان - دانشکده مکانیک

Hutchinson, Rice & Rosengren proposed following form for plastic crack tip fields:

$$\sigma_{ij} = \sigma_0 \left(\frac{EJ}{\alpha \sigma_0^2 I_n r}\right)^{1/(n+1)} \tilde{\sigma}_{ij}(n,\theta) \qquad \qquad \varepsilon_{ij} = \frac{\alpha \sigma_0}{E} \left(\frac{EJ}{\alpha \sigma_0^2 I_n r}\right)^{n/(n+1)} \tilde{\varepsilon}_{ij}(n,\theta)$$

(see: Appendix 3A.4)

where I_n is an integration constant that depends on *n*, and $\tilde{\sigma}_{ij}$ and $\tilde{\varepsilon}_{ij}$ are dimensionless functions of *n* and θ .

- J defines the amplitude of the HRR field as K does in the linear case.
- The equations are called the HRR singularity, named after Hutchinson, Rice, and Rosengren.

Effect of the strain hardening exponent on the HRR integration constant مکانیک شکست

دانشگاه صنعتی اصفهان – دانشکده مکانیک

Angular variation of dimensionless stress for n = 3 and 13 (a) plane stress and (b) plane strain.

دانشگاه صنعتی اصفهان - دانشکده مکانیک

8

مكانيك شكست

HRR based upon small displacements non applicable.

Relationship between J and CTOD

Consider again the strip-yield problem,

The first term in the J integral vanishes because dy=0 (slender zone)

 $J = -\int_{\Gamma} \sigma_{ij} n_{j} \frac{\partial u_{i}}{\partial x} ds$ but $\sigma_{ij} n_{j} \frac{\partial u_{i}}{\partial x} ds = \sigma_{yy} n_{y} \frac{\partial u_{y}}{\partial x} ds = -\sigma_{Y} \frac{\partial u_{y}}{\partial x} dx$ $J = \int_{\Gamma} \sigma_{Y} \frac{\partial u_{y}}{\partial x} dx = \int_{-\delta_{t}/2}^{\delta_{t}/2} \sigma_{Y} du_{y} = \sigma_{Y} \delta_{t}$ I0

كده مكانىك

General unique relationship between J and CTOD:

$$J = m \, \sigma_Y \, \delta_t$$

m: dimensionless parameter depending on the stress state and materials properties

- The strip-yield model predicts that m=1 (non-hardening material, plane stress condition)
- This relation is more generally derived for *hardening* materials (n > 1) using the HRR displacements near the crack tip, i.e.

$$u_i = A_3 J^{n/(n+1)} r^{1/(n+1)}$$

Shih proposed this definition for $\boldsymbol{\delta}_t$:

- \rightarrow *m* becomes a (complicated) function of *n*
- \rightarrow The proposed definition of δ_t agrees with the one of the Irwin model

Moreover,
$$G = \frac{\pi}{4} \sigma_Y \delta_t$$
, $m = \frac{\pi}{4}$ in this case

for a plane stress, linear elastic problem

دانشگاه صنعتی اصفهان- دانشکده مکانیک

مكانىك شكست

From stress-strain relation,

$$w = \frac{1}{2E} \left(\sigma_{xx}^2 + \sigma_{yy}^2 - 2\nu \sigma_{xx} \sigma_{yy} \right) + \frac{1 + \nu}{E} \sigma_{xy}^2$$

Expanded form for $\sigma_{ij}n_j\frac{\partial u_i}{\partial x}ds$

$$=\sigma_{xx}n_{x}\frac{\partial u_{x}}{\partial x}ds + \sigma_{xy}n_{y}\frac{\partial u_{x}}{\partial x}ds + \sigma_{yx}n_{x}\frac{\partial u_{y}}{\partial x}ds + \sigma_{yy}n_{y}\frac{\partial u_{y}}{\partial x}ds \qquad (2)$$

2D problem)

Simplification :

Along AB or B' A'

$$n_x = -1, n_y = 0$$
 and $ds = -dy \neq 0$

$$= \sigma_{xx} \frac{\partial u_x}{\partial x} dy + \sigma_{yx} n_x \frac{\partial u_y}{\partial x} dy$$

Along CD or DC'

$$n_x = 1$$
, $n_y = 0$ and $ds = dy \neq 0$

$$= \sigma_{xx} \frac{\partial u_x}{\partial x} dy + \sigma_{yx} \frac{\partial u_y}{\partial x} dx$$

clim Zelo outron (19)

مكانىك شكست

Along BC or C'B'

BC :
$$n_x = 0$$
, $n_y = -1$ and $ds = dx \neq 0$

C'B':
$$n_x = 0$$
, $n_y = 1$ and $ds = -dx \neq 0$

Along OA and A'O J is zero since dy = 0 and $T_i = 0$

Finally,

$$J = 2\int_{A}^{B} \left[w - \sigma_{xx} \frac{\partial u_{x}}{\partial x} - \sigma_{xy} \frac{\partial u_{y}}{\partial x} \right] dy + 2\int_{B}^{C} \left[\sigma_{xy} \frac{\partial u_{x}}{\partial x} + \sigma_{yy} \frac{\partial u_{y}}{\partial x} \right] dx + 2\int_{C}^{D} \left[w - \sigma_{xx} \frac{\partial u_{x}}{\partial x} - \sigma_{xy} \frac{\partial u_{y}}{\partial x} \right] dy$$

مكانيك شكست

Example 1

مكانيك شكست

Example 2

Example 3:

J integral for double cantilever beam, if each cantilever is pulled by a distributed load P, as shown

The chosen path Γ is BCDEFH and it coincides with the body contour.

مكانىك شكست

Contour of the crack; therefore, $J=J_{BC}+J_{CD}+J_{DE}+J_{EF}+J_{FH}$

 J_{BC} : As bending moment is zero, bending stress is zero. So, w=0

$$J_{BC} = \int_{BC} \left(w \, dy \, -T_i \, \frac{\partial u_i}{\partial x} ds \right)$$
$$= \int_{BC} \left(0 - T_i \, \frac{\partial u_i}{\partial x} ds \right)$$
$$= -\int_{BC} T_i \, \frac{\partial u_i}{\partial x} ds$$
$$J_{BC} = -\int_0^h T \, \frac{\partial v}{\partial x} dy$$

مكانىك شكست

Assuming:

- A small element of length dy on the path then ds = dy
- Along y-direction $u_i = v$
- Length is *h* so limits are 0 to *h*.

Contour of the crack; therefore, $J=J_{BC}+J_{CD}+J_{DE}+J_{EF}+J_{FH}$

$$\mathbf{J}_{\mathrm{CD}}: \quad J_{CD} = \int_{CD} \left(w \, dy \, -T_i \, \frac{\partial u_i}{\partial x} ds \right)$$

dy is negligible and $T_i = 0 \implies J_{CD} = 0$

$$\mathbf{J}_{\mathrm{EF}}: \qquad J_{\mathrm{EF}} = \int_{\mathrm{EF}} \left(w \ dy \ -T_i \ \frac{\partial u_i}{\partial x} ds \right)$$

dy is negligible and $T_i = 0 \implies J_{EF} = 0$

$$\mathbf{J}_{\mathrm{DF}}: \quad J_{DE} = \int_{DE} \left(w \, dy \, -T_i \, \frac{\partial u_i}{\partial x} ds \right)$$

stresses are very small, which in turn, make *w* and T_i negligible. $\implies J_{DE} = 0$

مكانىك شكست

Contour of the crack; therefore, $J=J_{BC}+J_{CD}+J_{DE}+J_{EF}+J_{FH}$

$$\mathbf{J}_{\mathrm{FH}}: \qquad J_{FH} = \int_{FH} \left(w \ dy \ -T_i \ \frac{\partial u_i}{\partial x} ds \right)$$

On segments BC and FH, w is negligible, $\longrightarrow J_{FH} = -\int_0^h T \frac{\partial v}{\partial v} dy$

Hence
$$J = J_{BC} + J_{CD} + J_{DE} + J_{EF} + J_{FH}$$

 $J = -\int_0^h T \frac{\partial v}{\partial x} dy + 0 + 0 + 0 - \int_0^h T \frac{\partial v}{\partial x} dy$
 $= -2\int_0^h T \frac{\partial v}{\partial x} dy$

Now we can find $\frac{\partial v}{\partial x}$ using the bending moment equation; Bending moment = P*x

$$\frac{\partial^2 v}{\partial x^2} = \frac{Px}{EI} \implies \frac{\partial v}{\partial x} = \frac{P}{EI} \frac{x^2}{2} + c \quad (\text{at } x = a, \frac{\partial v}{\partial x} = 0) \implies c = -\frac{P}{EI} \frac{a^2}{2} \implies \frac{\partial v}{\partial x} = \frac{P}{EI} \frac{x^2}{2} - \frac{P}{EI} \frac{a^2}{2}$$

دانشگاه صنعتی اصفهان- دانشکده مکانیک

مكانىك شكست

F

H

B

Contour of the crack; therefore, $J=J_{BC}+J_{CD}+J_{DE}+J_{EF}+J_{FH}$

(at
$$x=0$$
, $\frac{\partial v}{\partial x} = -\frac{P}{EI}\frac{a^2}{2}$) and $I = \frac{Bh^3}{12}$
 $\frac{\partial v}{\partial x} = -\frac{6Pa^2}{EBh^3}$

$$J = -2\int_0^h T * \left(-\frac{6Pa^2}{EBh^3}\right) dy$$
$$= \frac{12Pa^2}{EBh^3} \int_0^h T dy$$

But on face FH:
$$B \int_0^h T dy = P$$
 \longrightarrow $J = \frac{12P^2 a^2}{EB^2 h^3}$

دانشگاه صنعتی اصفهان- دانشکده مکانیک

E

دانشگاه صنعتی اصفهان - دانشکده مکانیک

مكانيك شكست

Double-edge-notched tension (DENT)

$$\left(\frac{\partial \Delta_p}{\partial b}\right)_p = \frac{1}{b} \left[\Delta_p - P\left(\frac{\partial \Delta_p}{\partial P}\right)_b\right]$$

مكانىك شكست

Laboratory Measurement

Computing the J integral is somewhat difficult when the material is nonlinear

U vs. crack length at various fixed displacements

مكانىك شكست