The J Integral




HRR solution

HRR theory \

» Hutchinson [1968] and Rice and Rosengren [1968] independently evaluated the
character of crack tip stress field in the case of power-law hardening materials.

» J characterizes the crack-tip field in a non-linear elastic material.

Assumptions:

O Stress & strain fields near the tip of a stationary crack within plastic zone.

O Consider 2D plane strain / plane stress & Mode | loading.

O Material is characterized by small strain J, deformation theory of
plasticity.
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HRR solution

HRR theory TN

= For uniaxial deformation:

n
L2, o{ij Ramberg-Osgood equation
Go

o, =yield strength

g, =0,/E

o . dimensionless constant

_ _ material properties
n : strain-hardening exponent

Power law relationship assumed between plastic strain and stress.

For a linear elastic material 7= 1.




HRR solution
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Ramberg—Osgood model
n
i £+oc o Ramberg-Osgood for o. = 0.01
Gp 5 ‘ ‘ ‘ ‘
Lo o
= 8 +8p
3_ .............................................................................................. -

G/Gyo

= Elastic model:

Unlike plasticity unloading Ny | "
in on the same line S | } et
- Higherncloser to 1_ ............... ................ ................ ............... -
elastic perfectly plastic f f f :
% : 2 3 4 5 6
e/e
y0

Stress-strain relation according to
the Ramberg-Osgood material law



HRR solution
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Hutchinson, Rice and Rosengren(HRR) solution

= Near crack tip “plastic” strains dominate:

n
€ 0}
€0 Go
= Assume the following rdependence for c and ¢
—_CY
rX
e C2
rY
1. Bounded energy: )
1 1
o€ oC — - X + y =1 > X = m
r :
. n
2. —o relation (*) y =——
1+n
Yy =nx J




HRR solution

—~_

= Asymptotic field derived by Hutchinson Rice and Rosengren:

n/(n+1) N+
Jj J jj/( Y U = A3Jn/(n+1) r]7/(n+1)

8ij = A2 (? Gij = Al(?
A; are regular functions that depend on #and the previous parameters.

The l/\/F singularity is recovered when n= 1.

Path independence of / ) The product Oijj &jj varies as 1/r:

From J=r T {w(r,@)cosH—Ti (r,0) %}:9)} déo
(%)

.
Jdefines the amplitude of the HRR field as K'does in the linear case.

-

GijSij—) as r—0
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HRR solution

—~_

» Hutchinson, Rice & Rosengren proposed following form for plastic crack tip fields:

£J 1/(n+1) oo EJ n/(n+1)
% O(aaozlnrj ”( ) . E (aaozlnrj J( )

(see: Appendix 3A.4)

where /, is an integration constant that depends on 7, and & and &; are dimensionless
functions of nand 6. § e :

» Jdefines the amplitude of the HRR field as K 5 k
does in the linear case. ssf &

=
~

afF

» The equations are called the HRR singularity, 3: \

named after Hutchinson, Rice, and Rosengren.
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Effect of the strain hardening exponent on the

HRR integration constant
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HRR solution

nl/2 1t 0 n|/2 n
0 0
Angular variation of dimensionless stress for n = 3 and 13 (a) plane stress and (b) plane strain.



'@' HRR solution
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Two singular zones can be identified:

l EJ 1/(n+1)
O.. =0, & n y 0
ij 0 ao_ozlnr] IJ( )
Log o,
K -dominated zone
:‘::"J ~dominated aone
"'% | — large strain region
~
! >
Small region where crack blunting occurs. Log rlL

Stress is still singular but with
a weaker power of singularity!

L} Large deformation

HRR based upon small displacements non applicable.




Relationship between J and CTOD
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» Relationship between Jand CTOD

Consider again the strip-yield problem, ——

......................

Hio

The first term in the J integral vanishes because dy=0 (slender zone)

ou
J=— IG,J Ja'ds




Relationship between J and CTOD

~_

General unique relationship between Jand CTOD:

m . dimensionless parameter depending on the stress state and materials properties
* The strip-yield model predicts that /77=1 (non-hardening material, plane stress condition)

« This relation is more generally derived for Aardening materials (7>1) using the HRR
displacements near the crack tip, I.e.

U = A3Jn/(n+1) r]/(n+1) ﬂ

Shih proposed this definition for §, : blunted crack 90§ 8,

"

= /mbecomes a (complicated) function of n

=+ The proposed definition of 5, agrees with the one of the Irwin model

Moreover, G :%GY O m:% in this case
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Applications the J-integral
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Applications the J-integral
o

o
J-integral evaluated explicitly y
along specific contours d
A’ @)
D
A X
X
Loads and geometry
5 . symmetric / Ox
u; "
J:_f Wdy—GijnJ dS
r OX
1
W =j0ijdau= EcijsijZ E(GXXSXX +ny8yy+2(5xy8xy)

for a plane stress, linear elastic problem



Applications the J-integral

From stress-strain relation,

1 2 2
= E(GXX to,,-2v6,,6,, )+—ny

ou.
Expanded form for o;n;—-ds

OX
u ou
=c,.n, ou, dsto,n, ou, dsto,n, —~dst+o,,n,—*ds (2D problem)
OX OX OX OX
Simplification :
Along ABor B A’ ne=-1,n,=0 and ds=-dy # 0
ou ou
=c Xdy +o6,.n, —2>d
XX 8X y yX X 8X Yy
Along CD or DC’ n,=1,n,=0 and ds=dy # 0
ou ou

- y
=0, — dyto, —dx

OX OX
S il el 13 e




Applications the J-integral
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Along BCorC'B’ BC: n,=0,n,=-1 and ds=dx # 0
=G ou, dx-o u, “ Y dx C’B’:n,=0,n,=1 and ds=-dx #0
Y ox Y ox

Along OAand A'O Jis zerosincedy =0and T;=0

Finally,




Applications the J-integral

Example 1

2H

Example 2

2H

t™
TR TS
() TJI :
~L ]
_ X (3
+——a—| !
' e
Uy
P
N | F . @
-
X

J=2hw

_ _ (1-V)Eu§

~ (1+v)(1-2v)h

2,2
J_12Pa

-~ EB*h®




Applications the J-integral
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Example 3:

J integral for double cantilever beam, if each cantilever is pulled by a distributed
load P, as shown

T Fl————————E
1F E

i el ot Uil i H
PH | o ﬁ ; +
g R | B |
— |
L [P, S— }l-, 1 cC' ———— —— — D
PW - r |

j'_'__.._-_-__._._'__,,.__{_._z_/ _____ !

C D

The chosen path 7°is BCDEFH and it coincides with the body contour.
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Applications the J-integral
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—_—— e —— — E
Contour of the crack; therefore, J=Jg-+JcpHIpetIertdey -:
Jgc o As bending moment is zero, bending B T
stress is zero. So, =0 ; |
. ou. c————=»>———-D
Joc = | |Wdy —T, dsj
e OX
- ou.
= | |0-T, —-ds j
v OX
—_ T aid Assuming:
OX « A small element of length gy on the path then ds= qy
* Along y-direction u; =v
——j T —dy  Length is /7so limits are 0 to A.
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Applications the J-integral
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Fr—— — —¢=————1E
Contour of the crack; therefore, J=Jg-+JcpHIpetIertdey { |
ou. H T
Joo: Yoo —CjD (W dy —T. a—xdsj B{
I
c————=>———-D

dyis negligibleand 7,=0 ==) J. =0
ou,
‘]EF: JEF:EJI‘:[Wdy— Ia—xdsj

dyis negligibleand 7,=0 == J_. =0

ou,
T (w dy -T. — dsj
DF DE D"I; 5)(

stresses are very small, which in turn, make wand 7,negligible. == J . =0



Applications the J-integral
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Ff—— — —g=————1E
Contour of the crack; therefore, J=Jg-+JcpHIpetIertdey { -:
. !
u.
VTR =J.(W dy — i%—'dsj B{ |
X
FH Ch_Bv__—’_____lD
On segments BC and FH,wis negligible, ) Jep =— . T 8—xdy

Hence  J =J_ +J. +Joc + e +Jp,

h_ OV h__ oV
J=—| T —dy +0+0+0—-| T —d
IO ax y IO ax y
h__ OV
=-2| T —d
IO ax y

Now we can find Y. using the bending moment equation; Bending moment = P*x

OX
oy Px ov P x? ov P a? ov P x? P a?
— = —— ) = c (atx=a,—=0) m) c=——— = -
ox? El ox ElI 2 +e OX ) El 2 ox ElI 2 EI 2
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Applications the J-integral
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Ff—— — —g=————1E
Contour of the crack; therefore, J=Jg-+JcpHIpetIertdey { -:
; !
2 3
@x=0, ¥ __P2ay apq | _Bh B{ I
OX El 2 12
c————=>———-D
\ oV 6Pa’
ox  EBh?
h 6Pa’
H —_ *(_
ence J =2 T *( o

2
:12Pa thd
EBh?® Jo

_12P%°

h
But on face FH: BIOTdy:P — J—w



Applications the J-integral

Double-edge-notched tension (DENT)

Py Pr
‘rP lej [a—’j‘) ap=—_ (a_a] dP
2Jo .a'ﬂ P 2 Jo Bb p
.
' A=A, + .ﬁp
= _ p IA
2d |\ b ), \ db ),
— K, _ljp .aﬁﬁ dP
l e ™ Er 2 0 | ab ,
. o Eor ol .
Assume that b is the only length dimension For plane stress or plane strain
E’=E E’=E/(1-V?)

that influences Ap.
P (0A ) P P\P
A =bH| — Pl =Hl —|-H|— |— -
(5) = () A o o, )
’H&ﬁp\_ ,(P) db P bl * _E}P b
\ 9P )




Applications the J-integral

Double-edge-notched tension (DENT)
(2)-Hp 2]
b ), bl * OP ),
1}’ J:—ijp %] N aﬁp
e — .y 2 0 ab P ab
J aP
P

:K?_LIP[aﬁ
< a »I-- 2b -I E" 2Jo{ db

Ay

2 ﬁp
s=K 1[2_[ Pd&p—Pﬂp]
. ]

- +
lﬁ = E" 2b




Laboratory Measurementh_

do<a,<a<q

Laboratory Measurement

Computing the Jintegral is
somewhat difficult when the
material is nonlinear

U vs. crack length
at various fixed
displacements




