

دانشگاه صنعتی اصفهان دانشکده مکانیک

The J integral

■ J as a path-independent line integral

$$J = \iint_{\Gamma} \left(w \, dy - T_i \, \frac{\partial u_i}{\partial x} \, ds \right)$$

with
$$w(\varepsilon_{mn}) = \int_{0}^{\varepsilon_{mn}} \sigma_{ij} d\varepsilon_{ij}$$
 strain energy density

$$= \int_{\Gamma} \left(w \, dy - \mathbf{T} \cdot \frac{\partial \mathbf{u}}{\partial x} \, ds \right)$$

 ${\bf T}$: traction vector at a point M on the bounding surface Γ , i.e. $T_i = \sigma_{ij} \ n_j$

u : displacement vector at the same point M.

n: unit *outward* normal.

The contour Γ is followed in the *counter-clockwise* direction.

Equivalence of the two definitions

- 2D solid of unit thickness of area S, with a linear crack of length a along OX(fixed)
- Crack faces are traction-free.
- Total contour of the solid Γ_0 including the crack tip: Imposed tractions on the part of the contour Γ_t Displacements applied on Γ_u

Proof: Recall for the potential energy (per unit thickness),

$$\Pi(a) = \iint_{S} w \, dS - \int_{\Gamma_t} T_i \, u_i \, dS \qquad T_i = \sigma_{ij} \, n_j \qquad \sigma_{ij} = \frac{\partial w}{\partial \varepsilon_{ij}}$$

The tractions and displacements imposed on Γ_t and Γ_u are independent of a

$$\frac{dT_i}{da} = 0, \quad on \quad \Gamma_t$$

$$\frac{d\Pi}{da} = \iint_S \frac{dw}{da} dS - \iint_{\Gamma_0} T_i \frac{du_i}{da} ds$$

$$\frac{du_i}{da} = 0 \quad on \quad \Gamma_u$$

Considering the moving coordinate system x, y (attached to the crack tip), x = X - a

 $\frac{d}{da}$: total derivative/crack length

$$\frac{d}{da} = \left(\frac{\partial}{\partial a}\right)_{x} + \left(\frac{\partial x}{\partial a}\right)_{x} \left(\frac{\partial}{\partial x}\right)_{a} = \frac{\partial}{\partial a} - \frac{\partial}{\partial x}$$

Thus,

$$\frac{d\Pi}{da} = \iint_{S} \left(\frac{\partial w}{\partial a} - \frac{\partial w}{\partial x} \right) dS - \iint_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial a} - \frac{\partial u_{i}}{\partial x} \right) ds$$

However,

$$\frac{\partial w}{\partial a} = \frac{\partial w}{\partial \varepsilon_{ij}} \frac{\partial \varepsilon_{ij}}{\partial a} = \sigma_{ij} \frac{\partial \varepsilon_{ij}}{\partial a} = \sigma_{ij} \frac{\partial}{\partial a} \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] \qquad \text{since } \sigma_{ij} = \sigma_{ji}$$

$$= \sigma_{ij} \frac{\partial}{\partial a} \frac{\partial u_i}{\partial x_j} = \sigma_{ij} \frac{\partial}{\partial x_i} \left(\frac{\partial u_i}{\partial a} \right)$$

Thus,

$$\iint_{S} \frac{\partial w}{\partial a} dS = \iint_{S} \sigma_{ij} \frac{\partial}{\partial x_{i}} \left(\frac{\partial u_{i}}{\partial a} \right) dS$$

From the divergence theorem:

$$\iint_{S} \sigma_{ij} \frac{\partial}{\partial x_{j}} \left(\frac{\partial u_{i}}{\partial a} \right) dS = \iint_{\Gamma_{0}} \sigma_{ij} \frac{\partial u_{i}}{\partial a} n_{j} ds = \iint_{\Gamma_{0}} T_{i} \frac{\partial u_{i}}{\partial a} ds$$

The derivative of J reduces to,

$$\frac{d\Pi}{da} = \iint_{S} \left(\frac{\partial w}{\partial a} - \frac{\partial w}{\partial x} \right) dS - \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial a} - \frac{\partial u_{i}}{\partial x} \right) dS$$

$$= -\iint_{S} \left(\frac{\partial w}{\partial x} \right) dS + \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial a} \right) dS - \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial a} - \frac{\partial u_{i}}{\partial x} \right) dS$$

$$= -\left(\iint_{S} \left(\frac{\partial w}{\partial x} \right) dS - \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial x} \right) dS \right)$$

Using the Green Theorem, i.e.

$$\oint_{\Gamma} P(x, y) dx + Q(x, y) dy = \iint_{A} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

$$-\frac{d\Pi}{da} = \iint_{S} \left(\frac{\partial w}{\partial x} \right) dS - \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial x} \right) ds$$
$$= \int_{\Gamma_{0}} \left(w \, dy - T_{i} \left(\frac{\partial u_{i}}{\partial x} \right) ds \right)$$

■ J derives from a potential

Properties of the J-integral

Closed contour around A

1) J is zero for any closed contour containing no crack tip.

Using the Green Theorem, i.e.
$$\iint_{\Gamma} P(x,y) dx + Q(x,y) dy = \iint_{A} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

We have
$$J|_{\Gamma} = \int_{A} \frac{\partial w}{\partial x} dx dy - \iint_{\Gamma} T_{i} \frac{\partial u_{i}}{\partial x} ds = \int_{A} \frac{\partial w}{\partial x} dx dy - \iint_{\Gamma} \sigma_{ij} \frac{\partial u_{i}}{\partial x} n_{j} ds$$

From the divergence theorem,

$$\iint_{\Gamma} \sigma_{ij} \frac{\partial u_i}{\partial x} n_j ds = \int_{A} \frac{\partial}{\partial x_j} \left(\sigma_{ij} \frac{\partial u_i}{\partial x} \right) dx dy$$

The integral becomes,

$$J|_{\Gamma} = \int_{A} \left[\frac{\partial w}{\partial x} - \frac{\partial}{\partial x_{j}} \left(\sigma_{ij} \frac{\partial u_{i}}{\partial x} \right) \right] dx dy$$

However,

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial \varepsilon_{ij}} \frac{\partial \varepsilon_{ij}}{\partial x} = \sigma_{ij} \frac{\partial \varepsilon_{ij}}{\partial x} = \sigma_{ij} \frac{\partial}{\partial x} \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] \qquad \text{since} \quad \sigma_{ij} = \sigma_{ji}$$

$$= \sigma_{ij} \frac{\partial}{\partial x} \frac{\partial u_i}{\partial x_j} = \sigma_{ij} \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x} \right)$$

Invoking the equilibrium equation, $\frac{\partial \sigma_{ij}}{\partial x_i} = 0$

$$\frac{\partial}{\partial x_{j}} \left(\sigma_{ij} \frac{\partial u_{i}}{\partial x} \right) = \frac{\partial \sigma_{ij}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x} + \sigma_{ij} \frac{\partial}{\partial x_{j}} \left(\frac{\partial u_{i}}{\partial x} \right) = \sigma_{ij} \frac{\partial}{\partial x_{j}} \left(\frac{\partial u_{i}}{\partial x} \right)$$

Replacing in the integral, $J|_{\Gamma} = 0$

2) J is path-independent

Consider the *closed* contour:

$$\Gamma = \Gamma_1 + \Gamma_3 + \Gamma_2^* + \Gamma_4$$

We have
$$J|_{\Gamma} = J|_{\Gamma_1} + J|_{\Gamma_2^*} + J|_{\Gamma_3} + J|_{\Gamma_4}$$
 and $J|_{\Gamma} = 0$

The crack faces are traction free:

$$T_i = \sigma_{ii} \ n_i = 0$$
 on Γ_3 and Γ_4

dy = 0 along these contours

2) J is path-independent

Note that,

$$J\big|_{\Gamma_2^*} = -J\big|_{\Gamma_2}$$

and
$$J|_{\Gamma} = J|_{\Gamma_1} - J|_{\Gamma_2} = 0$$

$$| \Box \rangle J |_{\Gamma_1} = J |_{\Gamma_2}$$

 Γ_2 followed in the *counter-clockwise* direction.

Any arbitrary (counterclockwise) path around a crack gives the same value of J

⇒ J is *path*-independent

J can be evaluated when the path is a circle of radius r around the crack tip

 Γ is followed from $\theta = -\pi$ to $\theta = \pi$

We have,
$$ds = rd\theta$$

 $dy = r\cos\theta d\theta$

J integral becomes,

$$J = \int_{-\pi}^{\pi} \left[w(r,\theta) \cos \theta - T_i(r,\theta) \frac{\partial u_i(r,\theta)}{\partial x} \right] r d\theta$$

When $r \rightarrow \theta$ only the singular terms remain

For LEFM, we can obtain:
$$J = G = \frac{K_I^2}{E'}$$
 (if mode I loading)

HRR theory

Hutchinson **R**ice and **R**osengren: J characterizes the crack-tip field in a

non-linear elastic material.

• For uniaxial deformation:

$$\frac{\varepsilon}{\varepsilon_0} = \frac{\sigma}{\sigma_0} + \alpha \left(\frac{\sigma}{\sigma_0}\right)^n$$
 Ramberg-Osgood equation

 σ_0 = yield strength

$$\varepsilon_0 = \sigma_0 / E$$

 α : dimensionless constant n: strain-hardening exponent β material properties

Power law relationship assumed between plastic strain and stress.

For a linear elastic material n=1.

Ramberg-Osgood model

$$\frac{\varepsilon}{\varepsilon_0} = \frac{\sigma}{\sigma_0} + \alpha \left(\frac{\sigma}{\sigma_0}\right)^n$$

$$\mathbf{1} \qquad \mathbf{1}$$

$$\varepsilon = \varepsilon^{el} + \varepsilon^{pl}$$

- Elastic model:
 Unlike plasticity unloading in on the same line
- Higher *n* closer to elastic perfectly plastic

Stress-strain relation according to the Ramberg-Osgood material law

Hutchinson, Rice and Rosengren(HRR) solution

• Near crack tip "plastic" strains dominate:

$$\frac{\varepsilon}{\varepsilon_0} = \alpha \left(\frac{\sigma}{\sigma_0}\right)^n \tag{*}$$

• Assume the following r dependence for σ and ε

$$\sigma = \frac{c_1}{r^x}$$

$$\varepsilon = \frac{c_2}{r^y}$$

1. Bounded energy:

$$\sigma\varepsilon \propto \frac{1}{r} \implies x + y = 1$$

$$2.\varepsilon - \sigma \text{ relation (*)}$$

$$y = nx$$

$$x = \frac{1}{1+n}$$

$$y = \frac{n}{1+n}$$

• Asymptotic field derived by **H**utchinson **R**ice and **R**osengren:

$$\varepsilon_{ij} = A_2 \left(\frac{J}{r}\right)^{n/(n+1)}$$
 $\sigma_{ij} = A_1 \left(\frac{J}{r}\right)^{1/(n+1)}$
 $u_i = A_3 J^{n/(n+1)} r^{1/(n+1)}$

 A_i are regular functions that depend on θ and the previous parameters.

The $1/\sqrt{r}$ singularity is recovered when n=1.

Path independence of J \Longrightarrow The product $\sigma_{ij} \, \epsilon_{ij}$ varies as 1/r:

From
$$J = r \int_{-\pi}^{\pi} \left[w(r,\theta) \cos \theta - T_i(r,\theta) \frac{\partial u_i(r,\theta)}{\partial x} \right] d\theta$$
$$\sigma_{ij} \, \varepsilon_{ij} \to \frac{f(\theta)}{r} \quad as \quad r \to 0$$

J defines the amplitude of the HRR field as K does in the linear case.

Two singular zones can be identified:

Small region where crack blunting occurs.

Large deformation

HRR based upon small displacements non applicable.

$$\sigma_{ij} = \sigma_0 \left(\frac{EJ}{\alpha \sigma_0^2 I_n r} \right)^{1/(n+1)} \tilde{\sigma}_{ij}(n,\theta)$$

$$\varepsilon_{ij} = \frac{\alpha \sigma_0}{E} \left(\frac{EJ}{\alpha \sigma_0^2 I_n r} \right)^{n/(n+1)} \tilde{\varepsilon}_{ij}(n,\theta)$$

where I_n is an integration constant that depends on n, and $\tilde{\sigma}_{ij}$ and $\tilde{\varepsilon}_{ij}$ are dimensionless functions of n and θ .

The equations are called the HRR singularity, named after Hutchinson, Rice, and Rosengren.

J defines the amplitude of the HRR field as K does in the linear case.

Effect of the strain hardening exponent on the HRR integration constant

Angular variation of dimensionless stress for n = 3 and 13 (a) plane stress and (b) plane strain.

Relationship between J and CTOD

Consider again the strip-yield problem,

The first term in the J integral vanishes because dy=0 (slender zone)

$$J = -\int_{\Gamma} \sigma_{ij} n_j \frac{\partial u_i}{\partial x} ds$$

but
$$\sigma_{ij} n_j \frac{\partial u_i}{\partial x} ds = \sigma_{yy} n_y \frac{\partial u_y}{\partial x} ds = -\sigma_Y \frac{\partial u_y}{\partial x} dx$$

$$J = \int_{\Gamma} \sigma_{Y} \frac{\partial u_{y}}{\partial x} dx = \int_{-\delta_{t}}^{\delta_{t}} \sigma_{Y} du_{y} = \sigma_{Y} \delta_{t}$$

General unique relationship between J and CTOD:

$$J = m \sigma_Y \delta_t$$

m: dimensionless parameter depending on the stress state and materials properties

- The strip-yield model predicts that m=1 (non-hardening material, plane stress condition)
- This relation is more generally derived for *hardening* materials (n>1) using the HRR displacements near the crack tip, i.e.

$$u_i = A_3 J^{n/(n+1)} r^{1/(n+1)}$$

Shih proposed this definition for δ_t :

- \rightarrow m becomes a (complicated) function of n
- \rightarrow The proposed definition of δ_t agrees with the one of the Irwin model

Moreover,
$$G = \frac{\pi}{4} \sigma_Y \delta_t$$
 $m = \frac{\pi}{4}$ in this case

Applications the J-integral

J-integral evaluated explicitly along specific contours

$$J = \int_{\Gamma} \left(w \, dy - \sigma_{ij} n_j \, \frac{\partial u_i}{\partial x} \, ds \right)$$

$$w = \int \sigma_{ij} d\varepsilon_{ij} = \frac{1}{2} \sigma_{ij} \varepsilon_{ij} = \frac{1}{2} \left(\sigma_{xx} \varepsilon_{xx} + \sigma_{yy} \varepsilon_{yy} + 2\sigma_{xy} \varepsilon_{xy} \right)$$

for a plane stress, linear elastic problem

From stress-strain relation,

$$w = \frac{1}{2E} \left(\sigma_{xx}^2 + \sigma_{yy}^2 - 2\nu \sigma_{xx} \sigma_{yy} \right) + \frac{1+\nu}{E} \sigma_{xy}^2$$

Expanded form for $\sigma_{ij} n_j \frac{\partial u_i}{\partial x} ds$

$$= \sigma_{xx} n_x \frac{\partial u_x}{\partial x} ds + \sigma_{xy} n_y \frac{\partial u_x}{\partial x} ds + \sigma_{yx} n_x \frac{\partial u_y}{\partial x} ds + \sigma_{yy} n_y \frac{\partial u_y}{\partial x} ds \qquad (2D \text{ problem})$$

Simplification:

Along AB or B' A'
$$n_x = -1$$
, $n_y = 0$ and $ds = -dy \neq 0$

$$= \sigma_{xx} \frac{\partial u_x}{\partial x} dy + \sigma_{yx} n_x \frac{\partial u_y}{\partial x} dy$$

Along CD or DC'

$$n_x = 1$$
, $n_y = 0$ and $ds = dy \neq 0$

$$= \sigma_{xx} \frac{\partial u_x}{\partial x} dy + \sigma_{yx} \frac{\partial u_y}{\partial x} dx$$

Along BC or C'B'

BC:
$$n_x = 0$$
, $n_y = -1$ and $ds = dx \neq 0$

$$= -\sigma_{xy} \frac{\partial u_x}{\partial x} dx - \sigma_{yy} \frac{\partial u_y}{\partial x} dx$$

C'B':
$$n_x = 0$$
, $n_y = 1$ and $ds=-dx \neq 0$

Along OA and A'O J is zero since dy = 0 and $T_i = 0$

Finally,

$$J = 2 \int\limits_{A}^{B} \Bigg[w - \sigma_{xx} \, \frac{\partial u_x}{\partial x} - \sigma_{xy} \, \frac{\partial u_y}{\partial x} \Bigg] dy + 2 \int\limits_{B}^{C} \Bigg[\sigma_{xy} \, \frac{\partial u_x}{\partial x} + \sigma_{yy} \, \frac{\partial u_y}{\partial x} \Bigg] dx + 2 \int\limits_{C}^{D} \Bigg[w - \sigma_{xx} \, \frac{\partial u_x}{\partial x} - \sigma_{xy} \, \frac{\partial u_y}{\partial x} \Bigg] dy$$

Example 1

$$J=2hw = \frac{(1-v)Eu_y^2}{(1+v)(1-2v)h}$$

Example 2

$$J = \frac{12P^2a^2}{EB^2h^3}$$