

دانشگاه صنعتی اصفهان دانشکده مکانیک

Elastic-Plastic Fracture Mechanics

مكانيك شكست الاستيك-يلاستيك

- Linear elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. In many materials, it is virtually impossible to characterize the fracture behavior with LEFM, and an alternative fracture mechanics model is required.
- Elastic—plastic fracture mechanics applies to materials that exhibit time-independent, nonlinear behavior (i.e., plastic deformation). Two elastic—plastic parameters are introduced: the crack tip opening displacement (*CTOD*) and the *J integral*. Both parameters describe crack tip conditions in elastic—plastic materials, and each can be used as a fracture criterion. Critical values of CTOD or J give nearly size-independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity.

CTOD as yield criterion

CTOD: Crack Tip Opening Displacement

Well's experimental work: attempt to measure K_{Ic} for structural steels

But

Initial sharp crack has blunted prior to fracture

Non-negligible plastic deformation

→LEFM *inaccurate* : materials too tough !!!

Instead, Wells proposed δ_t (CTOD) as a measure of fracture toughness.

Estimation of δ_t using Irwin model : Crack length: $a + r_v$

By definition, $\delta_t = 2u_y$ at $r = r_y$ where u_y is the crack opening

CTOD as yield criterion

Crack opening:
$$(u_y)$$
 $u_y = \frac{K_I}{2\mu} \sqrt{\frac{r}{2\pi}} \sin \frac{\theta}{2} \left[\kappa + 1 - 2\cos^2 \frac{\theta}{2} \right]_{\theta=\pi} u_y$

$$= \frac{K_I}{2\mu} (\kappa + 1) \sqrt{\frac{r}{2\pi}} \qquad (see Table 2.2)$$

We have
$$\mu = \frac{E}{2(1+v)}$$
 and for plane stress, $\kappa = \frac{3-v}{1+v}$

$$\Rightarrow \delta_t = 2\frac{4K_I}{E}\sqrt{\frac{r_y}{2\pi}}$$

From Irwin model, the radius of the plastic zone is $r_y = \frac{1}{2\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2$

$$\delta_t = \frac{4}{\pi} \frac{K_I^2}{\sigma_{YS} E}$$
 and also, $\delta_t = \frac{4}{\pi} \frac{G}{\sigma_{YS}}$ CTOD related uniquely to K_I and G .

→ CTOD appropriate characterizing crack-tip-parameter when LEFM no longer valid.

Can be proved by a unique relationship between CTOD and the J integral.

- More general criterion than K (valid for LEFM)
- Derive a criterion for elastic-plastic materials, with typical stress-strain behavior:

 $A \rightarrow B$: linear

 $B \rightarrow C$: non-linear curve

C→D : non-linear, same slope as A-B

non-reversibility: A-B-C \neq C-D-A

→ Material behavior is strain history dependent!

Non unique solutions for stresses

• Simplification: non-linear elastic behavior

reversibility: A-B-C = C-D-A

→ Correct only for a monotonic loading

= Deformation theory of Plasticity

Definition of the J-integral

Rice defined a *path-independent* contour *integral J* for the analysis of cracked bodies showed that its value = *energy release rate* in a *nonlinear elastic* material

J generalizes **G** to nonlinear materials :

→ nonlinear elastic energy release rate

As G can be used as a fracture criterion J_c

reduces to G_c in the case of linear fracture

Definition of the J-integral

Historically,

Rice defined a *path-independent* contour *integral J* for the analysis of crack showed that its value = *energy release rate* in a *nonlinear* elastic body with a crack

- lacksquare J generalizes the concept of G to non-linear materials
 - For linear materials J = G
 - Load-displacement diagram: potential energy Π

Fixed-grips conditions:

$$\Pi = U = \int_{0}^{\Delta_0} P(\Delta) d\Delta$$

U: Elastic strain energy

 \neq (in general)

*U**: Complementary energy

Dead-load conditions

$$-\Pi = U^* = \int_0^{P_0} \Delta(P) dP$$

■ Definition of J using the potential energy Π :

$$J = -\frac{d\Pi}{dA}$$

A = a B: for a cracked plate with through crack

• Geometrical interpretation:

We have $\int dA = Pd\Delta - dU$

OB and OB':

loading/unloading for the given body with crack lengths a and a+da

 $P(\Delta, a)$:

Possible relationship between the load P and the displacement Δ while the crack is moving.

dU is the difference between the areas under OB' and OB: OA'B' – OAB

Pd∆ appears as the area AA'B'B

Thus,
$$J dA = J B da = AA'B'B + OAB - OA'B' = OBB'$$

• In particular,

At constant displacement:

$$J = -\frac{1}{B} \left(\frac{\partial U}{\partial a} \right)_{\Delta} = -\frac{1}{B} \int_{0}^{\Delta_{0}} \left(\frac{\partial P}{\partial a} \right)_{\Delta} d\Delta \qquad \qquad J = \frac{1}{B} \left(\frac{\partial U^{*}}{\partial a} \right)_{D} = \frac{1}{B} \int_{0}^{P_{0}} \left(\frac{\partial \Delta}{\partial a} \right)_{P} dP$$

At constant force (dual form):

$$J = \frac{1}{B} \left(\frac{\partial U^*}{\partial a} \right)_P = \frac{1}{B} \int_0^{P_0} \left(\frac{\partial \Delta}{\partial a} \right)_P dP$$

Useful expressions for the experimental determination of J

- Experimental determination of the J-integral :
 - Multiple-specimen method (Begley and Landes (1972)):

Procedure

(1) Consider cracked specimens with different crack lengths a_i

- (3) Calculation of the potential energy Π for given values of displacement u
 - = area under the load-displacement curve

Critical value J_{Ic} of J at the onset of crack extension (material constant)

■ J as a path-independent line integral

$$J = \int_{\Gamma} \left(w \, dy - T_i \, \frac{\partial u_i}{\partial x} \, ds \right)$$

with
$$w(\varepsilon_{mn}) = \int_{0}^{\varepsilon_{mn}} \sigma_{ij} d\varepsilon_{ij}$$
 strain energy density

$$= \int_{\Gamma} \left(w \, dy - \mathbf{T} \cdot \frac{\partial \mathbf{u}}{\partial x} \, ds \right)$$

 ${\bf T}$: traction vector at a point M on the bounding surface Γ , i.e. $T_i = \sigma_{ij} \ n_j$

u : displacement vector at the same point M.

n: unit *outward* normal.

The contour Γ is followed in the *counter-clockwise* direction.

Equivalence of the two definitions

- 2D solid of unit thickness of area S, with a linear crack of length a along OX(fixed)
- Crack faces are traction-free.
- Total contour of the solid Γ_0 including the crack tip: Imposed tractions on the part of the contour Γ_t Displacements applied on Γ_u

Proof: Recall for the potential energy (per unit thickness),

$$\Pi(a) = \iint_{S} w \, dS - \int_{\Gamma_t} T_i \, u_i \, dS \qquad T_i = \sigma_{ij} \, n_j \qquad \sigma_{ij} = \frac{\partial w}{\partial \varepsilon_{ij}}$$

The tractions and displacements imposed on Γ_t and Γ_u are independent of a

$$\frac{dT_i}{da} = 0, \quad on \quad \Gamma_t$$

$$\frac{d\Pi}{da} = \iint_S \frac{dw}{da} dS - \iint_{\Gamma_0} T_i \frac{du_i}{da} ds$$

$$\frac{du_i}{da} = 0 \quad on \quad \Gamma_u$$

Considering the moving coordinate system x, y (attached to the crack tip), x = X - a

 $\frac{d}{da}$: total derivative/crack length

$$\frac{d}{da} = \left(\frac{\partial}{\partial a}\right)_{x} + \left(\frac{\partial x}{\partial a}\right)_{x} \left(\frac{\partial}{\partial x}\right)_{a} = \frac{\partial}{\partial a} - \frac{\partial}{\partial x}$$

Thus,

$$\frac{d\Pi}{da} = \iint_{S} \left(\frac{\partial w}{\partial a} - \frac{\partial w}{\partial x} \right) dS - \iint_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial a} - \frac{\partial u_{i}}{\partial x} \right) ds$$

However,

$$\frac{\partial w}{\partial a} = \frac{\partial w}{\partial \varepsilon_{ij}} \frac{\partial \varepsilon_{ij}}{\partial a} = \sigma_{ij} \frac{\partial \varepsilon_{ij}}{\partial a} = \sigma_{ij} \frac{\partial}{\partial a} \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] \qquad \text{since } \sigma_{ij} = \sigma_{ji}$$

$$= \sigma_{ij} \frac{\partial}{\partial a} \frac{\partial u_i}{\partial x_j} = \sigma_{ij} \frac{\partial}{\partial x_i} \left(\frac{\partial u_i}{\partial a} \right)$$

Thus,

$$\iint_{S} \frac{\partial w}{\partial a} dS = \iint_{S} \sigma_{ij} \frac{\partial}{\partial x_{i}} \left(\frac{\partial u_{i}}{\partial a} \right) dS$$

We have,

$$\iint_{S} \sigma_{ij} \frac{\partial}{\partial x_{j}} \left(\frac{\partial u_{i}}{\partial a} \right) dS = \iint_{\Gamma_{0}} \sigma_{ij} \frac{\partial u_{i}}{\partial a} n_{j} ds = \iint_{\Gamma_{0}} T_{i} \frac{\partial u_{i}}{\partial a} ds$$

The derivative of J reduces to,

$$\frac{d\Pi}{da} = \iint_{S} \left(\frac{\partial w}{\partial a} - \frac{\partial w}{\partial x} \right) dS - \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial a} - \frac{\partial u_{i}}{\partial x} \right) dS$$

$$= -\iint_{S} \left(\frac{\partial w}{\partial x} \right) dS + \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial a} \right) dS - \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial a} - \frac{\partial u_{i}}{\partial x} \right) dS$$

$$= -\left(\iint_{S} \left(\frac{\partial w}{\partial x} \right) dS - \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial x} \right) dS \right)$$

Using the Green Theorem, i.e.

$$\oint_{\Gamma} P(x, y) dx + Q(x, y) dy = \iint_{A} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

$$-\frac{d\Pi}{da} = \iint_{S} \left(\frac{\partial w}{\partial x} \right) dS - \int_{\Gamma_{0}} T_{i} \left(\frac{\partial u_{i}}{\partial x} \right) ds$$
$$= \int_{\Gamma_{0}} \left(w \, dy - T_{i} \left(\frac{\partial u_{i}}{\partial x} \right) ds \right)$$

■ J derives from a potential