Mixed-Mode Fracture
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Interaction of Multiple Cracks
» The local stress field and crack driving force for a given flaw can be

significantly affected by the presence of one or more neighboring cracks.
Depending on the relative orientation of the neighboring cracks, the interaction
can either magnify or diminish the stress intensity factor.

Coplanar Cracks

» Typical propagation from an initial crack that is not orthogonal to the applied
normal stress. The loading for the initial angled crack is a combination of Modes
| and 11, but the crack tends to propagate normal to the applied stress, resulting in
pure Mode | loading.
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Coplanar Cracks

» The figure illustrates two identical coplanar cracks in an infinite plate. The lines
of force represent the relative stress concentrating effect of the cracks. As the
ligament between the cracks shrinks in size, the area through which the force
must be transmitted decreases. Consequently, K, is magnified for each crack as

the two cracks approach one another. X
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Interaction of two identical coplanar Coplanar cracks. Interaction between cracks
through-wall cracks in an infinite plate results in a magnification of K,
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Parallel Cracks \

» The figure illustrates two parallel cracks. In this case, the cracks tend to shield
one another, which results in a decrease in K, relative to the case of the single
crack. This is indicative of the general case where two or more parallel cracks
have a mutual shielding interaction when subject to Mode | loading.

Consequently, multiple cracks that are parallel to one another are of less concern
than multiple cracks in the same plane.
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Interaction between two identical parallel Parallel cracks. A mutual shielding effect
through-wall cracks in an infinite plate reduces K in each crack.
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Elastic—Plastic Fracture Mechanics
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» Linear elastic fracture mechanics (LEFM) is valid only as long as nonlinear
material deformation is confined to a small region surrounding the crack tip. In
many materials, it is virtually impossible to characterize the fracture behavior

with LEFM, and an alternative fracture mechanics model is required.

» Elastic—plastic fracture mechanics applies to materials that exhibit time-
Independent, nonlinear behavior (i.e., plastic deformation). Two elastic—plastic
parameters are introduced: the crack tip opening displacement (C70D0) and the J
/ntegral. Both parameters describe crack tip conditions in elastic—plastic
materials, and each can be used as a fracture criterion. Critical values of CTOD
or J give nearly size-independent measures of fracture toughness, even for
relatively large amounts of crack tip plasticity.
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CTOD as yield criterion
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CTOD: Crack Tip Opening Displacement
Wells experimental work: attempt to measure K. for structural steels

Initial sharp crack has b/unted prior to fracture

But
Non-negligible plastic deformation

blunted crack

Irwin plastic zone

i ::‘ I'!; :.-—
= LEFM /naccurate . materials too tough !!
Instead, Wells proposed &, (CTOD ) as a measure of fracture toughness.

Estimation of 6, using Irwin model : Crack length: a + 7,

By definition, 6 =2uy at r=r,  where v, is the crack opening
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Crack opening: () Uy K sing[mul- 2 cos? 9} O=r
21\ 2n 2 o UZT ______ L N
K| r
=—(k+1),|— (see Table 2.2)
2L 21
We have p= and for plane stress, k= 3-v
H 2(1+ V) p ’ 1+V
r
E 271? 1 K 2
From Irwin model, the radius of the plastic zone is ry = —(—']
2\ oy
4 K{ 4G |
O = — and also, 8y =—— CTOD related uniquely to K;and G.
n oyE T Gy

= CTOD appropriate characterizing crack-tip-parameter when LEFM no longer valid.

Can be proved by a unique relationship between CTOD and the J integral.
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The J contour integral as yield criterion
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= More general criterion than K (valid for LEFM)
= Derive a criterion for elastic-plastic materials, with typical stress-strain behavior:

&
5 B C A—B : linear
B—C : non-linear curve
C—D : non-linear, same slope as A-B
non-reversibility: A-B-C # C-D-A
A D = Material behavior is strain history dependent !
C O - Non unique solutions for stresses

. . . stram . .
= Simplification: non-linear elastic behavior

£ C
B reversibility: A-B-C = C-D-A
= Correct only for a monotonic loading
= Deformation theory of Plasticit
A/DH . y Yy
Strain

=
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The J contour integral as yield criterion
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Definition of the J-integral

Rice defined a path-independent contour /ntegral Jfor the analysis of cracked bodies

showed that its value = energy release rate in a nonlinear elastic material

Jgeneralizes G to nonlinear materials :

— nonlinear elastic energy release rate

As G can be used as a fracture criterion J.

reduces to G, in the case of linear fracture




The J contour integral as yield criterion

Definition of the J- mtegral_\

= Historically,
Rice defined a path-independent contour /ntegral Jfor the analysis of crack

showed that its value = energy release rate in a nonlinearelastic body with a crack
= J generalizes the concept of G to non-linear materials

* For linear materials /= G
« Load-displacement diagram: potential energy I1
> 1

U Elastic strain energy

P
0 /////% : /% -

# (in general)
Q o
v \ U “: Complementary energy
2\ \ )
A Ay A ”
Fixed- grlps conditions: Dead-load conditions
« B
M=V = I P(A)dA —T1=U" = [ A(P)dP
0
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The J contour integral as yield criterion
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= Definition of J using the potential energy IT :

= _(31_1: A= aB : for a cracked plate with through crack
» Geometrical interpretation:
A P(A a) OB and OB’ :
B 3 da loading/unloading for the given body with
3 i crack lengths aand a+aga
4 j P(A a)
a+da ] : : :
| ! Possible relationship between the load P
| i and the displacement A while the crack
iA .é > IS moving.
O A A+dA

We have J dA=PdA—-dU
dUis the difference between the areas under OB’ and OB : OA’B’— OAB

PdA appears as the area AA’B’B
Thus, JdA=J Bda= AA’B’'B + OAB —-OA’B’ = OBB’
ST 0aSliils ~Olgins  gnis oKl 12 S SIS



The J contour integral as yield criterion

« In particular | \

A

At constant displacement: At constant force (dual form):
1(oU Ag * 1P/oA

=——(—j - (@j dA g1 :—j(—j dP
B\ da J, Bolda), Bl ca ), Boldajp

Useful expressions for the experimental determination of J
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The J contour integral as yield criterion
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» Experimental determination of the J-integral :

= Multiple-specimen method (Begley and Landes (1972)) :

Procedure

(1) Consider cracked specimens with different crack lengths a;

p' u “
A 04<G,<03

g ( —={

(1) ()




The J contour integral as yield criterion
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(3) Calculation of the potential energy IT for given values of
displacement v

= area under the load-displacement curve

(4) Negative slopes of the P —a curves determined and plotted
versus displacement for different crack lengths :

A ﬁl

(3)
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The J contour integral as yield criterion
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= J as a path-independent line integral

J= Wdy—Ti%ds] o

; ax with W(em)= [ oj dej strain energy density
0
- jwdy—T-a—uds)
r OX

T : traction vector at a point M on the bounding surface I , i.e. Ti = Gjj nj

u : displacement vector at the same point M.

N : unit outward normal.

The contour T is followed in the
counter-clockwise direction.
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The J contour integral as yield criterion

Equivalence of the two definitions AY
» 2D solid of unit thickness of area S, 11_ t > t ¢t
with a linear crack of length aalong OX (fixed) ! t
y FO - 88
» Crack faces are traction-free. l|l -
» Total contour of the solid I, /ncluding the crack tip: o X x 1
PR S
Imposed tractions on the part of the contour T, v g S
Displacements applied on T', r N
Proof : Recall for the potential energy (per unit thickness), 77 " 77
(a) ﬂWdS [Tiupds T = Gijj N; Gij = ow u
I 88”
The tractlons and displacements imposed on I', and I, are independent of a

dT;

—L1=0, on Ty dI1 du;

da — = —dS T, —

— da ISI da rj d a
du; 0
=0 on I
da
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The J contour integral as yield criterion

Considering the moving coordinate system x, y (attached to the crack tip), x=X -—a

: total derivative/crack length

da
RORCIC
da \da), \da)y\ox)y  ca ox

Thus,
dIT_ [ OW_0Wlge [ QUi _OYi | g
da ¢loda Ox r, \oa ox
However,
0 &;i 0 &;i . OU; .
oW _ ow 0% =mjﬂ :O'i'i 1rou Y] since Oij = Tji
oa ﬁgij oa oa J@a 2 8XJ 8Xi

'Jﬁaaxj a 'Jﬁxj oa



The J contour integral as yield criterion

Thus, _\

[ Was =y oi,-i(%}js

g 0a s - 0x;j\ ca

We have,

ij dsS = 'n ds = [T, —' ds
oo ()5 [ AF

The derivative of Jreduces to,

L =1 oW_OWgg _ IT Ui _OUi | 4
da oa OX oa OX

OUj ou; ou
:—H( jds jOTLaajd_j (5_&]"3
OU;
[ﬂ( " os- IOT[andsJ



The J contour integral as yield criterion
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Using the Green Theorem, i.e. $P(x,y x +Q(x,y )dy = jj(g—g—%]dx dy
A

=) J derives from a potential




The J contour integral as yield criterion
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Properties of the J-integral
Closed contour around A

1) J is zero for any closed contour containing 70 crack tip.

L

Consider J|. :m(wdy—Ti%dsj X
r X iy
: : 0Q OP
Using the Green Theorem, i.e. [IP(x,y)dx+Q(x,y)dy = [[| =—=——— |dxdy
r ALOX 0y
We have J|r = j@dxdy—mTi%ds = j@dxdy—mcij%njds
A OX r ox A OX r = ox

From the divergence theorem,

OU; 9, ou;
i—n:ds =[—| c;; — |dxd
fou Gemice =1 o St oy

OX




The J contour integral as yield criterion

The integral becomes,

ow o ou
k=] {ax ox; (0” ox HdXdy

However,
oW _ 0w C&j oi 94 :Gi_ﬂ 17 ou; +— since 0jj =0
OX O&j OX OX Tox| 2| ox; o

oou _ 0 (dy
”6x8x ~ Yax; | ox

Invoking the equilibrium equation, 0%ij _ 0




The J contour integral as yield criterion
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2) J is path-independent —

- ~
- N
P N
7 -— T S N
// /// ~ N
N N\
/ i N\ \
/ o 4 \ r
f / \ \I
N R ' \
|
| > X , |
- I | | !
Consider the c/osed contour: v I \ ; /
/
X \\ \\\ // ;
— ~ ~ -~
=Dy +13+1, +1y < o N
~ - 1"* //

—_— e — —

We have J‘r:‘]‘r1+‘]‘r’§+‘]‘r3+‘”r4 and J|.=0

The crack faces are traction free : )

Ti=ojjnj=0 on T3 and I'y | o J‘r3:J‘r4:0

dy =0 along these contours




The J contour integral as yield criterion

2) J is path-independent —

// \\
' e S N
Note that, , S ~ A
/ // ~ \
/ N \
Jx =—J / \
‘FZ ‘FZ p : Y SR
! \
R | | : \
1 » X | |
and Jl-=J|. —-J|. =0 < r
‘r ‘rl ‘rz ‘\ T } / ,
4 \ /
) J‘ J‘ \\ - ? ’/
= ~ 4
~N -~ P /
~ * 7
=TI +03-T,+T, ~~__ I, | o™

—_— e — —

I, followed in the counter-
clockwise direction.

Any arbitrary (counterclockwise) path around a crack gives the same value of J

=) Jis patfrindependent
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I"is followed from 0=-rt0 0 =r

We have, ds=rdo
dy =rcos6do

J integral becomes,

J = _}T {w(r,@)cos&—Ti (r,0) %}rd@

When r — Oonly the singular terms remain
2

. K
For LEFM ,wecanobtain: J=G=—L (if mode | loading)

E
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The J contour integral as yield criterion

HRR theory N

Hutchinson Rice and Rosengren: ] characterizes the crack-tip field in a
non-linear elastic material.

= For uniaxial deformation:

n
£_9 a[ij Ramberg-Osgood equation
Go

o, =Yyield strength
g, =0,/E
o, : dimensionless constant

, , material properties
n : strain-hardening exponent

Power law relationship assumed between plastic strain and stress.

For a linear elastic material 7= 1.

=
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The J contour integral as yield criterion
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= Asymptotic field derived by Hutchinson Rice and Rosengren:

n/(n+1) N+
Jj J jj/( Y U = A3Jn/(n+1) r]7/(n+1)

8ij = A2 (? Gij = Al(?
A, are regular functions that depend on 6 and the previous parameters.

The l/\/F singularity is recovered when n = 1.

Path independence of / ) The product Oij &jj varies as 1/r:

From J=r T {w(r,@)cosH—Ti (r,0) %}:9)} déo
(%)

.
J defines the amplitude of the HRR field as K does in the linear case.

-

GijSij—) as r—0
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The J contour integral as yield criterion
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Two singular zones can be identified:

Log .,

’._.____,..-'K-I:lﬂt'l‘.ﬂ]'lﬂtﬂd. zone

[__—J -domunated zone
"'% | — large strain region
<

Small region where crack blunting occurs.

l» Large deformation

HRR based upon small displacements non applicable.
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» Relationship between Jand CTOD

Consider again the strip-yield problem, ——

......................

Hio

The first term in the J integral vanishes because dy=0 (slender zone)
ou

J=— IG,J i A gs
ou auy ou
but GIJ Jalds —nynya—xds :_GY_Xde
ou,, Ot
J= IGYa—dX — I Gyduy :Gyst

r X 5y




The J contour integral as yield criterion
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General unique relationship between Jand CTOD:

m . dimensionless parameter depending on the stress state and materials properties
* The strip-yield model predicts that /77=1 (non-hardening material, plane stress condition)

* This relation is more generally derived for Aardening materials (77>1) using the HRR
displacements near the crack tip, I.e.

U = A3Jn/(n+1) r]/(n+1) ﬂ

Shih proposed this definition for §, : blunted crack 90§ 8,

"

= /mbecomes a (complicated) function of n

=» The proposed definition of 5, agrees with the one of the Irwin model

I . .
Moreover, G =~ oy3, m :% in this case
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The J contour integral as yield criterion
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Applications the J-integral
o

o
J-integral evaluated explicitly y
along specific contours 4
A’ @)
D
A X
X
Loads and geometry
5 . symmetric / Ox
u; "
J:_f Wdy—GijnJ dS
r OX
1
W =j0ijdau= EcijsijZ E(GXXSXX +ny8yy+2(5xy8xy)

for a plane stress, linear elastic problem



The J contour integral as yield criterion

From stress-strain relation,

1 2 2
= E(GXX to,,-2v6,,6,, )+—ny

ou.
Expanded form for o;n;—-ds

OX
ou ou ou
=6, n, —*ds+o.n,—*ds+o, n, —~dsto, n,—=ds (2D problem)
) NG ¢ )¢ Y ox
Simplification :
Along ABor B" A’ ne=-1,n,=0 and ds=-dy # 0
ou ou
=c Xdy +o6,.n, —~d
XX 8X y yX X 8X Yy
Along CD or DC’ n,=1,n,=0 and ds=dy # 0
ou ou

- y
=0, — dyto, —dx

OX OX
S il el 33 e
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Along BCorC'B’ BC: n,=0,n,=-1 and ds=dx # 0
=G ou, dx-o u, “ Y dx C’B’:n,=0,n,=1 and ds=-dx #0
Y ox Y ox

Along OAand A'O Jis zerosincedy =0and T,=0

Finally,




The J contour integral as yield criterion

Example 1

2H

Example 2

2H

o
Ly o
— - (31 J=2hw= Y
+—a— ; (1+v)(1-2v)h
A /SR

‘uy
P

an f}rv J:12P2a2
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