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1- The plate structure shown in Figure 1 is loaded and deforms in the plane of the figure.
The applied load at D and the supports at / and N extend over a fairly narrow area. Give a
list of what you think are the likely “trouble spots” that would require a locally finer
finite element mesh to capture high stress gradients. Identify those spots by its letter and a
reason.

Fig. 1 The plate structure

2- Identify the symmetry and antisymmetry lines in the two-dimensional problems
illustrated in Figure 2a-f. Having identified those symmetry/antisymmetry lines, state
whether it is possible to cut the complete structure to one half or one quarter before
laying out a finite element mesh. Then draw a coarse FE mesh indicating, with rollers or
fixed supports, which kind of displacement BCs you would specify on the symmetry or
antisymmetry lines.
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3- Consider the square, 1sotropic, elastic body of thickness h shown 1n Figure below.
Suppose that the displacement are approximated by:

u(x,y)=(1—x)yu, +x(1—yu,

vix,v)=0
Assuming that the body is in the state of the plane stress. Derive 2 by 2 stiffness

matrix of the unit square.
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4-  Construct the weak form and, whenever possible, quadratic functional.

a) The Timoshenko (shear-deformable) beam theory:
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d dxd‘l’ “ dw fﬁr O<x<L
~E(Er&;~)+am(a+w)=o
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where G, K, A, E, I, and f are functions of x.

b) The Euler—Bernoulli-von Kdrmdn nonlinear theory of beams:
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where a, b, g, and f are functions of x, and M, is a constant. Here u denotes the
axial displacement and w the transverse deflection of the beam.
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5- Compute the coefficient matrix and the right-hand side of the N-parameter
Rayleigh—Ritz approximation of the equation

du
[(1 +x) Zr“‘
w(0)=0, uw(l)=1

Use algebraic polynomials for the approximation functions. Specialize your result
for N =2 and compute the Ritz coefficients.
Answer: ¢; =151 and ¢; = —&r.

Hfr- ]=O for 0<x <1

6- Solve the Poisson equation governing heat conduction in a square region (see
Example 2.6):

—'kva:qg
T=0 onsidesx=1and y=1
oT . .
a=0 (insulated) onsides x=0 and y =90

using a one-parameter Rayleigh—Ritz approximation of the form
Ti(x, y) = c(1—x")(1—y?)

o

Answer: ¢, xlﬁk'

7- Find a one-parameter approximate solution of the nonlinear equation

du (du\?
—2u—5+ (m) =4 for 0<x <1
dx*  \dx
subject to the-ﬁoundary conditions #(0) = 1 and u(1) =0, and compare it with the
exact solution #,=1—2x Use (a) the Galerkin method, (b) the least-squares
method, and (c¢) the Petrov—Galerkin method with weight function w = 1.
Answer: (a) (e =1, (c1)2=—2.



8- Evaluate the following coefficient matrices and source vector using the linear
Lagrange interpolation functions:
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where ag, a,, Co, €1, o, and g, are constants.



