Homework #7-solution

Fig. 1 The plate structure
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a) The Timoshenko (shear-deformable) beam theory:

_;—i [GKA(%_I-‘P)] M } for 0<x<L

- (Er‘—gf) Gm(‘zﬁf- w) =0
w(0) = w(L) =0, (EI %’) = (&1 ‘g—) =0
where G, K, A, E, I, and f are functions of x.
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So: 1 (0)=v,(L)=0

And:

f%([am (%+¢)])dx—fv1fdx= 0 (M
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Which : [EI (ﬂ)] (0) = [EI (ﬂ)] (L) =0
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- f Sw fdx =0
B (f (GKA ([(i—: + 1/))]) +EI (%)2 - wf) dx) =0

1= (o))« (32)

—Wf> dx

The Euler-Bernoulli-von Karman nonlinear beam theory

d? dPw) d dw [du 1 (dw)?
(i )| = | e (o] | %=
dx2< dx2> dz{ & [dr+2(dl’)]} .

) 20
u=w=0 at x=0, L (d“> = 0; (Efd—‘;
=0 dx

dx
where EA, EI, f, and ¢ are functions of x, and Mj is a constant. Here u denotes the
axial displacement and w the transverse deflection of the beam.

Solution: The first step of the formulation is to multiply each equation with a weight
function, say v, for the first equation and vy for the second equation, and integrate
over the interval (0,L). In the second step, carry out the integration-by-parts once
in the first equation, twice in the first term of the second equation, and once in the
second part of the second equation. Then use the fact that v1(0) = v1(L) = 0 (because
u is specified there), vo(0) = vo(L) = 0 (because w is specified), and (dve/dx)(0) =0



(because dw/dzx is specified at x = 0). In addition, we have EI(d*w/dx?) = My at
x = L. The final weak forms are given by

L dvy [du 1 /dw)\?
o_f {EAE [E“ﬁ (E) ] —vlf} dz (1a)
vy d2w duvgdw |du 1 [fdw
0= f {EId T TP T [dx+2(d. ) ] ’“”}d‘r
_ (ﬂ)
dx

Note that for this case the weak form is not linear in u or w

Mo (10)
L

. However, a functional
can be constructed for this using the potential operator theory (see: J. T. Oden and

J. N. Reddy, Variational Methods in Theoretical Mechanics, 2nd ed., Springer-Verlag
Berlin, 1983 and Reddy [3]). The functional is given by

M) = [F{EA[(80)7 o (duy? 1 (du)t) EL(Pu’
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L

_E[(I_Hr)ﬁ =0 for 0<x<1

Use algebraic polynomials for the approximation functions. Specialize your result for
N = 2 and compute the Ritz coefficients.

Solution: The weak form for this problem is given by



‘ 1 do; do;
By = B(or.o;) = [ (1+ )71 7d (1a)
, 1 d(f)i d(;)o
F; = —B(di. o) = —/0 (1 +$)Eﬁdl (1)

The approximation functions ¢¢ and ¢; should be chosen such that
d0(0) =0, ¢o(1)=1:; ¢:(0)=0i(1)=0, (i=1,2,....n) (2)
The following algebraic polynomials satisty the above requirements:
o=z, ¢;=2'(l—x) (3)
Substitution of Eq.(3) into Egs.(1a.b) and evaluating the integrals, we obtain

j j+ity, 1—ij | (i+1)(+1
B;j = - l.J —U?H-.'_J+. .Z‘] +(Z_,'- ),(‘]+ ) (4a)
1+ —1 i +J t+7+1 i+j+2
1
FF=—mr— 4b
T +9)(2+1) (4)

For the two-parameter (N = 2) case, we have
1 17 7

1
Biit==7, Big=Bay=—. Bxn= . Fi==. Fh=
=3 12 21 = &0 22 1= 5 2

and the parameters c; and cs are given by

The two-parameter Ritz solution becomes

u(x) = oo + 101 + c202
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The exact solution is given by
log (1+ x)
uexact =T e A
log 2



—kV3T = go
T=0 onsides x=1 and y=1 (1)
T
an

using a one-parameter Ritz approximation of the form

=0 (insulated) onsides =0 and y=0 (2)

Ti(z,y) = e1(1 —a*)(1 - 3% (3)

Solution: The weak form of the equation is given by
ovadT oJvdT
0= / f [ (5eax *ovay) ™ ”90] dzdy 4)

The coefficients By, and F) are given by

9oy 8oy aul 9oy
Bu _./ ./ (8.1 £ ay By) dedy

= / / k 4&:2(1 — )2 + 421 - 1’2)2] daxdy = Ek (5a)
o Jo 45
1 pl
Fy 2/ / 9o dxdy
o Jo
1 1 o N 4
= [ [ o1 =531 - 4?) dudy = 50 (35)
o Jo 9
and the parameter c; is given by
F1 590
= — 6
=B, 16k (6)
d*u du\? X
QIIF—'_(E) =4 for O<a<l

subject to the boundary conditions u(0) = 1 and u(1) = 0, and compare it with
the exact solution ug = 1 — 2. Use (a) the Galerkin method, (b) the least-squares
method, and (c) the Petrov—Galerkin method with weight function w = 1.



Solution: We must choose ¢¢ such that it satisfies all specified boundary conditions:

d0(0) =1, ¢po(1)=0

(1)

and ¢; must be selected such that it satisfies the homogeneous form of all specified

boundary conditions:
0i(0) =0, ¢i(1)=0

Obviously, the following choice would meet the requirements,
vo=1—x, oy =2(1—-2)
The residual is given by

d*o1 doy  dobo
dx? (e dr  dx
=-2 [(1 —z)+eci(xr— 1'2)] (=2c1) + [-14e1(1 —22)]2 —4

= —3+2c; + (c1)?

R = —2ci(c1¢1 + ¢0) 2 —4

(a) The weighted-residual statement for the Galerkin method is given by
! 2 1 2
0=f (x —2*)R dx = 5 [—3+201+(cl)
0

which gives two solutions, (¢;); = 1 and (¢1)2 = —3. We choose ¢; = 1 on the basis of
the criterion that fol R dx is a minimum. For ¢; = 1, the Galerkin solution coincides

with the exact solution, u(z) =1 — z2.

(b) The least-squares statement is given by

1 dR 1 9
0=/ ZRdr= 2(1+cl)[—3+201+(c1) dz
0 dey 0
which gives three solutions, (¢;); = 1, (¢1)2 = —3, and (¢;)3 = —1. Once again, we

choose ¢ = 1.

(2)

(3)



