
1- The following Figure shows the load-displacement record of a compact tension specimen tested according to ASTM E399 procedure to determine K_{Ic} . The 0.2 per cent offset yield stress of the material is 800 MPa. The specimen dimensions were measured as: W = 12 cm, B = 5 cm, a = 6 cm. Determine K_{IC} .

2- Determine the minimum thickness B_{\min} and/or crack ligament b_{\min} of a three-point bend specimen required for a valid J_{IC} , test according to the ASTM standards for a material with K_{IC} =100 MPa.m^{1/2}, $\sigma_{\rm Y}$ = 400 MPa, E = 210 GPa and v = 0.3. Compare the results with those for a valid K_{IC} , test.

3- The following data were obtained from a series of tests on three-point bend specimens with thickness B = 30 mm and crack ligament b = 30 mm made of a steel with 0.2 offset yield stress $\sigma_{\rm Y}$ = 450 MPa and ultimate stress $\sigma_{\rm u}$ = 550 MPa. Estimate the provisional value J_Q according to ASTM standard E813-87 and check whether $J_{IC} = J_Q$.

$J(kJ/m^2)$	$\Delta a(mm)$
120	0.2
150	0.3
180	0.5
220	0.7
260	1.0
280	1.2
310	1.5
340	1.8
360	2.0