تكليف سرى سوم مكانيك شكست

1- Prove that Eq. $\cos \theta / 2[K_I \sin \theta + K_{II} (3\cos \theta - 1)] = 0$ can be obtained from $\partial \sigma_{\theta\theta} / \partial \theta = 0$.

- 2- Plot $\sigma_{\theta\theta}\sqrt{2\pi r}/K_I$ versus θ for $K_{II}/K_I=0.5$ and 2.0, respectively. Verify that Eq. $\cos\theta/2[K_I\sin\theta+K_{II}(3\cos\theta-1)]=0$ gives the orientation at which $\sigma_{\theta\theta}$ reaches the maximum.
- 3- In mixed mode conditions, the energy release rate at the kink tip is (as shown in following figure):

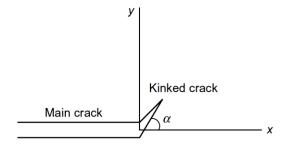
$$G = \frac{\kappa + 1}{8\mu} \left[\left(C_{11}^2 + C_{21}^2 \right) K_I^2 + \left(C_{12}^2 + C_{22}^2 \right) K_{II}^2 + 2 \left(C_{11} C_{12} + C_{21} C_{22} \right) K_I K_{II} \right]$$

where:

$$C_{11} = \frac{1}{4} \left(3\cos\frac{\alpha}{2} + \cos\frac{3\alpha}{2} \right)$$

$$C_{12} = -\frac{3}{4} \left(\sin\frac{\alpha}{2} + \sin\frac{3\alpha}{2} \right)$$

$$C_{21} = \frac{1}{4} \left(\sin\frac{\alpha}{2} + \sin\frac{3\alpha}{2} \right)$$


$$C_{22} = \frac{1}{4} \left(\cos\frac{\alpha}{2} + 3\cos\frac{3\alpha}{2} \right)$$

The crack growth direction, or fracture angle α_0 , is thus determined by maximizing $G(\alpha)$:

$$\frac{\partial G(\alpha)}{\partial \alpha} = 0 \qquad \text{at} \quad \alpha = \alpha_0$$

$$\frac{\partial^2 G(\alpha)}{\partial \alpha^2} < 0 \qquad \text{at} \quad \alpha = \alpha_0$$
(*)

Show that the fracture angles determined from Eq. (*) are the same as that predicted from the maximum hoop stress criterion (especially for Mode I and II).

