تكليف سرى سوم اصول مهندسي نصب

۱- در شکل داده شده مطلوبست: الف) بزرگترین x ب) کوچکترین x.

۲ - كدام انطباق زير عبوري است ؟ بزرگترين و كوچكترين قطر را براي هريك حساب نماييد.

$$\phi \mathbf{r} \cdot \frac{H \mathbf{v}}{g \mathbf{l}} \qquad (\mathbf{r} \qquad \phi \mathbf{r} \cdot \frac{H \mathbf{v}}{r \mathbf{l}} \qquad (\mathbf{r} \qquad \phi \mathbf{r} \cdot \frac{H \mathbf{v}}{f \mathbf{l}} \qquad (\mathbf{r} \qquad \phi \mathbf{r} \cdot \frac{H \mathbf{v}}{k \mathbf{l}} \qquad (\mathbf{r} \quad \mathbf{r} \cdot \mathbf{r})$$

٣ - كدام تراز مي تواند تعامد سطوح رانيز كنترل كند ؟

۴- برای جا زدن یک بوش روی یک شافت بصورت پرسی کدام علامت انطباقی را برای شافت درنظر می گیرید؟

۵- مفهوم علايم زير را بيان كنيد.

$$\sqrt{Rz 6.3 \atop Rz 4}$$

$$0.25/R_{z}1$$

۶- حدود اندازه را برای تلرانس و انطباقات زیر همراه با حداقل و حداکثر لقی (یا تداخل) به دست آورید.

- a) 24H7
- b)32H7/g6
- c) 28R7/h6
- d) $\phi 75H7/g6$

- e) $\phi 50 js 10$
- f) $\phi 5^{"}LT_{2}$

٧- كداميك از تلرانسها و انطباقات زير صحيح و اجرايي است؟

1. Method of indicating surface texture on drawings acc. to DIN 1302

1.1 Symbols	
Symbol without additional indications. Basic symbol. The meaning must be explained by additional indications.	/
Symbol with additional indications. Any production method, with specified roughness.	3.2/
Symbol without additional indications. Removal of material by machining, without specified roughness.	\forall
Symbol with additional indications. Removal of material by machining, with specified roughness.	3.2/
Symbol without additional indications. Removal of material is not permitted (surface remains in state as supplied).	√
Symbol with additional indications. Made without removal of material (non-cutting), with specified roughness.	3.2/

1.2 Position of the specifications of surface texture in the symbol

- a = Roughness value R_a in micrometres or microinches or roughness grade number N1 to N12
- b = Production method, surface treatment or coating
- c = Sampling length
- d = Direction of lay
- e = Machining allowance
- f = Other roughness values, e.g. Rz

Examples				
Production method		d	Explanation	
Any	Material removing	Non-cutting	·	
0.8/ N6/	0.8/ N6/	0.8/ N6/	Centre line average height R _a : maximum value = 0.8 μm	
√R _z 25	R _z 25	R _z 25	Mean peak-to-valley height R _z : maximum value = 25 μm	
0.25/R _z 1			Mean peak-to-valley height R _z : maximum value = 1 μm at cut-off = 0.25 mm	

2. Explanation of the usual surface roughness parameters

2.1 Centre line average height R_a acc. to DIN 4768

The <u>centre line average height Ra</u> is the arithmetic average of the absolute values of the distan-

ces y between the profile heights and the centre line within the measuring length. This is equivalent to the height of a rectangle (A_g) with a length equal to the evaluation length I_m and with an area equal to the sum of the areas enclosed between the roughness profile and the centre line $(A_{0i}$ and $A_{ui})$ (see figure 1).