Operator Theory

Assignment 1— to be submitted Tuesday Aban 18, 1395.

Instructor: S. M. Manjegani

- 1. Let $\{T_i\}$ be a bounded net in B(H) and fix orthogonormal basis $\{e_n\}$.
 - (a) Prove that $T_i \longrightarrow 0$ (WOT) if and only if $\langle T_i e_n, e_m \rangle \longrightarrow 0$ for all e_n and e_m .
 - (b) Prove that $T_i \longrightarrow 0$ (SOT) if and only if for all e_n , $||T_i e_n|| \longrightarrow 0$
- 2. Let $\{T_i\}$ and $\{S_i\}$ be nets in B(H) and assume that $\{T_i\}$ is uniformly bounded.
 - (a) If $T_i \longrightarrow 0$ (WOT) and $S_i \longrightarrow 0$ (SOT), then $T_i S_i \longrightarrow 0$ (WOT).
 - (b) If, in addition, $T_i \longrightarrow 0$ (SOT), then $T_i S_i \longrightarrow 0$ (WOT).
- 3. Let $B_{00}(H)$ denote the algebra of finite rank on Hilbert space H. Show that ball $B_{00}(H)$ is WOT (respectively, SOT) dense in ballB(H).
- 4. If $T : H \longrightarrow K$ is accompact operator and $\{e_h\}$ is any orthogonal sequence in H, then $||Te_n|| \longrightarrow 0$. Is the coverse true?
- 5. Let T be a compact operator. Show that either ||T|| or -||T|| is an eigenvalue of T.
- 6. If T is a compact operator on a Hilbert space H, then

$$T = \sum_{n=1}^{\infty} \lambda_n P_n \,,$$

where $\{\lambda_n\}$ is the set of eigenvalues of T and P_n is the projection of H onto ker $(T - \lambda_n)$. The series converges to T in norm.