Regulatory Factors in Hormone Action:
Level, Location and Signal Transduction

The way in which a plant hormone influences
growth and development depends on:

1) The amount present: this is regulated by biosynthesis,
degradation and conjugation.

2) The location of the hormone: this is affected by movement or
transport.

3) The sensitivity (or responsiveness) of the tissue: this involves
the presence of receptors and signal-transduction chain
components.
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a- Biosynthesis of IAA

Thimann (1935)
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b-Free Versus Bound Auxins
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C- Destruction of IAA [AAC. 5

1- Enzymatic oxidation (IAA oxidase)
2- Photo oxidation

D- Synthetic Auxins
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Auxin Transport

F. Went (1934): basipetal

Jacobs (1961): perogeil 1

basipetal 3
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Danielli (1954) v
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Cc Col

5

d Light-grown 1t4(2YY6) seedlings
have increased [3H]-IAA
root basipetal auxin transport.

= IAA transport
Tissue source (fmol)?

Col 5.05+0.24

4(2YY6) 6.16 + 0.290

aThe results are pooled from four experiments
of ten seedlings per treatment; the

average and SE are reported.

bSignificantly different as judged by Student's
ttest, P = 0.005.
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pH &5||pH 7.0

Figure 3. Components of transmembrane
awxin transport according to the chemmosmotic
polar diffusion model (33). A membrane pH
gradient (maintained by plasma membrane H -
ATPases) dnwves diffusive accumulation of
undissociated acain molecules. At the higher
pH of the cytoplasm, some of the awun
molecules which enter the cell dissociate. The
plasma membrane 15 relatively impermeable to
auxin amons (LAA"), which are “frapped” in
the cytoplasm and can only exst or enter the
cell through the action of specific influx
(upper; light shading) and efflux (lower; heavy
shading) carrier systems. Asymmefry in the
distribution of the two carner systems, more
especially the efflux carrier. results in a net
polar transport of auxin through the cell.

Chemiosmotic 4.5

IAAH

TAA ks Jusi

Low pH

2— Cell wall
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Auxin anion carrier
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A component of auxin transport, which is highly polar, appears to be catalyzed by
auxin efflux carriers, membrane proteins thought to pump auxin molecules from
the interior of cells into the surrounding extracellular space, or apoplast, from
where they can enter neighboring cells. In this model, an asymmetric distribution
of auxin carrier proteins within the plasma membrane, defines the direction of

auxin transport.



Polar transport of auxin

Plasma membrane

Transport at ~1 cm/hr
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E- Physiological Effects of IAA
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1- Cellular Enlargement
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— Cellulose fiber

It WAl 1. Auxin causes

cells to pump
Enzyme hydrogen ions
(inactive) into the cell wall.

Cross-bridge

. pH in the cell
_ wall decreases,
Active activating
enzyme enzymes that
break cross-
bridges between
cellulose fibers
in the cell wall.

. Cellulose fibers
loosen and
allow the cell to
expand as turgor
pressure inside
the cell pushes
against the
cell wall.
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2- Phototropism SIS

Phototropic responses including the bending
of growing stems to sources of light with
blue wavelengths (460-nm range)

OOOOO ompan

. Light with blue Light without
wavelength : blue wavelength
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ll/" b , i

AN
\ B Green —

Coleoptile does

Coleoptile bends not bend toward
toward light with light without
blue wavelength blue wavelength
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Phototropisms

A blue-light receptor phototropin 1 (PHOT1)
has been characterized

-Has two regions

-Blue-light activates the light-sensing
region of PHOT1

-Stimulates the kinase region of
PHOT1 to autophosphorylate

-Triggers a signal transduction
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Phototropisms

Copyrignt & Ihe Mctawt Rl Comparied, Inc. Bermizaion =qUaed fiv. c=prod uction of. display. Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cell
membrane

Blue light

1. Light with blue wavelengths strikes plant 2. Blue light is absorbed by PHOT1, causing 3. This conformational change results in auto-
cell membrane with phototropin 1 (PHOT1). a change in conformation. phosphorylation, triggering a signal transduction.

A protein kinase is a kinase enzyme that modifies other molecules, mostly proteins, by chemically adding phosphate gr?)l?r?s
to them (phosphorylation)






Responses to Gravity

Gravitropism is the response of a plant to the
gravitational field of the Earth

-Shoots exhibit negative gravitotropism;
roots have a positive gravitropic response
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Responses to Gravity

In shoots, gravity is sensed along the length of
the stem in endodermal cells surrounding
the vascular tissue

-Signaling is in the outer epidermal cells

In roots, the cap is the site of gravity
perception

-Signaling triggers differential cell elongation
and division in the elongation zone

156
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Gravitropism
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+ Plants may detect gravity by settling of statoliths, specialized
plastids containing dense starch grains located in lower
portions of cells (in roots, certain root cap cells)

Aggregates at lower points trigger redistribution
calcium, which causes lateral transport of auxin
root

Calcium/auxin accumulate on lower side of
root's zone of elongation

At high concentrations, auxin inhibits cell
elongation, slowing growth on root's lower side

More rapid elongation on upper side causes
root to curve as it grows

(b) Statoliths settling

Still occurs in plants w/no statoliths (dense organelles, in addition to
starch granules, may contribute to gravity detection)
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3- Geotropism




Stem Response to Gravity

Auxin accumulates on lower side of the stem

-Results in asymmetrical cell elongation
and curvature of the stem upward

Two Arabidopsis mutants, scarecrow (scr)
and short root (shr) do not show a normal
gravitropic response

-Due to lack of a functional endodermis
and its gravity-sensing amyloplasts
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Root Response to Gravity

Lower cells in horizontally oriented root cap
are less elongated than those on upper side

-Upper side cells grow more rapidly causing
the root to ultimately grow downward

Auxin may not be the long-distance signal
between the root cap and elongation zone

-However, it has an essential role in root
gravitotropism
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2- Effects of PGs on adventiticeus root formation in
cuttings
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Company Formulation Trade name Active
ingredienis
ACF Chemiefarma, The Powder CHRYZOPON 0.1% IBA
Metherlands CHRYZOTEK 0.4% IBA
CHRYZOSAN 0.6% IBA
CHRYZOFPLUS .8% IBA
Powder RHIZOPON A 0.5% LAA
RHIZOPONM A 0.7% 1AA
RHIZOPON A 1.0% LAA
RHIZOPON B L.1% NAA
RHIZOPON B 0.2% NAA
RHIZOPON AA 0.5% IBA
RHIZOPON AA 1.0% IBA
RHIZOPON AA 2.0% IBA
RHIZOPON AA 4.0% IBA
RHIZOPON AA B.O% IBA
Brooker Chemical Corp., Powder Hormex No. 1 0.1% IBA
Morth Hollywood, CA Hormex Mo, 3 0.3% IBA
Hormex Mo. 0.8% IBA
Hormex Mo, 16 1.6% IBA
Hormex No. 30 3.0% 1IBA
Hormex No. 45 4.5% IBA
MSD-AGVET, Rahway, NI Powder Hormodin 1 0.1% IBA
Hormodin 2 0.3% IBA
Hormodin 3 0.8% IBA
Hortus Products, Powder Hormo-Root A 0.1% IBA
Mewfoundland, NJ Hormo-Root B 0.4% IBA
Hormo-Root C 0.8% IBA
RHONE-POULENC, Re- Powder Rootone 0.1% IBA and
search Triangle Park, NC 0.2% NAM
Coor Farm Supply, Liquid C-mone 1.0% IBA
Smithfield, NC C-mone 2.0% IBA
ALPKEM Comp., Liguid DIF'N GROW 1.0% IBA and
Clackamas, OR 0.5% MAA
Wilson Lab., Ontario, Liguid Roois 0.4% IBA
Canada
Earth Science Products, Liquid Wood's Rooting 1.03% IBA and
Wilsonville, OR Compound 0.51% NAA
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6- Fruit set, growth, development and ripening

a- Physiology of fruit set
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b- Effects of PGs on fruit set
By
555 g dile sl 6K b glae soe ST 55 sdiS yas SINAA e
T L1 Olowasl 5 05 5 ¢y 0 N a8 il (5uS
#

-



c- Physiology of fruit growth and development

A
1- Smooth sigmoid curve =
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2- Double sigmoid curve
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d- Effects of PGs on fruit growth and development
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Fruit Growth
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Abscission

Abscission is the process by which leaves
or petals are shed

-One advantage is that nutrient sinks can
be discarded, conserving resources

Abscission involves changes that occur in an
abscission zone at the petiole’s base
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-Hormonal changes lead to differentiation of:

-Protective layer = Consists of several
layers of suberin-impregnated cells

-Separation layer = Consists of 1-2
layers of swollen, gelatinous cells

-As pectins break down, wind and rain
separate the leaf from the stem
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a- Anatomy of abscission 3Ryl
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Leaf Abscission

Change in balance of auxin
and ethylene controls leaf
abscission (process that
occurs in autumn when leaf
falls)

— Essential elements salvaged/stored
in stem parenchyma cells

— Nutrients recycled back to
developing leaves next spring

— After leaf falls, protective layer of
cork becomes leaf scar that prevents
pathogens from invading plant

Protective layer Abscission layer
\ J \ J

N W
Stem Petiole

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
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5- Effects of PGRs on abscission
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e- Chemical thinning of flowers + fruits -
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Common name

Chemical name

Trade name

Ethephon

Silaid

Alsol

DNOC
DNOC
NAA

NAAm
Carbaryl
Oxamyl
Cytokinin +
Giberellin

Silvex/
Fenoprop

(2-chloroethyl) phosphonic acid
CEPA, Amchem 66-329

(2-chloroethyl) methylbis
(phenylmethoxy)silane

(2-chloroethyl)tris
(2-methoxyethoxy )silane

Sodium 4,6-dinitro-o-cresylate
4,6-dinitro-o-cresol

Naphthaleneacetic acid

Naphthaleneacetamide
1-naphthyl N-methyl carbamate

Methyl N'N’-dimethyl-N-[(methyl
carbamoyl)oxy | -1-thiooxamimidate

N-(phyenylmethyl-H-purine 6-amine
and GA, and GA,

2-(2,4,5-trichlorophenoxy)
propanoic acid

Ethephon, Ethrel,

Silaid

Alsol, Etacelasil

Elgetol
Dinitro-dry

Fruitone-N, Fruit Fix-800,
Fruit Fix-200, Fruit Set,
Stafast, Kling-Tite

Amide-Thin W, Anna-Amide
Sevin

Vydate

Accel

Fruitone T
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g- Prevention of fruit drop Oga0 (g 3 3 (S 5 ol
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Responses to Mechanical Stimuli

Copyright @ The McGraw-Hill Companies, Inc. Permission reguired for reproduction or display.
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Responses to Mechanical Stimuli

Bean leaves are horizontal during the day
when their pulvini are rigid

-But become more

or less vertical at
night as the pulvini
lose turgor
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Tendrils start off by bending in search of a surface to grow across. Once they find
it, the part of the tendril that is in touch with the surface will produce auxin, which
stimulates a large region on the tendril that isn’t in touch with the surface to grow.
In addition to auxin, the hormone ethylene aids in growth and controls the shape
of the cells. The overall process results in the cells touching the support surface
contracting or growing slower while those not touching it expand or grow faster.
The different rates of growth on different sides of the plant lead to the coiling that
occurs around the supporting object. In order for a plant or plant organ to undergo
constant growth, continuous contact with the surface is needed.

Rapid Contact Coiling

Rapid contact coiling, on the other hand, is an instant response. It happens
quickly and doesn’t last long. An example of this is the folding of the leaves of
some plant species upon being touched. In some cases, rapid contact coiling
occurs first and is then followed by the slower and more permanent
differential growth.
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Mechanical Stimuli

« Thigmomorphogenesis: changes in form that
result from mechanical disturbance

Rubbing stems of young plants couple of times daily results in plants
that are shorter than controls/tree growing on windy hill shorter/stockier
than those in sheltered location

Mechanical stimulation = signal transduction pathway = increase in
cytosolic Ca?* 3 activation of specific genes of proteins = cell wall
properties

+ Thigmotropism is growth in response to touch

Occurs in vines/other climbing plants where
coil rapidly around supports

« Grow straight until they touch something that stimulates coiling
response (caused by differential growth of cells on opposite sides
of tendril)

Mechanical stimuli such as
hypo-osmotic stress and touch

l

Nuclear accumulation of VIP1
1 — VIP1-SRDX

Expression of hypo-osmotic stress/
touch-responsive genes

l

Modulation of root cap structures

l

Changes in local auxin responses

l

Suppression of mechanical stimuli-
induced root bending
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1- Onium compounds: phosphon D, AMO-1618, cycocel,
mepiquate chloride, piperidium bromide

2- Pyrimidine compounds (ancymidol, flurprimidol)

3-Triazole compounds (paclobutrazol, uniconazole, triapenthenol,
BASI111, Lab 105)

4- Tetcyclacis

— 5- Prohexdione calcium
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Table I. GAs produced by microorganisms.

- Gibberellin Microorganism=

GA,

GA>

GAS
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GA7

GAg
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GA (2
GA L3
GA 4
GAys
GA1s
GAxg
GA2
GA1s
GAag
GAT7
GAs
GAY
GAan
GAur
GAsa
GAss
GAsg
GAsy
GArg
GAn P
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o000 00000000
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* G = Gibbereila fujikurot
S = Sphaceloma manthorcola and further species
N = Neurospora crassa
P = Phaeosphaeria sp.
R = Rhizobium phaseoli
A = Azospirtllum lipoferum and A. brasilense
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Tulip bulb: GA| 5 ¢ 9 13
Grape: GAj3 4 5
Bamboo Shoots: GA g 19 7

Imature apple seeds: GAj 4 ;

Phaseolus coccineus: GA| 3568 13,17, 20




Chemical Nature of GAs
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Physiological Effect of Gibberallins

1- Effect on Growth of Intact Plants
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Gibberellins

Adding gibberellins to certain dwarf mutants
restores normal growth and development

pyright © The McGraw-Hill Companies, Inc. Permission required for
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Figure 1. Schematic representation of the GA-related signaling involved in the process of
shoot elongation. Yellow and grey background indicate light and dark conditions,
respectively. Arrows indicate activation and blunt-end lines indicate repression or
inhibition. See text for details and references. ARF&: auxin response factor 6, BZR1:
brassinazole-resistant 1, ERF11: ethylene response factor 11, EUI: elongated uppermost
internode, GA: gibberellins, GAZ20OX: gibberellin 2-oxidase, Gl: gigantea, H3k27me3: 3
methylation of lysine 27 in histone 3, HBI1: homolog of bee2 interacting with ibh 1,
MADSS57: MADS box transcription factor 57, PFD: Prefoldins, PHYB: phytochrome B,
RGA: repressor of GA, PIF4: phytochrome-interacting factor 4, FIF4-TCP: phytochrome-
interacting factor 4-teosinte branched 1-cycloidea—pcf, PKL: pickle, PRE&: paclobutrazol
resistance 6, SLR1: slender rice 1, XET: xyloglucan endotransglycosylase.

GA application promotes the
transcription of xyloglucan
endotransglycosylase (XET),
a and B-expansins.

Besides, DELLA proteins
physically interact  with
prefoldins and, after DELLA
degradation induced by GA,
free prefoldins are able to
bind B-tubulins and stabilize
them, thus affecting
microtubules orientation and
the direction of cell

expansion.
Recent data suggest a close
relationship between

GIGANTEA (Gl) is a plant specific
nuclear protein and functions in
diverse physiological processes such as
flowering time regulation, light
signaling, hypocotyl elongation,
control of circadian rhythm

Prefoldin (PFD) is a superfamily of
proteins used in protein folding
complexes. It is classified as a
heterohexameric molecular chaperone




Physiological Effect of Gibberallins

2- Genetic Dwarfism
3- Bolting and Flowering
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Mobilization of Storage Compound, Effect on
Seed Germination and Bud Dormancy
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Gibberellins

GA is used as a signal from the embryo that
turns on transcription of genes encoding
hydrolytic enzymes in the aleurone layer

-When GA binds to its receptor, it frees

GA-dependent transcription factors from a
repressor

-These transcription factors can now
directly affect gene expression
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GA receptors
helps in the Biosynthesis

Biosynthesis of GA with | of Gibberellins
GIDI | 1
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Fig.2 Mechanism of GA-mediated growth regulation in straw- A gibberellin receptor found in this model plant species; SLEEPY |
berry [GID1 {Gibberellin-Insensitive Dwarf 1): function in gibber- (SLY1): the F-box gene is a positive regulator of gibberellin signal-
ellin perception and signaling, Solanum lycopersicum homolog of ing in Arabidopsis: DELLA protein: aspartic acid-glutamic acid-leu-
GID1 receptors (SIGID1): A gibberellin receptor found in tomato cine—leucine—alanine |

plants; Arabidopsis thaliana homolog of GIDI receptors (AtGIDI):
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2- Control of seed germination and seedling growth
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a-Amylase synthesized in aleurone layer.

A

O-amylase converis sarch
o reducing sagars

Reducing sugars are used
by the growing embryo.



4- Effects of PGS on flower induction, initiation,
promotion and inhibition
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a- PGRs and flower promotion and inhibition
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Short-day (long-night) plant

Lnng-day (short- nlght) plant

Critical night length

Flowering response can
be manipulated by
short periods of red or
far-red radiation

applied during the dark
period of a long night
regime

Fig. 33.12A




Phytochrome

The control of flowering is determined by a substance called
phytochrome that exists in two forms.

Red light

E—
—

Far-red light

Stoy, convers©®®

in darknes®

All plants contain phytochrome — but they may respond
differently to the relative amounts of the two forms

Phytochrome is involved in other plant growth process in
addition to flowering







© Reception

@ Transduction

©® Response

CYTOPLASM

/Plasma
membrane

Phytochrome
activated
by light

Cell™
wall

1. Light signal detected
by phytochrome receptor;
phytochrome undergoes
change in shape, which
then activates at least
two signal transduction
pathways

Second messenger
produced

2. One pathway uses cGMP as 2"d
messenger that activates specific
protein kinase. Other pathway
involves increase in cytosolic level
of Ca?*, which activates different
protein kinase

Ca?* channel
opened

@
@

Ca2+ e @
@
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Specific
protein
kinase 2
activated

Tfanscription
factor 1
: | NUCLEUS

Transcription
factor 2

3. Both pathways lead to
expression of genes for

proteins that function in
Flowering, de-etiolation

Translation

(greening), germination, ... *

response

De-etiolation
(greening)
response
proteins




b- Effects of PGs on fruit set
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Effects of PGs on fruit growth and development
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Gibberellins

GAs are used
commercially to
extend internode
length in grapes
-The result is
larger grapes
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(b) Gibberellin-induced fruit
growth
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Cytokinins ;

Isopentenyl Pyrophosphate —3= —3 —3

a- Biosynthesis of cytokinins mmﬂhﬂlﬂrltrwu
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c- Bound versus free cytokinins
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d- Degradation (. %)

ool 5 au S0 il 0w ) S Sl CYL0X1AASE ahos g bikes b S 5w o 305
S o

e- Physiological effects of cytokinins

» Promotes cell division.

» Morphogenesis.

» Delay of senescence.

_ » Mobilization.

’ IN> Lateral bud development.



Function of cytokinins

* 1- Cell division and organ formation
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Control of Cell Division and Differentiation

* Cytokinins are so named because they stimulate cytokinesis
(cell division)

— Produced in actively growing tissues (roots, embryos, and
fruits)

* Work together with/auxin to control cell division/differentiation

— When concentration of both at certain levels, mass of cells
continues to grow, but remains cluster of undifferentiated
cells (callus)

* |f cytokinin levels increase, shoot buds develop
 If auxin level increase, roots form



Cytokinins

The plant pathogen Agrobacterium introduces
genes into the plant genome that increase

-Cause massive cell
division and formation
of a crown gall tumor

Agrobacterium tumefaciens
adsh J& 5 jlen
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2- Seed germination, cell and organ
enlargement
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3- Root initition and growth
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Control of Apical Dominance

* Cytokinins, auxin, and other factors interact in control of apical

dominance, terminal bud’s ability to suppress development of axillary
buds

— Direct inhibition hypothesis says auxin/cytokinins act
antagonistically in regulating axillary bud growth

e Auxin transported down shoot from apical bud directly inhibits
axillary buds from growing, causing stem to elongate

* Cytokinins entering shoot system from roots counter action by
signaling axillary buds to grow

* Does not account for all experimental findings



Lateral branches

“Stump” after
removal of
apical bud

emoved, enables lateral

branches to grow (removes inhibition)

(a) Apical bud intact (primary source of auxin) (c) Auxin added to decapitated stem
libition of growth of axillary buds, possibly influenced by prevents lateral branches from growing

blishing as gon Benjamgn Cumming

m apicaf bud; Tavors éfongation of shoot’s main axis




Fruit set and growth
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5- Delay of senescence and promotion of
translocation of nutrient and organ substances
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Anti-Aging Effects

e Cytokinins retard aging of some plant organs by
inhibiting protein breakdown, stimulating RNA and

protein synthesis, and mobilizing nutrients from
surrounding tissues

— If leaves removed from plant dipped in cytokinin
solution, stay greener much longer

— Also slows deterioration of leaves on intact plants
(used to spray on cut flowers to keep fresh)



Figure 4 The effect of ipt expression on the
senescence of detached leaves and leaf discs.
Detached leaves and leaf discs were incubated in
water or on wet filter paper in the dark at 24 °C
for 10-16 days. (a) Detached leaves from ipt-5,
10, 18, 21, 24, 28 and wild type (from left to
right) after 16 days of treatment. The arrows
show the roots produced from the cut surface of
the petiole. (b) Detached leaf discs from ipt-18
(left) and wild type (right) after 10 days. (c)
Detached leaf discs from ipt-5 (left) and wild
type (right) after 16 days. Some calli were
produced on the abaxial side of the leaf. Leaf
discs of wild type have become yellow and
rotten. (d) Calli along the veins of a leaf from
ipt-5.
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Abscisic acid (ABA)

a — Biosynthesis of Abscisic acid
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b- Occurrence
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d-Physiological etfects of ABA
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2- Defense against salt and temperature stress
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3.Dormancy

* -Effects of PGRs on Dormancy
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4. Abscission
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Ethylene

A- Biosynthesis of ethylene
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Effect of high temperature stress on ethylene biosynthesis,
respiration and ripening of ‘Hayward™ kiwifruit
M.D.C. Antunes **, E.M. Sfakiotakis "

= Universidade do Algarve, U.C.T.A., Campus de Gambelas, 8000 Faro, Portugal
® Laboratory of Pomology, Aristotle University, GR 540 06 Thessaloniki, Greece
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Abstract

Temperatures up to 35°C have been shown to increase ethylene production and ripening of propylene-treated
kiwifruit (Stavroulakis, G., Sfakiotakis, E.M., 1993. We attempted to study the regulation by high stress temperature
of the propylene induced ethylene biosynthesis and ripening in ‘Hayward” kiwifruit. “‘Hayward" kiwifruit were treated
with 130 pl/l propylene at temperatures from 30 to 45°C up to 120 h. Ethylene biosynthesis pathway and fruit
ripening were investigated. Propylene induced normal ripening of kiwifruit at 30-34°C. Fruit failed to ripe normally
at 38°C and above 40°C ripening was inhibited. Propylene induced autocatalytic ethylene production after a lag
period of 24 h at 30-34°C. Ethylene production was drastically reduced at 38°C and almost nil at 40°C. The
l-aminocyclopropane-1-carboxylic acid (ACC) content was similar at 30-38°C and was very low at 40°C. The
l-aminocyclopropane-1-carboxylate synthase (ACC synthase) and l-aminocyclopropane-1-carboxylate oxidase (ACC
oxidase) activities decreased with a temperature increase above 30°C, but ACC oxidase decreased at a faster rate than
ACC synthase. Fruit not treated with propylene showed no ripening response or ethylene production. However,
kiwifruit respiration rate increased with temperature up to 45°C. reaching the respiration peak in 10 h. At
temperatures up to 38°C, propylene treatment enhanced the respiration rate. After 48 h at 45°C, fruit showed injury
symptoms and a larger decrease in CO,. The results suggest that high temperature stress inhibits ripening by
inhibiting ethylene production and sensitivity while respiration proceeds until the breakdown of tissues. © 2000
Elsevier Science B.V. All rights reserved.



b- Properties of ethylene and structure/activity relationships
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Compound Formula Relative Activity
Ethylene CH, = CH, 1
Propylene CH,CH = CH, 100
Vinyl chloride CH, = CHCI 1,400
Carbon monoxide CO 2,700
Acetylene CH = CH 2,800
Vinyl fluoride CH, = CHF 4,300
Propyne CH,;C =CH 8,000
Vinyl methyl ether CH, = CH-O-CH; 100,000
1-Butene CH;CH,CH = CH, 270,000
Carbon dioxide CO, 300,000




c- Induction of ethylene by auxin
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ETHYLENE-INDUCED LEAF EPINASTY - TOMATO
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d- Stress ethylene production
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- Physiological effects of ethylene

1- Fruit ripening
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Fruit Ripening

* Immature fleshy fruit (tart, hard, green) protect them
from herbivores

* Ripe fruit attracts animals to disperse seeds

* Burst of ethylene production (positive feedback) in fruit
triggers ripening process (enzymatic breakdown of cell
wall softens fruit, conversion of starches/acids to sugars

makes them sweet)
— Moving air prevents ethylene accumulation/ carbon

dioxide prevents ethylene production = slows
ripening of stored fruits
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Wild-type Tomatoes

Gene for ethylene biosynthesis enzyme
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FIGURE 17.52 Effect of antisense ACO genes on ripening and spoilage of S. lycopersicum culfivar Ailsa Crafg fruit picked three weeks after

onset of ripening and stored af room temperature for three weeks. (Left) Fruits from the descendants of the original TOM13-antisense plants,
which generate about 5% of the normal amount of ethylene. They ripen fully but do not overripen and deferiorate. (Right) Fruits from wild-

type plants grown and stored under identical conditions. They produce normal amounts of ethvlene and consequently exhibit severe signs of
over-ripening.

Source: D. Grierson, University of Nottingham, UK; previously unpublished.
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f- Fruit ripering o g0 Ol )

©3lal ool V7
N a8 — 5 501kl alw s climacteric | 551 5 slse e Okiluy V0

D ls

SO iy 0387 BT 5o Doy (5SS 5 S s - )
Laberry i sldw 5 el = WULT - o — WAE (gl 51

shelf life _z1550 sl 050 Oy 55 b Y

(0,06 3 AOA, AVG dw 3 ) ks jew 93 S S 5b V7

0 g 9 bl 3103 S 593 b sl Ol V1




g- Prevention of fruit drop Oga0 (g 3 3 (S 5 ol
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h- Induction of fruit abscission
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2- Seedling growth
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3- Abscission
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6- Other physiological effects
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Flooding (Oxygen deprivation)

* Waterlogged soil lacks air spaces
that provide oxygen for cellular
respiration in roots

— Oxygen deprivation 2
ethylene causes some cells in
root cortex to undergo
enzymatic apoptosis =2 air gmEmssgeees
. - % ".l';‘,.‘;‘. Va]a}cg!ar
tubes provide oxygen to o B
submerged roots

Air tubes

Epidermis

(a) Control root (aerated) (b) Experimental root (nonaerated)



