بەنامرنامىاللە

- تمرین تحویلی سری دوم
- درس نظریه گراف آقای دکتر عینالله زاده
- دانشگاه صنعتی اصفهان ترم بهار ۱۴۰۲/۱۴۰۳
 - مهلت تحویل: سهشنبه ۲۸ / ۰۱ / ۱۴۰۳
 - ارادتمند شما سعید حمیدی

🗹 تمرينات تحويلي

Exercises

1. Degree Sequence

If G has vertices $v_1, v_2, ..., v_n$, the sequence $(d(v_1), d(v_2), ..., d(v_n))$ is called a degree sequence of G. Let $d:=(d_1, d_2, ..., d_n)$ be a nonincreasing sequence of nonnegative integers, that is, $d_1 \ge d_2 \ge ... \ge d_n \ge 0$. Show that:

- a. there is a graph with degree sequence d if and only if $\sum_{i=1}^{n} d_i$ is even,
- b. there is a loopless graph with degree sequence d if and only if $\sum_{i=1}^{n} d_i$ is even and $d1 \le \sum_{i=2}^{n} d_i$

2. Complement of a Graph

Let G be a simple graph. The complement \overline{G} of G is the simple graph whose vertex set is V and whose edges are the pairs of nonadjacent vertices of G.

- a. Express the degree sequence of \bar{G} in terms of the degree sequence of G.
- b. Show that if G is disconnected, then \overline{G} is connected. Is the converse true?

- 3.
- <u>n-Cube</u> The n-cube Q_n (n ≥ 1) is the graph whose vertex set is the set of all n-tuples of 0s and 1s, where two n-tuples are adjacent if they differ in precisely one coordinate.
- <u>boolean lattice</u> The boolean lattice BLn (n ≥ 1) is the graph whose vertex set is the set of all subsets of {1, 2,...,n}, where two subsets X and Y are adjacent if their symmetric difference has precisely one element.

Show that the n-cube Qn and the boolean lattice BLn are isomorphic.

4. Self-Complementary Graph

A simple graph is self-complementary if it is isomorphic to its complement. Show that:

- a. each of the graphs P_4 and C_5 is self-complementary,
- b. every self-complementary graph is connected,
- c. if G is self-complementary, then $n \equiv 0, 1 \pmod{4}$,
- d. every self-complementary graph on 4k + 1 vertices has a vertex of degree 2k.

5.

- a. Show that every nontrivial acyclic graph has at least two vertices of degree less than two.
- b. Deduce that every nontrivial connected acyclic graph has at least two vertices of degree one. When does equality hold?

6. An(X,Y)-path is a path which starts at a vertex of X, ends at a vertex of Y, and whose internal vertices belong to neither X nor Y.

Show that a graph G is connected if and only if there is an (X,Y)-path in G for any two nonempty subsets X and Y of V.

- 7. Prove the following theorems
 - In a tree, any two vertices are connected by exactly one path.
 - Every nontrivial tree has at least two leaves.
 - If T is a tree, then e(T) = v(T) 1.

8. Show that every tree is a bipartite graph.

9. Show that the graph G is a forest if and only if every connected subgraph of G be induced subgraph

10. Is $k_{2,3}$ isomorphic with the line graph of another graph (in other word, there exists G such that L(G) is isomorphic with this $k_{2,3}$)?
