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Objectives of  the section:

 Introducing the Phase Plane Analysis

 Introducing the Concept of  stability

 Stability Analysis of  Linear Time Invariant Systems

 Lyapunov Indirect Method in Stability Analysis of  Nonlinear Sys.

 Lyapunov Direct Method in Stability Analysis of  Nonlinear Sys.

 Invariant Sets and Stability Analysis of  Invariant Sets

Objectives
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Introducing

the Phase Plane Analysis
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Phase Plane Analysis

Phase Space form of  a Dynamical System:

ሶ𝑥1 = 𝑓1 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑚, 𝑡
ሶ𝑥2 = 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑚, 𝑡)

⋮
ሶ𝑥𝑛 = 𝑓𝑛 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑚, 𝑡

ሶ𝑋 = 𝐹 𝑋,𝑈, 𝑡

𝑋 ∈ ℝ𝑛 𝑈 ∈ ℝ𝑚

ሶ𝑋 = 𝐹 𝑋, 𝑈, 𝑡
𝑼 𝑿

ሶ𝑋 = 𝐹 𝑋, 𝑈
𝑼 𝑿

Time-Varying System Time-Invariant System
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Phase Plane Analysis

Phase Space form of  a Linear Time Invariant (LTI) System:

ሶ𝑿 = 𝑨𝑿 + 𝑩𝑼

𝑋 ∈ ℝ𝑛 𝑈 ∈ ℝ𝑚

 Multiple isolated equilibria

 Limit Cycle

 Finite escape time 

 Harmonic, sub-harmonic and almost periodic Oscillation

 Chaos

 Multiple modes of  behavior

Special Properties of  Nonlinear Systems:
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Phase Plane Analysis

Phase Plane Analysis is a graphical method for studying 

second-order systems respect to initial conditions by:

 providing motion trajectories corresponding to various initial 

conditions.

 examining the qualitative features of  the trajectories  

 obtaining information regarding the stability of  the equilibrium 

points

൞

ሶ𝑥1 = 𝑓1(𝑥1, 𝑥2)

ሶ𝑥2 = 𝑓2(𝑥1, 𝑥2)
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Phase Plane Analysis

Advantages of  Phase Plane Analysis:

 It is graphical analysis and the solution trajectories can be represented 

by curves in a plane

 Provides easy visualization of  the system qualitative 

 Without solving the nonlinear equations analytically, one can study the 

behavior of  the nonlinear system from various initial conditions.

 It is not restricted to small or smooth nonlinearities and applies equally 

well to strong and hard nonlinearities.

 There are lots of  practical systems which can be approximated by 

second-order systems, and apply phase plane analysis.
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Phase Plane Analysis

Disadvantage of  Phase Plane Method: 

 It is restricted to at most second-order

 graphical study of  higher-order is computationally and geometrically 

complex. 
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Phase Plane Analysis

Example: First Order NLTI System

ሶ𝒙 = 𝐬𝐢𝐧(𝒙)

𝑑𝑥

sin(𝑥)
= 𝑑𝑡

Analytical Solution

න
𝑥0

𝑥 𝑑𝑥

sin(𝑥)
= න

0

𝑡

𝑑𝑡

𝑑𝑥

𝑑𝑡
= sin(𝑥)

𝑡 = ln
cos 𝑥0 + cot(𝑥0)

cos 𝑥 + cot(𝑥)

Graphical Solution

-6 -4 -2 0 2 4 6

-1

-0.5

0

0.5

1

x

sin(x)
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Phase Plane Analysis

Concept of  Phase Plane Analysis:

 Phase plane method is applied to Autonomous Second Order System

 System response 𝑋 𝑡 = (𝑥1 𝑡 , 𝑥2(𝑡)) to initial condition 𝑋0 = 𝑥1 0 , 𝑥2 0

is a mapping from ℝ(Time) to ℝ2(𝑥1, 𝑥2)

 The solution can be plotted in the 𝑥1 − 𝑥2 plane called State Plane or Phase Plane

 The locus in the 𝑥1 − 𝑥2 plane is a curved named Trajectory that pass through 

point 𝑋0

 The family of  the phase plane trajectories corresponding to various initial conditions 

is called Phase portrait of  the system.

 For a single DOF mechanical system, the phase plane is in fact (𝑥, ሶ𝑥) plane

ሶ𝑥1 = 𝑓1(𝑥1, 𝑥2) ሶ𝑥2 = 𝑓2(𝑥1, 𝑥2)
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Phase Plane Analysis

Example: Van der Pol Oscillator Phase Portrait

x

x










ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 1 − 𝑥1
2 𝑥2 − 𝑥1

ሷ𝑥 − 1 − 𝑥2 ሶ𝑥 + 𝑥 = 0
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Phase Plane Analysis

Plotting Phase Plane Diagram:

Analytical Method

Numerical Solution Method

Isocline Method

Vector Field Diagram Method

Delta Method

Lienard’s Method

Pell’s Method
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Phase Plane Analysis

Analytical Method

 Dynamic equations of  the system is solved, then time parameter is omitted to 

obtain relation between two states for various initial conditions

൞

ሶ𝑥1 = 𝑓1(𝑥1, 𝑥2)

ሶ𝑥2 = 𝑓2(𝑥1, 𝑥2)

Solve 𝑥1 𝑡, 𝑋0 = 𝑔1(𝑡, 𝑋0)

𝑥2 𝑡, 𝑋0 = 𝑔2(𝑡, 𝑋0)
𝐹 𝑥1, 𝑥2 = 0

 For linear or partially linear systems



Advanced Dynamics (Mehdi Keshmiri, Fall 96)
14

Phase Plane Analysis

Example: Mass Spring System

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

For 𝑚 = 𝑘 = 1 : ሷ𝑥 + 𝑥 = 0

𝑥 𝑡 = 𝑥0 cos(𝑡) + ሶ𝑥0 sin(𝑡)

ሶ𝑥 𝑡 = −𝑥0 sin 𝑡 + ሶ𝑥0 cos(𝑡)

𝑥2 + ሶ𝑥2 = 𝑥0
2 + ሶ𝑥0

2

x

y

x2 + y2 - 4

-2 -1 0 1 2

-2

-1

0

1

2
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Phase Plane Analysis

Analytical Method

 Time differential is omitted from dynamic equations of  the system, then partial 

differential equation is solved 

൞

ሶ𝑥1 = 𝑓1(𝑥1, 𝑥2)

ሶ𝑥2 = 𝑓2(𝑥1, 𝑥2)

Solve
𝐹 𝑥1, 𝑥2 = 0

𝑑𝑥2
𝑑𝑥1

=
𝑓2(𝑥1, 𝑥2)

𝑓1(𝑥1, 𝑥2)

 For linear or partially linear systems
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Phase Plane Analysis

Example: Mass Spring System

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

For 𝑚 = 𝑘 = 1 : ሷ𝑥 + 𝑥 = 0

x

y

x2 + y2 - 4

-2 -1 0 1 2

-2

-1

0

1

2

ቊ
ሶ𝑥1 = 𝑥2
ሶ𝑥2 = −𝑥1

𝑑𝑥2
𝑑𝑥1

=
−𝑥1
𝑥2

න
𝑥20

𝑥2

𝑥2𝑑𝑥2 = න
𝑥10

𝑥1

−𝑥1𝑑𝑥1

𝑥2 + ሶ𝑥2 = 𝑥0
2 + ሶ𝑥0

2
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Phase Plane Analysis

Numerical Solution Method

Dynamic equations of the system is solved numerically (e.g. ode45) for various

initial conditions and time response is obtained, then two states are plotted in

each time.

Example: Pendulum ሷ𝜃 + sin 𝜃 = 0

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time(sec)

x
2
(t

)
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0
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x
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x
2

0 2 4 6 8 10
-1
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x
1
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Phase Plane Analysis

Isocline Method

Isocline: The set of  all points which have same trajectory slope

First various isoclines are plotted, then trajectories are drawn.

൞

ሶ𝑥1 = 𝑓1(𝑥1, 𝑥2)

ሶ𝑥2 = 𝑓2(𝑥1, 𝑥2)

𝑑𝑥2
𝑑𝑥1

=
𝑓2(𝑥1, 𝑥2)

𝑓1(𝑥1, 𝑥2)
= 𝛼 𝑓2 𝑥1, 𝑥2 = 𝛼𝑓1(𝑥1, 𝑥2)
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Phase Plane Analysis

Example: Mass Spring System

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

For 𝑚 = 𝑘 = 1 : ሷ𝑥 + 𝑥 = 0 ቊ
ሶ𝑥1 = 𝑥2
ሶ𝑥2 = −𝑥1

𝑑𝑥2
𝑑𝑥1

=
−𝑥1
𝑥2

= 𝛼

𝑥1 + 𝛼𝑥2 = 0

x

y

x2 + y2 - 4

-5 0 5
-5

0

5

Slope= 1

Slope= infinite

Slope= -1
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Phase Plane Analysis

Vector Field Diagram Method

Vector Field: A set of  vectors that is tangent to the trajectory

 At each point (𝑥1, 𝑥2) vector 
𝑓1(𝑥1, 𝑥2)
𝑓2(𝑥1, 𝑥2)

is tangent to the trajectories

 Hence  vector field can be constructed in the phase plane and direction of  the 

trajectories can be easily realized with that 

1 2

12

sin( ) 0

sin( )

x x

xx

 





 

   
   

   
f
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Phase Plane Analysis

 Singular point is an important concept which reveals great info about properties

of system such as stability.

 Singular points are only points which several trajectories pass/approach them

(i.e. trajectories intersect).

Singular Points in the Phase Plane Diagram:

Equilibrium points are in fact singular points in the phase plane diagram

𝑓1 𝑥1, 𝑥2 = 0

𝑓2 𝑥1, 𝑥2 = 0

Slope of the trajectories at

equilibrium points

𝑑𝑥2
𝑑𝑥1

=
0

0
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Phase Plane Analysis

Example: Using Matlab

x ' = y                  

y ' = - 0.6 y - 3 x + x2

 

 

 

 

 

 

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

x

y

ሷ𝑥 + 0.6 ሶ𝑥 + 3𝑥 + 𝑥2 = 0
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Phase Plane Analysis

Example: Using Maple Code

with(DEtools):
xx:=x(t):   yy:=y(t):    
dx:=diff(xx,t):    dy:=diff(yy,t):
e0:=diff(dx,t)+.6*dx+3*xx+xx^2:
e1:=dx-yy=0:
e2:=dy+0.6*yy+3*xx+xx^2=0:
eqn:=[e1,e2]:  depvar:=[x,y]:    
rang:=t=-1..5:  stpsz:=stepsize=0.005:
IC1:=[x(0)=0,y(0)=1]:
IC2:=[x(0)=0,y(0)=5]:
IC3:=[x(0)=0,y(0)=7]:
IC4:=[x(0)=0,y(0)=7]:
IC5:=[x(0)=-3.01,y(0)=0]:
IC6:=[x(0)=-4,y(0)=2]:
IC7:=[x(0)=1,y(0)=0]:
IC8:=[x(0)=4,y(0)=0]:
IC9:=[x(0)=-6,y(0)=3]:
IC10:=[x(0)=-6,y(0)=6]:
ICs:=[IC||(1..10)]:
lincl:=linecolour=sin((1/2)*t*Pi):
mtd:=method=classical[foreuler]:
phaseportrait(eqn,depvar,rang,ICs,stpsz,lincl,mtd);

ሷ𝑥 + 0.6 ሶ𝑥 + 3𝑥 + 𝑥2 = 0
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Phase Plane Analysis

Example: Using Maple Tools

ሷ𝑥 + 0.6 ሶ𝑥 + 3𝑥 + 𝑥2 = 0
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Phase Plane Analysis

Phase Plane Analysis for Single DOF Mechanical System

In the case of  single DOF mechanical system

ሷ𝑥 + 𝑔 𝑥, ሶ𝑥 = 0
𝑥1 = 𝑥

𝑥2 = ሶ𝑥

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = −𝑔(𝑥1, 𝑥2)

 The phase plane is in fact (𝑥 − ሶ𝑥) plane and every point shows the

position and velocity of the system.

 Trajectories are always clockwise. This is not true in the general phase plane

(𝑥1 − 𝑥2)
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Introducing

the Concept of Stability
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Stability, Definitions and Examples

 Stability analysis of a dynamic system is normally introduced in the state space

form of the equations.

ሶ𝑋 = 𝐹 𝑋,𝑈, 𝑡

𝑋 ∈ ℝ𝑛 𝑈 ∈ ℝ𝑚

 Most of the concepts in this chapter are introduced for autonomous systems

u x

Time-varying Dynamic System

u x

Autonomous Dynamic System

ሶ𝑿 = 𝑭 𝑿,𝑼

ሶ𝑿 = 𝑭 𝑿,𝑼, 𝒕
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Stability, Definitions and Examples

 Our main concern is the first type analysis. Some preliminary issues of the third

type analysis will be also discussed.

Stability analysis of  a dynamic system is divided in three 

categories:

1. Stability analysis of the equilibrium points of the systems. We study the behavior

(dynamics) of the free (unforced, 𝑢 = 0) system when it is perturbed from its

equilibrium point.

2. Input-output stability analysis. We study the system (forced system 𝑢 ≠ 0) output

behavior in response to bounded inputs.

3. Stability analysis of  periodic orbits. This analysis is for those systems which 

perform a periodic or cyclic motion like walking of  a biped or orbital motion of  a 

space object.
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Stability, Definitions and Examples

Reminder: 

𝑋𝑒 is said an equilibrium point of the system if once the system reaches this

position it stays there for ever, i.e. 𝑓 𝑋𝑒 = 0

Definition (Lyapunov Stability):

The equilibrium point 𝑋𝑒 is said to be stable (in the sense of Lyapunov stability) or

motion of the system about its equilibrium point is said to be stable if the system

states (𝑋) is perturbed away from 𝑋𝑒 then it stays close to 𝑋𝑒. Mathematically 𝑋𝑒 is

stable if

0)(,0   (0) ( ) 0e et t       x x x x
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Stability, Definitions and Examples

 Without loss of generality we can present our analysis about equilibrium point

𝑋𝑒 = 0, since the system equation can be transferred to a new form with zero

as the equilibrium point of the system.

𝑋 = 𝑌 − 𝑌𝑒ሶ𝑌 = 𝐹 𝑌

𝑌𝑒 ≠ 0

ሶ𝑋 = 𝐹 𝑋

𝑋𝑒 = 0

The equilibrium point 𝑋𝑒 is said to be stable (in the sense of Lyapunov stability)

or motion of the system about its equilibrium point is said to be stable if for any

𝑅 > 0, there exists 0 < 𝑟 < 𝑅 such that

A more precise definition: 

(0) ( ) 0e er t R t      x x x x
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Stability, Definitions and Examples

The equilibrium point 𝑋𝑒 = 0 is said to be 

Definition (Lyapunov Stability): 

Stable if

∀𝑅 > 0 ∃0 < 𝑟 < 𝑅 𝑠. 𝑡.

𝑋 0 < 𝑟 ֜ 𝑋 𝑡 < 𝑅 ∀𝑡 > 0

Unstable if  it is not stable.

Asymptotically stable if  it is stable and

∀𝑟 > 0 𝑠. 𝑡.

𝑋 0 < 𝑟 ֜ lim
𝑡→∞

𝑋(𝑡) = 0

Marginally stable if it is stable and not

asymptotically stable

Exponentially stable if it is asymptotically stable with an exponential rate

𝑋(0) < 𝑟 ֜ 𝑋(𝑡) < 𝛼𝑒−𝛽𝑡 𝑋(0) 𝛼, 𝛽 > 0
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Stability, Definitions and Examples

Example: Undamped Pendulum

ሷ𝜃 +
𝑔

𝑙
sin(𝜃) = 0 𝜃𝑒1 = 0 , 𝜃𝑒2 = 𝜋

 

RBrB

 𝜃𝑒1 is a marginally stable point and 𝜃𝑒2 is an unstable point
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Stability, Definitions and Examples

Example: damped Pendulum

ሷ𝜃 + 𝐶 ሶ𝜃 +
𝑔

𝑙
sin(𝜃) = 0 𝜃𝑒1 = 0 , 𝜃𝑒2 = 𝜋

 𝜃𝑒1is an exponentially stable point and 𝜃𝑒2 is an unstable point
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Stability, Definitions and Examples

stateform
1 22

1 22

2 1 1 2

(1 ) 0 0
(1 ) e e

x x
x x x x x x

x x x x


      

   


Example: Van Der Pol Oscillator

 𝑥𝑒 = 0 is an unstable point
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Stability, Definitions and Examples

Definition:

if the equil. point 𝑋𝑒 is asymptotically stable, then the set of all points

that trajectories initiated at these point eventually converge to the

origin is called domain of attraction.

Definition:

if the equil. point 𝑋𝑒 is asymptotically/exponentially stable, then the

equil. point is called globally stable if the whole space is domain of

attraction. Otherwise it is called locally stable.
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Stability, Definitions and Examples

The origin in the first order system of  ሶ𝑥 = −𝑥 is globally exponentially stable.

Example 1:

0 0( ) lim ( ) 0 0t

t
x x x t x e x t x


       

The origin in the first order system ሶ𝑥 = −𝑥3 is globally asymptotically but not

exponentially stable.

Example 2:

3 0
0

2

0

( ) lim ( ) 0
1 2 t

x
x x x t x t x

tx 
      


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Stability, Definitions and Examples

The origin in the first order system ሶ𝑥 = −𝑥2 is semi-asymptotically but not 

exponentially stable.

Example 3:

0

0
2 0

00 1/

lim ( ) 0 if 0

( )
lim ( ) if 01

t

t x

x t x
x

x x x t
x t xtx





 


     
  

Domain of  attraction is 𝑥0 > 0. 
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Stability, Definitions and Examples

Example 4: 
ሷ𝑥 + ሶ𝑥 + 𝑥 = 0
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Stability, Definitions and Examples

Example 5: 

ሷ𝑥 + 0.6 ሶ𝑥 + 3𝑥 + 𝑥2 = 0
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Stability, Definitions and Examples

Example 6: 

ሷ𝑥 + ሶ𝑥 + 𝑥3 − 𝑥 = 0



Advanced Dynamics (Mehdi Keshmiri, Fall 96)
41

Stability Analysis of

Linear Time Invariant Systems
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Phase Plane Analysis of LTI Systems

It is the best tool for study of the linear system graphically

This analysis gives a very good insight of linear systems behavior

The analysis can be extended for higher order linear system

Local behavior of the nonlinear systems can be understood from

this analysis

The analysis is performed based on the system eigenvalues and

eigenvectors.
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Phase Plane Analysis of LTI Systems

Consider a second order linear system:

 If the A matrix is nonsingular, origin is the only equilibrium point

of the system

 If the A matrix is singular then the system has infinite number of

equilibrium points. In fact all of the points belonging to the null

space of A are the equilibrium point of the system.

is non-singular e A x 0

 * *is singular | ( )e Null  A x x x A

ሶ𝑥 = 𝐴𝑥 𝐴 ∈ ℝ2×2 , 𝑥 ∈ ℝ2
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Phase Plane Analysis of LTI Systems

Consider a second order linear system:

ሶ𝑥 = 𝐴𝑥

𝐴 ∈ ℝ2×2 , 𝑥 ∈ ℝ2

The analytical solution can be obtained based on eigenvalues (𝜆1, 𝜆2):

If  𝜆1, 𝜆2 are real and distinct

If  𝜆1, 𝜆2 are real and similar

If  𝜆1, 𝜆2 are complex conjugate

𝑥 𝑡 = 𝐴𝑒𝜆1𝑡 + 𝐵𝑒𝜆2𝑡

𝑥 𝑡 = (𝐴 + 𝐵𝑡)𝑒𝜆𝑡

𝑥 𝑡 = 𝐴𝑒𝜆1𝑡 + 𝐵𝑒𝜆2𝑡

= 𝑒𝛼𝑡(𝐴 sin 𝛽𝑡 + 𝐵 cos(𝛽𝑡))
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Jordan Form (almost diagonal form)

This representation has the system eigenvalues on the leading diagonal, and either

0 or 1 on the super diagonal.

ሶ𝑥 = 𝐴𝑥 ሶ𝑦 = 𝐽𝑦

𝐽 =
𝐽1

⋱
𝐽𝑛

𝐽𝑖 =
𝜆𝑖 1

⋱ 1
𝜆𝑖

Obtaining Jordan form:

𝑦 = 𝑃−1𝑥

𝑃 = 𝑣1 … 𝑣𝑛

𝐽 = 𝑃−1𝐴𝑃
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Phase Plane Analysis of LTI Systems

The A matrix has 2 eigenvalues (either two real, or two complex

conjugates) and can have either two eigenvectors or one eigenvectors.

Four categories can be realized

1. Two distinct real eigenvalues and two real eigenvectors

2. Two complex conjugate eigenvalues and two complex

eigenvectors

3. Two similar (real) eigenvalues and two eigenvectors

4. Two similar (real) eigenvalues and one eigenvectors

A is non-singular: 
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Phase Plane Analysis of LTI Systems

1. Two distinct real eigenvalues and two real eigenvectors

ሶ𝑦 = 𝐽𝑦 𝐽 =
𝜆1 0
0 𝜆2

ሶ𝑦1 = 𝜆1𝑦1

ሶ𝑦2 = 𝜆2𝑦2

𝑦1 = 𝑦10𝑒
𝜆1𝑡

𝑦2 = 𝑦20𝑒
𝜆2𝑡

ln
𝑦1
𝑦10

= 𝜆1𝑡

ln
𝑦2
𝑦20

= 𝜆2𝑡

𝜆2
𝜆1
ln

𝑦1
𝑦10

= ln
𝑦2
𝑦20

𝑦1
𝑦10

𝜆2
𝜆1
=

𝑦2
𝑦20

𝑦2 =
𝑦20

𝑦10
𝜆2/𝜆1

𝑦1
𝜆2/𝜆1 𝑦2 = 𝐾𝑦1

𝜆2/𝜆1
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Phase Plane Analysis of LTI Systems

1. A ) 𝝀𝟐 < 𝝀𝟏 < 𝟎 𝑦2 = 𝐾𝑦1
𝜆2/𝜆1

 System has two eigenvectors 𝑣1, 𝑣2 the phase plane portrait is as the following

 Trajectories are:

 tangent to the slow eigenvector (𝑣1) for near the origin

 parallel to the fast eigenvector (𝑣2) for far from the origin

 The equilibrium point 𝑋𝑒 = 0 is called stable node

x ' = - 2 x 
y ' = - 12 y
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Phase Plane Analysis of LTI Systems

Example 7: ሷ𝑥 + 4 ሶ𝑥 + 2𝑥 = 0

ሶ𝑋 =
0 1
−2 −4

𝑋

det 𝜆𝐼 −
0 1
−2 −4

= 𝜆2 + 4𝜆 + 2 = 0 𝜆1 = −0.59 , 𝜆2 = −3.41

−0.59 −1
2 −0.59 + 4

𝑣1
1

𝑣1
2 = 0

𝑣1 =
0.86
−0.51

−3.41 −1
2 −3.41 + 4

𝑣1
1

𝑣1
2 = 0

𝑣2 =
−0.28
0.96
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X(0) = [-1,10]

X(0) = [-1,1]
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Phase Plane Analysis of LTI Systems

1. B ) 𝝀𝟐 > 𝝀𝟏 > 𝟎 𝑦2 = 𝐾𝑦1
𝜆2/𝜆1

 System has two eigenvectors 𝑣1 and 𝑣2 the phase plane portrait is opposite as

the previous one

 Trajectories are:

 tangent to the slow eigenvector 𝑣1 for near origin

 parallel to the fast eigenvector 𝑣2 for far from origin

 The equilibrium point 𝑋𝑒 = 0 is called unstable node

x ' = - 2 x 
y ' = - 12 y
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Phase Plane Analysis of LTI Systems

Example 8: ሷ𝑥 − 3 ሶ𝑥 + 2𝑥 = 0

ሶ𝑋 =
0 1
−2 3

𝑋

det 𝜆𝐼 −
0 1
−2 3

= 𝜆2 − 3𝜆 + 2 = 0 𝜆1 = 1 , 𝜆2 = 2

1 −1
2 1 − 3

𝑣1
1

𝑣1
2 = 0

2 −1
2 2 − 3

𝑣1
1

𝑣1
2 = 0
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X(0) = [-2,2]

X(0) = [-2,0.1]

𝑣1 =
−0.71
−0.71

𝑣2 =
−0.45
−0.89
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Phase Plane Analysis of LTI Systems

1. C ) 𝝀𝟐 < 𝟎 < 𝝀𝟏 𝑦2 = 𝐾𝑦1
𝜆2/𝜆1

 System has two eigenvectors 𝑣1 and 𝑣2, the phase plane portrait is as the

following

 Only trajectories along 𝑣2 are stable trajectories

 All other trajectories at start are tangent to 𝑣2 and at the end are tangent to 𝑣1

 This equilibrium point is unstable and is called saddle point

x ' = 3 x  
y ' = - 3 y
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Phase Plane Analysis of LTI Systems

Example 9: ሷ𝑥 − ሶ𝑥 − 2𝑥 = 0

ሶ𝑋 =
0 1
2 1

𝑋

det 𝜆𝐼 −
0 1
2 1

= 𝜆2 − 𝜆 − 2 = 0 𝜆1 = −1 , 𝜆2 = 2

−1 −1
−2 −1 − 1

𝑣1
1

𝑣1
2 = 0

𝑣1 =
−0.71
0.71

2 −1
−2 2 − 1

𝑣1
1

𝑣1
2 = 0

𝑣2 =
−0.45
−0.89
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X(0) = [1,0.5]

X(0) = [1,-1.5]
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Phase Plane Analysis of LTI Systems

2. Two complex conjugate eigenvalues and two complex eigenvectors

ሶ𝑦 = 𝐽𝑦 𝐽 =
𝛼 −𝛽
𝛽 𝛼

𝑟 ≡ 𝑦1
2 + 𝑦2

2

𝜃 ≡ tan−1(
𝑦2
𝑦1
)

𝑟 ሶ𝑟 = 𝑦1 ሶ𝑦1 + 𝑦2 ሶ𝑦2 = 𝑦1 𝛼𝑦1 − 𝛽𝑦2 + 𝑦2 𝛽𝑦1 + 𝛼𝑦2 = 𝛼𝑟2

ሶ𝜃 1 + tan𝜃2 =
𝑦1 ሶ𝑦2 − 𝑦2 ሶ𝑦1

𝑦1
2 =

𝑦1 𝛽𝑦1 + 𝛼𝑦2 − 𝑦2 𝛼𝑦1 − 𝛽𝑦2

𝑦1
2 = 𝛽 1 + tan𝜃2

ሶ𝑟 = 𝛼𝑟

ሶ𝜃 = 𝛽
𝑟 𝑡 = 𝑟0𝑒

𝛼𝑡 𝜃 𝑡 = 𝜃0 + 𝛽𝑡
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Phase Plane Analysis of LTI Systems

2. A ) 𝝀𝟐, 𝝀𝟏 = 𝜶 ± 𝜷𝒊 ,     𝜶 < 𝟎 ,𝜷 ≠ 𝟎

 System has no real eigenvectors the phase plane portrait is as the following 

 The trajectories are spiral around the origin and toward the origin.

 This equilibrium point is called stable focus.

𝑟 𝑡 = 𝑟0𝑒
𝛼𝑡

𝜃 𝑡 = 𝜃0 + 𝛽𝑡

x ' = - 2 x - 3 y
y ' = 3 x - 2 y  
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Phase Plane Analysis of LTI Systems

Example 10: ሷ𝑥 + ሶ𝑥 + 𝑥 = 0

ሶ𝑋 =
0 1
−1 −1

𝑋

det 𝜆𝐼 −
0 1
−1 −1

= 𝜆2 + 𝜆 + 1 = 0 𝜆1, 𝜆2 = −0.5 ± 0.866𝑖

x ' = y      
y ' = - x - y
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x(0) = [1,-2]

X(0) = [1,2]
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Phase Plane Analysis of LTI Systems

2. B ) 𝝀𝟐, 𝝀𝟏 = 𝜶 ± 𝜷𝒊 ,     𝜶 > 𝟎 ,𝜷 ≠ 𝟎

 System has no real eigenvectors the phase plane portrait is as the following 

 The trajectories are spiral around the origin and diverge from the origin.

 This equilibrium point is called unstable focus.

𝑟 𝑡 = 𝑟0𝑒
𝛼𝑡

𝜃 𝑡 = 𝜃0 + 𝛽𝑡

x ' = - 2 x - 3 y
y ' = 3 x - 2 y  
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Phase Plane Analysis of LTI Systems

Example 11: ሷ𝑥 − ሶ𝑥 + 𝑥 = 0

ሶ𝑋 =
0 1
−1 1

𝑋

det 𝜆𝐼 −
0 1
−1 1

= 𝜆2 − 𝜆 + 1 = 0 𝜆1, 𝜆2 = 0.5 ± 0.866𝑖

x ' = y      
y ' = - x + y
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X(0) = [1,2]

X(0) = [1,-2]
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Phase Plane Analysis of LTI Systems

2. C ) 𝝀𝟐, 𝝀𝟏 = ±𝜷𝒊 ,     𝜶 = 𝟎 ,𝜷 ≠ 𝟎

 System has two imaginary eigenvalues and  no real eigenvectors the phase plane 

portrait is as the following 

 The trajectories are closed trajectories around the origin.

 This equilibrium point is marginally stable and is called center.

𝑟 𝑡 = 𝑟0𝑒
𝛼𝑡

𝜃 𝑡 = 𝜃0 + 𝛽𝑡

x ' = 3 y  
y ' = - 3 x
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Phase Plane Analysis of LTI Systems

Example 12: ሷ𝑥 + 3𝑥 = 0

ሶ𝑋 =
0 1
−3 0

𝑋

det 𝜆𝐼 −
0 1
−3 0

= 𝜆2 + 3 = 0 𝜆1, 𝜆2 = ±1.732𝑖

x ' = y    
y ' = - 3 x
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X(0) = [1,-2]

X(0) = [1,2]
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Phase Plane Analysis of LTI Systems

3. Two similar (real) eigenvalues and two eigenvectors

ሶ𝑦 = 𝐽𝑦 𝐽 =
𝜆 0
0 𝜆

ሶ𝑦1 = 𝜆𝑦1

ሶ𝑦2 = 𝜆𝑦2

𝑦1 = 𝑦10𝑒
𝜆𝑡

𝑦2 = 𝑦20𝑒
𝜆𝑡

𝑦1
𝑦2

=
𝑦10
𝑦20

𝑦2 = 𝐾𝑦1
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Phase Plane Analysis of LTI Systems

x ' = 2 x
y ' = 2 y
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𝜆 < 0

3 ) 𝝀𝟐 = 𝝀𝟏 = 𝝀 ≠ 𝟎

 System has two similar eigenvalues and two different eigenvectors. The phase 

plane portrait is as the following, depending to the sign of  𝜆

 The trajectories are all along the initial conditions and they are 𝜆 < 0 toward 𝜆

> 0 or outward the origin      
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Phase Plane Analysis of LTI Systems

4. Two similar (real) eigenvalues and One eigenvectors

ሶ𝑦 = 𝐽𝑦 𝐽 =
𝜆 1
0 𝜆

ሶ𝑦1 = 𝜆𝑦1 + 𝑦2

ሶ𝑦2 = 𝜆𝑦2

𝑦1 = 𝑦10𝑒
𝜆𝑡 + 𝑦20𝑡𝑒

𝜆𝑡

𝑦2 = 𝑦20𝑒
𝜆𝑡

𝑦1 = 𝑦10
𝑦2
𝑦20

+ 𝑦2
1

𝜆
ln(

𝑦2
𝑦20

)

𝑦1 = 𝑦2(
𝑦10
𝑦20

+
1

𝜆
ln

𝑦2
𝑦20

)
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𝜆 > 0
𝜆 < 0

4 ) 𝝀𝟐 = 𝝀𝟏 = 𝝀 ≠ 𝟎

 System has two similar eigenvalues and only one eigenvector. The phase plane 

portrait is as the following, depending to the sign of  𝜆

 The trajectories converge to zero or diverge to infinity along the system 

eigenvector.  

x ' = 0.5 x + y
y ' = 0.5 y    
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Phase Plane Analysis of LTI Systems

Example 13: ሷ𝑥 + 2 ሶ𝑥 + 𝑥 = 0

ሶ𝑋 =
0 1
−1 −2

𝑋

det 𝜆𝐼 −
0 1
−1 −2

= 𝜆2 + 2𝜆 + 1 = 0 𝜆1, 𝜆2 = −1

−1 −1
1 −1 + 2

𝑣1
1

𝑣1
2 = 0

𝑣1 =
−0.71
0.71
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X(0) = [2,3]

X(0) = [2,-4]
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A is singular (𝒅𝒆𝒕 𝑨 = 𝟎): 

 System has at least one eigenvalue equal to zero and therefore infinite

number of equilibrium points. Three different categories can be specified

 𝜆1 = 0 ,   𝜆2 ≠ 0

 𝜆1, 𝜆2 = 0 ,   𝑅𝑎𝑛𝑘 𝐴 = 1

 𝜆1, 𝜆2 = 0 ,   𝑅𝑎𝑛𝑘 𝐴 = 0
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1) 𝝀𝟏 = 𝟎 ,   𝝀𝟐 ≠ 𝟎 ሶ𝑦 = 𝐽𝑦

ሶ𝑦1 = 0

ሶ𝑦2 = 𝜆𝑦2

𝑦1 = 𝑦10

𝑦2 = 𝑦20𝑒
𝜆𝑡

𝐽 =
0 0
0 𝜆

 System has infinite number of  non-isolated equilibrium points along a line

 System has two eigenvectors. Eigenvector corresponding to zero eigenvalue is in 

fact loci of  the equilibrium points

 Depending on the sign of  the second eigenvalue, all the trajectories move 

inward or outward to 𝑣1 along 𝑣2

x ' = 0  
y ' = 2 y
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Phase Plane Analysis of LTI Systems

Example 14: ሷ𝑥 + ሶ𝑥 = 0

ሶ𝑋 =
0 1
0 −1

𝑋

det 𝜆𝐼 −
0 1
0 −1

= 𝜆2 + 𝜆 = 0 𝜆1 = 0 , 𝜆2 = −1

0 −1
0 1

𝑣1
1

𝑣1
2 = 0

𝑣1 =
1
0

−1 −1
0 −1 + 1

𝑣2
1

𝑣2
2 = 0

𝑣2 =
1
−1
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2) 𝝀𝟏, 𝝀𝟐 = 𝟎 ,   𝑅𝑎𝑛𝑘 𝐴 = 1 ሶ𝑦 = 𝐽𝑦

ሶ𝑦1 = 𝑦2

ሶ𝑦2 = 0

𝑦1 = 𝑦20𝑡 + 𝑦10

𝑦2 = 𝑦20

𝐽 =
0 1
0 0

 System has infinite number of non-isolated equilibrium points along a line

 System has only one eigenvector, and it is loci of the equilibrium points

 All the trajectories move toward infinity along the system eigenvector (unstable

system).
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2) 𝝀𝟏, 𝝀𝟏 = 𝟎 ,   𝑅𝑎𝑛𝑘 𝐴 = 0

ሶ𝑦 = 𝐽𝑦

ሶ𝑦1 = 0

ሶ𝑦2 = 0

𝑦1 = 𝑦10

𝑦2 = 𝑦20

𝐽 =
0 0
0 0

 System is a static system. All the points are equilibrium points
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Summary

Six different type of  isolated equilibrium points can be identified 

Stable/unstable node

Saddle point

Stable/ unstable focus

Center
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Stability Analysis of  Higher Order Systems:

Analysis and results for the second order LTI system can be 

extended to higher order LTI system

Graphical tool is not useful for higher order LTI system except for 

third order systems. 

This means stability analysis of  mechanical system with more than 

one DOF can not be materialized graphically 

Stability analysis is performed through the eigenvalue analysis of  the 

A matrix.
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Consider a linear time invariant (LTI) system

Origin is the only equilibrium point of the system if A is non-

singular

Otherwise the system has infinite number of equilibrium points, all

the points on null-space of A are in fact equil. points of the system.

 
det( ) 0

* *| Nullspace( )e



 
A

x = Ax x x x A



 

x = Ax Bu

y Cx Du

det( ) 0

e




A

x = Ax x 0
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Details for Case of  Non-Singular A

Origin is the only equilibrium point of  the system

 This equilibrium point (system) is

 Exponentially stable if  all eigenvalues of  A are either real 

negative or complex with negative real part.

Marginally stable if  eigenvalues of  A have non-positive real part 

and 𝑟𝑎𝑛𝑘 𝐴 − 𝜆𝐼 = 𝑛 − 𝑟 for all repeated imaginary 

eigenvalues, 𝜆 with multiplicity of  r

 Unstable, otherwise.



Advanced Dynamics (Mehdi Keshmiri, Fall 96)
75

Phase Plane Analysis of LTI Systems

A is Non-Singular

 Classification of the equilibrium point of higher order system into

node, focus, and saddle point is not as easy as second order system.

However some points can be emphasized:

 The equilibrium point is stable/unstable node if all

eigenvalues are real and have the negative/positive sign.

 The equilibrium point is center if a pair of eigenvalues are pure

imaginary complex conjugate and all other eigenvalues have

negative real

 In the case of different sign in the real part of the eigenvalues

trajectories have the saddle type behavior near the equilibrium

point
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Trajectories are along the eigenvector with minimum absolute

real part near the equilibrium point and along the eigenvector

with maximum absolute real part.

Trajectories have spiral behavior if there exist some complex

(obviously conjugates) eigenvalues.

Spiral behavior is toward/outward depending on the sign

(negative and positive) of real part of the complex conjugate

eigenvalues.

 These concepts can be visualized and better understood in three

dimensional case
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Lyapunov Indirect Method in 

Stability Analysis of 

Nonlinear Systems
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 There are two conventional approaches in the stability analysis of

nonlinear systems:

 Lyapunov direct method

 Lyapunov indirect method or linearization approach

 The direct method analyzes stability of the system (equilibrium

point) using the nonlinear equations of the system

 The indirect method analyzes the system stability using the

linearized equations about the equilibrium point.
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A nonlinear system near its equilibrium point behaves like a linear:

• Nonlinear system:

• Equilibrium point:

• Motion about equilibrium point:   

• Linearized motion:

• It means near 𝑥𝑒 :         

Motivation: 

( )x f x

( ) 0 e f x x

ˆ
e x x x

ˆ ˆ( ) ( ) ( )e e    x f x x f x x f x ˆ H.O.T ˆ ˆ

e


  



xx

x xx A
f

if

ˆ ˆ ˆ( )
e 

  
x 0

x f x x Ax x x≅
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This means stability of the equilibrium point may be studied

through the stability analysis of the linearized system.

This is the base of the Lyapunov Indirect Method

Example: in the nonlinear second order system

origin is the equilibrium point and the linearized system is given by

2

1 2 1 2

2 2 1 1 1 2

cos

(1 ) sin

x x x x

x x x x x x

 

   

1 11 1

202 2 1 2

ˆ ˆˆ ˆ

ˆˆ ˆ ˆ ˆ
e

x xx x

xx x x x

      
              x

f

x
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Theorem (Lyapunov Linearization Method):

 If the linearized system is strictly stable (i.e. all eigenvalues of A are

strictly in the left half complex plane ) then the equilibrium point in

the original nonlinear system is asymptotically stable.

 If the linearized system is unstable (i.e. in the case of right half plane

eigenvalue(s) or repeated eigenvalues on the imaginary axis with

geometrical deficiency ( 𝑟 > 𝑛 − 𝑟𝑎𝑛𝑘(𝜆𝐼 − 𝐴) ), then the

equilibrium point in the original nonlinear system is unstable.

ˆ ˆ isstrictlystable ( ) isasymptoticallystable  x Ax x f x

ˆ ˆ isunstable ( ) isunstable  x Ax x f x



Advanced Dynamics (Mehdi Keshmiri, Fall 96)
82

Lyapunov Indirect Method

Theorem (Lyapunov Linearization Method):

 If the linearized system is marginally stable (i.e. all eigenvalues of A are in the left

half complex plane and eigenvalues on the imaginary axis have no geometrical

deficiency) then one cannot conclude anything from the linear approximation. The

equilibrium point in the original nonlinear system may be stable, asymptotically

stable, or unstable.

 The Lyapunov linearized approximation method only talks about the local stability

of the nonlinear system, if anything can be concluded.

( ) is asymptoticallystable

ˆ ˆ is marginallystable ( ) is marginallystable

( ) is unstable




  
 

x f x

x Ax x f x

x f x
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 The nonlinear system ሶ𝑥 = 𝑎𝑥 + 𝑏𝑥5 is

 Asymptotically stable if  𝑎 < 0

 Unstable if  𝑎 > 0

 No conclusion from linear approximation can be drawn if  

 The origin in the nonlinear second order system

is unstable because the linearized system                                   is 

unstable

Example 15: 

2

1 2 1 2

2 2 1 1 1 2

cos

(1 ) sin

x x x x

x x x x x x

 

   
1 1

22

ˆ ˆ1 0

ˆ1 1ˆ

x x

xx

     
    
     



Advanced Dynamics (Mehdi Keshmiri, Fall 96)
84

Lyapunov Direct Method in 

Stability Analysis of 

Nonlinear Systems
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Physical Motivation: Consider a single DOF damped nonlinear system 

 Kinetic energy of  the system:

 Potential energy of  the system:  

 Let us define:

 It is clear that:

1.

2.

3 0 , , 0mx cx kx m c k   

21/ 2T mx

3 4

0
1/ 4

x

U k d kx  

2 4( , ) 1/ 2 1/ 4V x x E T U mx kx    

(0,0) 0V 

𝑉(𝑥, ሶ𝑥) > 0 ∀(𝑥, ሶ𝑥) ≠ (0,0)
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3. Furthermore:

 This means if  we consider the mechanical energy of  the system:

 It is always positive except at the equilibrium point which is zero

 It is decreasing while the system is in motion.

 Rate of  the decrease equals to the power of  the damping force

 Therefore V converges to zero

3 2( , ) ( ) 0V x x mx kx x cx    
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 It declares that once the system is perturbed from its equilibrium 

point  at origin, the motion of  the system is such that the total energy 

is decreasing and the system moves toward the rest position

 This is the meaning of  the stability of  the equilibrium point. 
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Theorem: Let           be an equilibrium point for                and let

be a continuously differentiable function on a neighborhood D of     

such that:

1.

2.

3.

then            is locally ( in D ) stable.

Moreover it is asymptotically stable if  

x 0 ( )x f x

( ) : , nV D R D R x

x 0

(0) 0V 

( ) 0 { }V D   x x 0

( ) 0V D  x x

x 0

( ) 0 { }V D   x x 0
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Definition: with the above characteristics is called Lyapunov

function

The surface                 for some          is called Lyapunov surface or 

level surface 

Note that for a dynamic system with state-space equations

is calculated as the following

( )V x

( )V cx 0c 

( )x f x

( ) ( )
V V

V
    

    
    

x x f x
x x

( )V x
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Example 1 (local stability):

 Lyapunov candidate function:

 For this candidate function

 Therefore            is a Lyapunov function and the equilibrium point 

is locally stable 

2

( ) (1 cos )
2

V


  x

sin( ) 0    

2

1. (0,0) ( 0, 0) 0

2. 0 ( , ) (0,0) &

3. (sin ) 0 ( , ) (0,0)

V V

V

V

 

    

     


   


      


       


( )V x
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Example 2  (asymptotic stability):

 System equations

 Lyapunov candidate function

 Then

 Therefore            is a Lyapunov function and the equilibrium point 

is locally asymptotic stable

2 2

1 2( )V x x x

2 2 2

1 1 1 2 1 2

2 2 2

2 1 1 2 1 2

( 2) 4

( 2) 4

x x x x x x

x x x x x x

   

   

1 2

1 22 2 2 2

1 2 1 2 2 2

1 2 1 2

1. (0,0) 0

2. 0 ( , ) (0,0)

( , ) (0,0) &
3. 2( )( 2) 0

( , ) 2

V

V x x

x x
V x x x x

x x x x







   


 
    

  

( )V x
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Positive Definite Function:

 function                                          satisfying : 

1.

2.

is called positive definite in D.

 If  it satisfies a weaker condition                                             it is 

positive  semi-definite

 Function            is negative (semi) definite if             is positive 

(semi) definite

( ) : , nV D R D R x

(0) 0V 

( ) 0 { }V D   x x 0

( ) 0 { }V D   x x 0

( )V x ( )V x



Advanced Dynamics (Mehdi Keshmiri, Fall 96)
93

Lyapunov Direct Method

 As an example we are already familiar with positive (semi) definite 

quadratic function

where the symmetric matrix               is positive (semi) definite matrix, 

i.e. for all eigenvalues of       we have

Stability Theorem: The origin is stable if  there is a continuously 

differentiable , P.D. function 𝑉(𝑿) such that ሶ𝑉(𝑿) is N.S.D., and it is 

asymptotically stable if  ሶ𝑉(𝑿) is N.D.     

( ) TV x x Px

TP P

P

(1,2,..., ) 0ii n    
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Global Asymptotic  Stability: Being                is not enough to have 

global stability. The Lyapunov function should be radially unbounded as 

well, i.e. 
( )V  x x

Theorem: Assume there exists a scalar function 𝑉(𝑿) with continuous 

first order derivative in x such that

1. 𝑉(𝑿) is positive definite

2. ሶ𝑉(𝑿) is negative definite

3. 𝑉(𝑿) is radially bounded

then the origin is globally asymptotically stable

nD R
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Example 3:

A class of  first order system defined by:

 Since           is continuous, it means 

 Intuitively this condition implies that             pushes the system 

back to the origin (rest position)

We can see that                  is a Lyapunov function and satisfies 

all the globally asymptotically stability conditions.

( ) with ( ) 0 0x c x xc x x    

( )c x

(0) 0c ( )c x

2( )V x x

(0) 0, 0 ( 0), ( )

2 2 ( ) 0 ( 0)

V V x x V x

V xx xc x x

     

     
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 Therefore the origin is globally asymptotically stable

 and               are two other examples of  this type 

of  first order systems

2sinx x x  3x x 
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Example 4:

2. A class of  second order system defined by

( ) 0 0
( ) ( ) 0 with  

( ) 0 0

xb x x
x b x c x

xc x x

  
   

  
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Example 4:

The candidate function

is a Lyapunov function and satisfies the following conditions

2

0

1
( , ) ( )

2

x

V x x x c d   

 

(0,0) 0,

0 ( , ) (0,0),

( ) ( ) 0 ( , ) (0,0)

V

V x x

V x c x x xb x x x



  

      
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Example 4:

 This means the origin is at least stable (nothing can be said 

about the asymptotically stability so far).

 Clearly      is decreasing till              At this state

 There can be two cases for this zero velocity state:

a) then the system is at its equilibrium point and stays 

there

b) then since                 we conclude

V 0.V 

0 0V x  

0x 

0x  ( ) 0c x  0x 
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Example 4:

 This means the system moves away from this          state and 

again              decreases till it comes to the rest position          .

 Therefore the origin complies with the asymptotic stability 

conditions as well.

 Since                  is unbounded as              then              also 

satisfies the radially unbounded condition, i.e.,

Hence it can be stated that the origin is globally asymptotically 

stable (g.a.s.)equilibrium point.

(0,0)( , )V x x

( ,0)x

( , )V x x

 , ( , )
T

x x V x x 

0
( )

x

c d  x 
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Example 4:

 Following examples are from this category

0x x x  

3 5 4 2sin 0x x x x x   
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Facts about Lyapunov Direct Method and Lyapunov Functions:

 Lyapunov direct method is established by introducing a positive 

definite candidate function, 𝑉(𝑿) , and evaluation of  negative 

difinite-ness of  ሶ𝑉(𝑿).

 This method is totally depended on introduction of  the Lyapunov 

function.

 Lyapunov direct method is a necessary condition. Failing in the 

candidate function does not mean instability

 A Lyapunov function is strictly defined based on the give system 

equations
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Facts about Lyapunov Direct Method and Lyapunov Functions:

 If            is a Lyapunov function (positive definite function with 

negative (semi) definite time derivative), then

is also a Lyapunov function.

 Addition, and multiplication of  two Lyapunov functions construct 

a new Lyapunov function

( )V x

1( ) ( ) with 0, 0V x V x    

1 2 1 2

1 2 1 2 1 2

( ) ( ) ( ) 0 ( ) ( ) ( ) 0

( ) ( ) ( ) 0 ( ) ( ) ( ) ( ) ( ) 0

V V V V V V

V V V V V V V V

      

     

x x x x x x

x x x x x x x x
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Facts about Lyapunov Direct Method and Lyapunov Functions:

 Conclusions like local stability or marginal stability are the least 

conclusions and a better selection of  candidate function may lead 

to stronger conclusions.

 In general a Lyapunov function may be pure mathematical 

function, however a physical understanding of  the system can help 

in selection of  good candidate for Lyapunov Function
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 A new candidate function, 

leads to                                    which is a negative definite function 

and concludes locally asymptotically stability. 

 This new function has less physical meaning to the system

 
2

21
( ) 2(1 cos )

2
V         

  
x

2( sin )V     

Example 5:

for a damped pendulum, 

 Candidate function,                                             which is the 

mechanical energy of  the system leads to                 which is 

negative semi definite. Therefore only local stability is concluded. 

sin( ) 0    

2( ) (1 cos ) / 2V    x
2V  
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The main question in the analysis 

of  dynamic system using 

Lyapunov direct method is how 

to obtain the Lyapunov function
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Linear system analysis based on Lyapunov Direct Method:

We already know how to analyze stability of  a linear system,                

through its eigenvalues. 

We know that for any positive definite matrix, P, function                

is a positive definite.

Starting from a positive definite matrix, P we may come up with a 

negative semi definite derivative for 

x Ax

TV  x Px

( )

T T T T T T

T T T

V V V

V



      

    

Q

x Px x Px x Px x A Px x PAx

x A P PA x x Qx
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Theorem: A necessary and sufficient condition for a LTI system to 

be strictly stable (asymptotically stable) is that, for any given P.D. 

matrix Q, the unique matrix P, solution of  the Lyapunov equation,                          

, to be symmetric positive definite.

Since Q can be any positive definite matrix, a simple choice for Q is 

the identity matrix.

Short conclusion:

This theorem is very much applicable in the control design for 

linear systems

T   A P PA Q

0 strictlystable

select 0 solve 0 noconclusionT

 

       



P

Q A P PA Q P

P 0 unstablesystem







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Example 6:

Solution                           , therefore the system is asym. stable.

0 4

8 12

 
   

  
x Ax A

Q = I

T   A P PA Q

5 11
0

1 116

 
  

 
P

11 12 11 12

12 22 12 22

0 4 0 8 1 0

8 12 4 12 0 1

p p p p

p p p p

         
         

           
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Analysis of  some nonlinear systems:

 Theorem (Krasovskii): consider the autonomous system,            

with origin as the equilibrium point.  Let                                denotes 

the Jacobian matrix of  the system at this equilibrium point. If  the 

matrix                    is negative definite in a neighborhood       then the 

equilibrium point is asymptotically stable. A Lyapunov function for 

the system is                        . Moreover if      is the whole space       

and                                        Then the equilibrium point is globally 

asymptotically stable.

T
F = A + A

 ( ) /  A f x x

( )x f x

( ) ( )TV  f x f x 

lim asV  x


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Lyapunov Direct Method

Example 7:

System:

 Jacobian:  

F matrix:

Lyapunov function: 

Asymptotically stability:

1 1 2

3

2 1 2 2

6 2

2 6 2

x x x

x x x x

  

  

3

2

6 2

2 6 6x

 
   

   

f
A

x

3

2

12 4
0

4 12 12

T

x

 
    

  
F A A

lim asV  x

2 3 2

2 1 2 2( ) ( 6 2 ) (2 6 2 )TV x x x x x      f f
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Theorem (Generalized Krasovskii Thm): consider the 

autonomous system,                with origin as the equilibrium point 

and the Jacobian matrix,                               . Then a sufficient 

condition for the origin to be asymptotically stable is that there exist 

two positive definite matrices, P and Q, such that            , the 

matrix                               is negative semi definite in some 

neighborhood      of  the origin. The function                  is then a 

Lyapunov function for the system. Moreover if      is the whole 

space and                                       Then the equilibrium point is 

globally asymptotically stable.

( )x f x

 ( ) /  
x=0

A f x x

T F = A P PA + Q

 TV  f Pf



lim asV  x

 x 0
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Physically motivated Lyapunov function (Positioning a robotic 

system:

Robotic system: 

Controller (PD controller with gravity compensator):

Closed loop system dynamics:

Lyapunov candidate function:

Mq +h(q,q)+g(q) = τ

D p τ K q-K q+g(q)

D p Mq+h(q,q)+K q K q 0

 
1

( )
2

T T

pV q,q q Mq + q K q
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Time derivative of  V

Therefore the system is locally stable.

Both from physics and mathematics of  the system it can be realized 

that the system cannot be stuck at non-zero position, i.e.,           . 

This means motion of  the system is continued to V=0. Therefore, 

the system is locally asymptotically stable.

Since the Lyapunov function satisfies the radially unbounded 

condition, the system is in fact globally asymptotically condition.

 
input power

( ) 0T T T T

p p D

d
V KE

dt
       q K q q τ g(q) q K q q K q

q 0
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Controller Design Using Lyapunov Direct Method :

Dynamic system: 

Proposed controller:

Closed loop system dynamics:

 are selected such that:

Then the closed loop system will be globally asymptotically stable

For example: 

3 2x x x u  

1 2( ) ( )u u x u x 

   3 2

1 2( ) ( ) 0x x u x x u x    

 

 

2

2

3

1

( ) 0 0

( ) 0 0

x x u x x

x x u x x

   

   

3 3

2 1

1
( ) ( ) ( ) 2

2
u x x x u x x    

1 2( )and ( )u x u x
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Invariant Sets 

and 

Stability Analysis of Invariant Sets
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Invariant Set

Definition: a subset M of  the state space is called an Invariant Set 

for the dynamic system of                 if   

Examples: Equilibrium points, Whole state space, Attraction region, 

Limit cycle, A set of  trajectories.

 Invariant set is an extension to the equilibrium point

 Analysis for the equilibrium points, like stability analysis, can be 

extended to the invariant sets.

( )x f x

(0) ( ) 0t t    x xM M  
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Periodic or Closed Orbital Motions:

 A system oscillates when it has a nontrivial (non-constant) periodic 

solution

 The image of  a periodic solution in the phase portrait is a closed 

trajectory, called periodic orbit or closed orbit.

 There are two types of  closed trajectory in dynamical systems

1. Closed trajectories around center equilibrium point (harmonic 

oscillation). 

2. Closed trajectories called limit cycles

( ) ( )t T t x x
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Invariant Set

Harmonic oscillations in a dynamic system

 are not unique or isolated. 

 make a continuum of  closed orbit.

 have amplitudes depended on the initial 

conditions.

 are not robust and any perturbation, i.e. 

the system moves in a new closed 

trajectory

Example: non-damped pendulum, spring-

mass systems

sin( ) 0x x 

0x x 
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Another example 1  

0

0

0

0

U

U






 
 

 1 
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Limit cycles:

 can be realized only in nonlinear systems

 are isolated closed orbits and do not make 

a continuum set of  closed orbits. 

 have amplitude independent  of  the initial 

conditions.

 are difficult both in realization and analysis.

Example: Van Der Pole system

2(1 ) 0x x x x   

0.2 

1 

5 
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 There are three type of  limit cycles:

1) Stable Limit Cycle

Polar Coordinates

Example:
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 There are three type of  limit cycles:

1) Unstable Limit Cycle

Polar Coordinates

Example:
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 There are three type of  limit cycles:

1) Semi-stable Limit Cycle

Polar Coordinates

Example:
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Example 7: Van Der Pole system

2(1 ) 0x x x x   

0  0 Unstable Limit Cycle Stable Limit Cycle

Stable Equilibrium Point Unstable Equilibrium Point
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Example 9: The system

has two equilibrium points at (0, 0) and (1, 1). The Jacobian:

(0; 0) is a saddle point and (1; 1) is a stable focus.

Only a single focus can be encircled by a stable focus.

Periodic orbit in other region such as that encircling both Eq. points 

are ruled out. 
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Theorem (Local Invariant Set Theorem): Consider an autonomous 

system,              , with f  continuous, and let V(x) be a scalar function 

with continuous first partial derivatives. Assume that

 for some         , the region      defined by               is bounded

 for all x in 

Let R be the set of  all points within      where               and M be the 

largest invariant set in R. then every trajectory        originating in          

tends to M as 

( )x f x

0  ( )V x

( ) 0V x 

 ( ) 0V x

( )tx 

t 
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Example 10: mass-spring-damper

• System:

• Lyapunov function:

• Time derivative of  V : 

• At least, locally stable by Lyapunov direct method

• Set of  R: 

• Set of  M, the biggest invariant set in R (all the trajectories and 

equilibrium points, limit cycles and … in R):    

• Conclusion: asymptotically stability 

3

0 1 0mx bx x k x k x   

2 2 4

0 1

1
(2 2 )

4
V mx k x k x  

3 2

0 1( )V mx k x k x x bx x    

2 0 axisV bx x x     R

lim ( ) 0
t

x t



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Example 11: attractive limit cycle

System:

Consider  a set defined by:

This set is invariant set: 

Motion on the set: a closed orbit motion which is in fact a limit cycle

7 4 2

1 2 1 1 2

3 5 4 2

2 1 2 1 2

( 2 10)

3 ( 2 10)

x x x x x

x x x x x

   

    

4 2

1 2: 2 10 0L x x  

4 2 10 6 4 2

1 2 1 2 1 2( 2 10) (4 12 )( 2 10) 0
d

x x x x x x
dt

       

1 2 3

1 13

2 1

0
x x

x x
x x

 
  

  



Advanced Dynamics (Mehdi Keshmiri, Fall 96)
130

Invariant Set

Lyapunov function:

It is negative definite for all points except for origin and the L set.

Therefore:

The M set: M=R

This means starting trajectory in every  bounded region       defined        

by                , for any           will converge to either the limit cycle and 

origin (equilibrium point), obviously if  this invariants exist there.

 
2

4 2

1 22 10V x x  

 
2

10 6 4 2

1 2 1 28( 3 ) 2 10V x x x x     

 4 2

1 2 1 20 ( , ) | (0,0)and 2 10 0V x x x x     R



( )V x 0
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Now question is which way trajectories go

1. Clearly trajectories from out side the 

limit cycle converge to the limit cycle

2. Selecting             excludes origin from 

therefore  trajectories inside the limit 

cycle except at the origin converge to 

the limit cycle as well.

this concludes the limit cycle is a stable 

limit cycle and the origin is an unstable 

equilibrium point

100 
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Some Notes:

Function V is not necessarily positive definite, from the properties 

assumed for this function, it is lower bounded.

Lyapunov direct theorem is a special case of  this theorem.



Advanced Dynamics (Mehdi Keshmiri, Fall 96)
133

Invariant Set

Theorem (Global Invariant Set Theorem.): Consider an 

autonomous system,              , with f  continuous, and let V(x) be a 

scalar function with continuous first partial derivatives. Assume that

for all x in 

Let R be the set of  all points where               and M be the largest 

invariant set in R. Then all the trajectories asymptotically converge to 

M as

( )x f x

( ) 0V x 

( ) 0V x

t 

lim asV  x


