Stability and Phase Plane
Analysis
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Objectives of the section:

d Introducing the Phase Plane Analysis

4 Introducing the Concept of stability

1 Stability Analysis of Linear Time Invariant Systems

d Lyapunov Indirect Method in Stability Analysis of Nonlinear Sys.
d Lyapunov Direct Method in Stability Analysis of Nonlinear Sys.

U Invariant Sets and Stability Analysis of Invariant Sets

Advanced Dynamics (Mehdi Keshmiri, Fall 96)




Introducing

the Phase Plane Analysis
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Phase Space form of a Dynamical System:

(

A

U

m—)

X=F(X,U,¢t

X

pu—

Time-Varying System

561 — fl(xl,xz, vy Xy Uq, Up,y oo, Uiy, t)
Xz —_ fz(xl,xz, ...,xn,ul,uZ, ...,um, t)

ky'cn = f,(X1, X0, eo) Xy, Ug, U,y weny Uy, T)

X=FX,U,1
XeR"* UeR™

U

m—)

X=FX,U) )

Time-Invariant System
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Phase Space form of a Linear Time Invariant (LTT) System:

X =AX + BU

XeR" JUeR™

Special Properties of Nonlinear Systems:
O Multiple isolated equilibria
d Limit Cycle
1 Finite escape time
d Harmonic, sub-harmonic and almost periodic Oscillation
d Chaos

d Multiple modes of behavior
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Phase Plane Analysis is a graphical method for studying

second-order systems respect to 1nitial conditions by:

u providing motion trajectories corresponding to various initial

conditions.
" examining the qualitative features of the trajectories

" obtaining information regarding the stability of the equilibrium

points

(.
X1 = f1(x1,%x2)

\552 = f2(x1,x7)
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Advantages of Phase Plane Analysis:

O It is graphical analysis and the solution trajectories can be represented

by curves in a plane
 Provides easy visualization of the system qualitative

 Without solving the nonlinear equations analytically, one can study the

behavior of the nonlinear system from various initial conditions.

O It is not restricted to small or smooth nonlinearities and applies equally

well to strong and hard nonlinearities.

[ There are lots of practical systems which can be approximated by

second-order systems, and apply phase plane analysis.
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Disadvantage of Phase Plane Method:

L It is restricted to at most second-order

 graphical study of higher-order is computationally and geometrically

complex.
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Example: First Order NLTT System
x = sin(x)

Analytical Solution Graphical Solution

dx sin(x)
— = sin(x) i F i

dt N N\

o ar .O/L\tl/:\
sin(x) 0.5 /

5 4 2 0 2
fxsm(x) jdt X

cos(xg) + cot(xy)
cos(x) + cot(x)
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Concept of Phase Plane Analysis:
d Phase plane method is applied to Autonomous Second Order System
X1 = f1(x1,%2) Xz = f2(x1,%2)

O System response X(t) = (x1(t), x5 (t)) to initial condition X = (x1 (0), x5 (O))
is 2 mapping from R(Time) to R?(xq, x3)

d The solution can be plotted in the x; — x5 plane called State Plane or Phase Plane

d The locus in the x; — x5 plane is a curved named Trajectory that pass through

point X
d The family of the phase plane trajectories corresponding to vatious initial conditions

is called Phase portrait of the system.

[ For a single DOF mechanical system, the phase plane is in fact (x, x) plane

10
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Example: Van der Pol Oscillator Phase Portrait

¥i—(1—x*)x+x=0

11
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Plotting Phase Plane Diagram:

d Analytical Method

U Numerical Solution Method
dTIsocline Method

dVector Field Diagram Method
Delta Method

Lienard’s Method

Pell’s Method
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Analytical Method

 Dynamic equations of the system is solved, then time parameter is omitted to
obtain relation between two states for various initial conditions

(.
X1 = f1(x1,%x2)

S

\552 = f2(x1,%2)

Solve . Xl(t,XO) = gl(t!XO)
x2(t, Xo) = g2(¢, Xp)

F(xy,x3) =0

v' For linear or partially linear systems

13
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Example: Mass Spring System

Form=k=1:

K
—AAAAMAAA—

m

R

X+x=0

x(t) = —xg sin(t) + xy cos(t)

{x(t) = X cos(t) + x, sin(t)

x% + %% = x¢ + x¢

> 0

-1

-2

mix +kx =0

r
N
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Analytical Method

 Time differential is omitted from dynamic equations of the system, then partial
differential equation is solved

(.
X1 = f1(x1,%x2)

S

\552 = f2(x1,%2)

% _ fz(xl,xz) Solve
dx;  f1(x1,%3)

v

F(xy,x3) =0

v' For linear or partially linear systems

15
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Example: Mass Spring System

72
7 p . B
g—mmwww— m mx + kx =0
Form=k=1: X+x=0 — {Xil:—x;l
dx; —X; . : : : :
dx; X, 2 e
1 PN
szxzdxz = jxl—xldxl > 0 // //' \ \\
R\,
N
x2 + %% = x5 + x5 2 e
0 1

1
- L

-2
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Numerical Solution Method

Dynamic equations of the system is solved numerically (e.g. ode45) for various
initial conditions and time response is obtained, then two states are plotted in
each time.

Example: Pendulum

/\
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x,©
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0.5

x,(0)
o
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-1

<— pivot

<—arm

<—"bob”

= angle relative
1o pendulum at rest

6 + sin(0) = 0
\mee gravity

1:
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\
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\

\V/
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Isocline Method

Isocline: The set of all points which have same trajectory slope

(.
X1 = f1(xq1,%2)

\552 = f2(x1,%2)

dx, _ f2(x1,%3) .
dx;  f1(x1,x3)

First various 1soclines are plotted, then trajectories are drawn.
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Example: Mass Spring System

%
0 o
g—ﬂwwmfw— m mx +kx =0
Form=k=1:  X¥+x=0 — {él::_x;
dx;  —Xx; Slope=1 _
dx; X “ Slope= -1
X1 +ax, =0 ope=infinite

X
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Vector Field Diagram Method

Vector Field: A set of vectors that is tangent to the trajectory

f1(x1, x2)
f2(x1,%2)

d At each point (x4, x3) vector is tangent to the trajectoties

d Hence vector field can be constructed in the phase plane and direction of the

trajectories can be easily realized with that

wwwwwwwwwwwwwwwwwwww
g — i B e e | g e — 8 e B BT
b - et o o i T e A i i — e e
B e R . i e e R e A
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X, —sin(x,)
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Singular Points in the Phase Plane Diagram:

Equilibrium points are in fact singular points in the phase plane diagram

f1 (xl, xz) =0 Slope of the trajectories at dxz 0

— —

equilibrium points dx 6
f2(x1,x2) =0 !

M| Singular point is an important concept which reveals great info about properties

of system such as stability.

O Singular points are only points which several trajectoties pass/approach them

(1.e. trajectories intersect).

21
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Example: Using Matlab

pplaned Setup
File Edit Gallery Desktop Window Help

The differential equations.

E ¥
L T e

Parameters
or =
eEprassions

The display window. The direction field.
The minimum wvalue of = =
] o @ At Mumber of
The mazimum value of = @ ':::' Imes fiald poirts per
L _ rom or column.
The minimum walue of y = 10 D Hullclines
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Quit Rewert Procesd
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Example: Using Maple Code
X . 2 .
with(DEtools): X+0.6x+3x+x"=0

xx:=x(t): yy:=y(t): 10 -
dx:=diff(xx,t): dy:=diff(yy,t): '
e0:=diff(dx,t)+.6*dx+3*xx+xx"2: '
el:=dx-yy=0:
e2:=dy+0.6*yy+3*xx+xx"2=0:
egn:=[el,e2]: depvar:=[x,y]:
rang:=t=-1..5: stpsz:=stepsize=0.005:
IC1:=[x(0)=0,y(0)=1]:

1C2:=[x(0)=0,y(0)=5]:
IC3:=[x(0)=0,y(0)=7]:
IC4:=[x(0)=0,y(0)=7]:
IC5:=[x(0)=-3.01,y(0)=0]:
1C6:=[x(0)=-4,y(0)=2]:
IC7:=[x(0)=1,y(0)=0]:
1C8:=[x(0)=4,y(0)=0]:
1C9:=[x(0)=-6,y(0)=3]:
IC10:=[x(0)=-6,y(0)=6]:

ICs:=[IC| [(1..10)]:
lincl:=linecolour=sin((1/2)*t*Pi):
mtd:=method=classical[foreuler]:
phaseportrait(eqn,depvar,rang,ICs,stpsz,lincl,mtd);

23
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Example: Using Maple Tools

¥+0.6x+3x+x2=0

Phase Portraits for Autonomous Systems

Plot Window

—-10

x=Flxy)= F

10
5 -10 10
=x= . =y=
Differential Equations
¥ .37

)
=7

Parameter

; /A
Equilibrium {Critical) Points \\
(0,0 [-3 0] —\_5_

-10 -4

— 100 < b 0 Enter Data

Erase Phase Portrait

Clear Al
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Phase Plane Analysis for Single DOF Mechanical System

In the case of single DOF mechanical system
) . X1 =X X1 = Xy
X+ g(x,x)=0 —
2= —9g(x1,%2)

<.
N
|

d The phase plane is in fact (x —X) plane and every point shows the

position and velocity of the system.

 Trajectories are always clockwise. This is not true in the general phase plane

(X1 — x2)

25
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Introducing

the Concept of Stability
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d Stability analysis of a dynamic system is normally introduced in the state space

form of the equations.
X=F(X, U@t
XeR" UeR™

Time-varying Dynamic System

L X =F(X, Ut

d Most of the concepts in this chapter are introduced for autonomous systems

Autonomous Dynamic System

u X = F(X,U)

27
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Stability analysis of a dynamic system is divided in three

categories:

1. Stability analysis of the equilibrium points of the systems. We study the behavior

(dynamics) of the free (unforced, u = 0) system when it is perturbed from its

equilibrium point.

2. Input-output stability analysis. We study the system (forced system u # 0) output

behavior in response to bounded inputs.

3. Stability analysis of periodic orbits. This analysis is for those systems which

perform a periodic or cyclic motion like walking of a biped or orbital motion of a

space object.

v" Our main concern is the first type analysis. Some preliminary issues of the third

type analysis will be also discussed.

Advanced Dynamics (Mehdi Keshmiri, Fall 96)
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Reminder:

X 1s sald an equilibrium point of the system if once the system reaches this
position it stays there for ever, i.e. f(X,) =0

Definition (Lyapunov Stability):

The equilibrium point X, is said to be stable (in the sense of Lyapunov stability) or
motion of the system about its equilibrium point is said to be stable if the system

states (X) is perturbed away from X, then it stays close to Xp. Mathematically X, is

stable if

£>0,36=5()>0 [x(0)—x]<5=|x(t)-x] <& Vt=0

29
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d Without loss of generality we can present our analysis about equilibrium point
Xe = 0, since the system equation can be transferred to a new form with zero

as the equilibrium point of the system.

Y = F(Y) X=Y-Y, X =F(X)
Y, #0 X, =0

v

A more precise definition:

The equilibrium point X, Is said to be stable (in the sense of Lyapunov stability)
or motion of the system about its equilibrium point is said to be stable if for any

R > 0, there exists 0 < 7 < R such that

Hx(O)—xe||< r=|x(t)-x,|<R Vt=0

30
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Definition (Lyapunov Stability):
The equilibrium point X, = 0 is said to be

JStable if
VR>0 30<r <R s.t.

IX(O)||<r = [IX@®)| <R Vt>0
(JUnstable if it is not stable.
JAsymptotically stable if it is stable and

Vr >0 s.t.
Xl <7 = limX(t) =0

dMarginally stable if it is stable and not

curve 1 - asymptotically stable

curve 2 - marginally stable

curve 3 - unstable

asymptotically stable

J Exponentially stable if it is asymptotically stable with an exponential rate

IXOll <r = IX®Ol < ae P IXOI >0

Advanced Dynamics (Mehdi Keshmiri, Fall 96)
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Example: Undamped Pendulum

6 + %sin(@) =0 001

v' 0, is a marginally stable point and 8, is an unstable point

1.5

./

X(0) = (0,1) /A\

o
o

\

/ 0\

Teta (rad)
o

\

/

-0.5

\_/

o

-1.5+% - i
0 4 6 8 10
Time(sec)
40
30
) X(0) = (0.4)
= /
20
o
: ~
10 //
0 I I
0 2 4 6 8 10
Time(sec) 32
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Example: damped Pendulum

é+69+%sin(8)=0 8, =0 , B0 =T
v' 0,1is an exponentially stable point and 8, is an unstable point
. O'Z VA
\ = 05 /
' % 1 / X(0) = (-2.5,0)

-1.5
./ :

2.5
0 5 10 15 -4 \ X(0) = (-3.5,0)
Time(sec) e \
©
. g°
T T T 2
-4 4 :
X 8r h \
-7 =
/ 0 5 10

T / Time (sec)

<, X(0) = (-3,10)

©

: |

F oo

-2
-4 -
0 5 10 15
Time(sec)
33
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Example: Van Der Pol Oscillator

state form )(1 — X2

X—(1—Xx)’X+x=0 — =X, =X, =

X, ==X +(1- Xl)z X

trajectories

v' x, = 0 is an unstable point

Unstable origin of the Van der Pol

Advanced Dynamics (Mehdi Keshmiri, Fall 96)
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Definition:

it the equil. point X, is asymptotically stable, then the set of all points
that trajectories initiated at these point eventually converge to the

origin is called domain of attraction.

Definition:

if the equil. point X, is asymptotically/exponentially stable, then the
equil. point is called globally stable if the whole space is domain of
attraction. Otherwise it is called /ocally stable.

35
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Example 1:

The origin in the first order system of X = —x is globally exponentially stable.

X=—X=X(t) = X,e" :>tlimx(t) =0 Vx, =0

Example 2:

The origin in the first order system X = —x3 is globally asymptotically but not

exponentially stable.

X .
X=—X> = X(t) = 0 = limx(t)=0 VX,

\/1+ 2tx;

36
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Example 3:

The origin in the first order system X = —x2

exponentially stable.

X =—X" = X(t) =

g

1+1X,

Domain of attraction is xg > 0.

is semi-asymptotically but not

limx(t)=0 if x, >0

XO t—>o0

lim x(t) > if x, <0

Unam
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Example 4:
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Example 5: )
¥+ 06x+3x+x2=0
3 6
| | =i}
divergence
area
0 infinim
39
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Example 6:

Advanced Dynamics (Mehdi Keshmiri, Fall 96)

40




Stability Analysis of

Linear Time Invariant Systems
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1t is the best tool for study of the linear system graphically
JThis analysis gives a very good insight of linear systems behaviot
dThe analysis can be extended for higher order linear system

dlocal behavior of the nonlinear systems can be understood from

this analysis

JThe analysis is performed based on the system eigenvalues and

elgenvectors.

42
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Consider a second order linear system:
x = Ax A E R?*? x € R?

 If the A matrix is nonsingular, origin is the only equilibrium point

of the system

A isnon-singular = x, =0

d If the A matrix is singular then the system has infinite number of
equilibrium points. In fact all of the points belonging to the null

space of A are the equilibrium point of the system.

A issingular = x, = {X. | x. € Null(A)}

43
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Consider a second order linear system:

x = Ax
A € R?*2 x € R?

The analytical solution can be obtained based on eigenvalues (44, 4;):

—

If A4, A, are real and distinct x(t) = AeMt 1 Be#at
7 If A4, A, are real and similar x(t) =(A+ Bt)e/lt
If A4, A, are complex conjugate x(t) = AeMt 4 BeAat

—

= e* (A sin(ft) + B cos(Bt))

44
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Jordan Form (almost diagonal form)

This representation has the system eigenvalues on the leading diagonal, and either
0 or 1 on the super diagonal.

x = Ax ) oy =]y

VA _ A1

]n_ i /1i_

Obtaining Jordan form:

J = PAP

45
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A is non-singular:

The A matrix has 2 eigenvalues (either two real, or two complex
conjugates) and can have either two eigenvectors or one eigenvectors.

Four categories can be realized
1. Two distinct real eigenvalues and two real eigenvectors

2. Two complex conjugate eigenvalues and two complex

eigenvectors
3. Two similar (real) eigenvalues and two eigenvectors

4. Two similar (real) eigenvalues and one eigenvectors

46
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1. Two distinct real eigenvalues and two real eigenvectors

y=Jy J = [ 0 /12]
Y1 =M Y1 = Yottt
V2 = 12); Y2 = Yp0e’?*
Y10 -
ﬂzln<;vl>:1 (y_> (&)122
Vo A Y10 Y20 Y10 Y20
1 - — Azt
Y20 —
_ Y20 A2/21 Ay /A
Y2 = V1042/ M 1 Yo = Ky, "2/

47
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1. A) AZ < Al <0 Vo = Kyl/‘lz/ll

d System has two eigenvectors V1, ¥, the phase plane portrait is as the following

| [ | | ;
AR R R |
\ H // / H\\ \
T S A
1 AN
R RIS,
I \ SR ENIANN =
YR SR PR EREil \ =
Sy Y SIS FRR S
/ \r \\ \\ \ ) \\

d Trajectories are:
v' tangent to the slow eigenvector (v;) for near the origin
v parallel to the fast eigenvector (v;) for far from the origin

d The equilibrium point X, = 0 is called stable node

48
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il ‘ X(0) = t-l,lo]
Example 7: X+4x+2x =0 ! /f\\\ X0 = [-1,1] |T
0.5 \\
¥ = [ 0 1 ]X o
IEOER (W _ _ N
det (A1 [_2 _4])_/1 +41+2=0 A =—059 1, = —3.41
- 1
[_0.59 —1 Ul _ 4 E 1 = N
2 —059+4l\v? N \
2 T
/086 f>~ \ \ \
o) AN,
1 2 T
[—3.41 —1 ] <v1> ~ 0 \ \ ~
2 —341+4l\y2 y | S\
4 2 0 2 4

v2= (06 )

49
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1.B)).2 >Al >O y2=Ky1/12/Al

d System has two eigenvectors V1 and v, the phase plane portrait is opposite as

the previous one

| \ [ I F

A R AR N [ |

\\\I\ J)// // — \ \
LI AN A
L1 LA
an L R
SRR | E ~—

1Y RN PR P i =

Y R R A =

T N

 Trajectories are:
v’ tangent to the slow eigenvector v; for near otigin
v’ parallel to the fast eigenvector v, for far from origin

d The equilibrium point X, = 0 is called unstable node

50
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Example 8: X—3x+2x=0 4 X®=[204 /
2 /
x=10, 3lx g
—2 3 f | |
o ) ) R
det(21 |2, ])=22-31+2=0 L=1,2;=2

A T

-7 L]

2 -1 1.711 -ZLLK / /

[2 2—3<v12>:0 y // /
- (25) R
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1. C ) AZ <0< Al Vo = Kyl/lz/ﬂl

d System has two eigenvectors v and V,, the phase plane portrait is as the

following

i L

|
A —

S NN

LT
| —
2
EN——

/4

[
|

L o

d Only trajectories along v, are stable trajectories
[ All other trajectoties at start are tangent to ¥, and at the end are tangent to V4

 This equilibrium point is unstable and is called saddle point

52
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Example 9:
= lx

0 1
2 1

1 -1 ] Vi _ 0
-2 —1-1\p?
_(—0.71
v = (1)
2 —17(vi\_,
-2 2-11\v?

v =(Toe)

det (/11 _

])=/12—/1—2=0

X —X— 2Xx

x 10

‘X(O) = [i,o.5] |
2 X(0) = [1,-1.5] /
1
0 N
0 2 4 é 8 10

‘2‘ — 7

NN (1]
MEB S S
4 2/ o/;z .
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2. Two complex conjugate eigenvalues and two complex eigenvectors

y =y I=|5 7]

a
r= |y +y3

_1.Y2
0 = tan~ (==
(yl)

= y1y1 + y2¥, = yilays — By2) + y.(By, + ay,) = ar?

. o — V2 + ay,) —y,(ay, —
6(1 + tan 62) = Y1Y2 2}’23’1 _ y1(By1 Y2) 23’2( Y1 — BY2) — B(1 + tan 62)
Y1 Y1

, — r(t) = rye%t 0(t) = 6, + Pt
0=p

54
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2.A)).2, 11=aiﬁi > a<0,ﬁ:/—'0 r(t)=roeat
o(t) =6, + Bt

[ System has no real eigenvectors the phase plane portrait is as the following

[ T i

L T —_ T |
7/ |
e \

\

/
\ -
= ¥

e TR
S= A AR\ PEpHS

e |

d The trajectories are spiral around the origin and toward the origin.

[ This equilibrium point is called stable focus.

55
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Example 10:

X = [_01 _11])(

det(a1-[° L])=2+21+1=0
Sl At
T \\\@4/ )

X+x+x=0
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AVaN X0 =12 |
1/ X(0) = [1,2]
s \\ \

0 —
s \ T

o 2 s 10




2.BYA, qy=axPi , a>0,+0 r(t) = rge®
o(t) =6, + Pt

[ System has no real eigenvectors the phase plane portrait is as the following

/} R P el - —

il ——
NS iz N
SN BRI\
S==Z7a RN =2

[ The trajectories are spiral around the origin and diverge from the origin.

d This equilibrium point is called unstable focus.

57

Advanced Dynamics (Mehdi Keshmiri, Fall 96)




Example 11: X—x+x=0

: 0 1
X =| |x
-1 1
det (21 - _01 ﬂ) —2-14+1=0 1,1, = 0.5 + 0.866i
: /fﬁ\ 200 ¢ /_\
T
2 — 0—=_—<?<
MIRERAYE 7 L \
TV TS ) \
\; -400 X(0) =[1,2]
o T———+ X(0) = [1.-2]
X - 600 & : :
Al 0 2 4 6 8 10
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Z.C)).z, Alziﬁi > azo,ﬁrf:o T'(t)=7‘08at
O(t) = 06y + Bt

[ System has two imaginary eigenvalues and no real eigenvectors the phase plane

portrait 1s as the following

//_\\‘ /////\\\\\
BEER { [N
NNz EN SRS ERTIRIE T
L@ LiRaaa\ e
RNNSET9 RN
RN

e }\\\ \ \\/ ////

O The trajectories are closed trajectories around the origin.

 This equilibrium point is marginally stable and is called centert.
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Example 12: X+3x=0

X:[—O3 (1)]X

det(’”_[_o;; é)=/12+3=0 A, Ay = +1.732i
i////\\\\ S
IS SN AR ANS (=0T
o{ r / / ///&\\\ \ \ \ \ \ 0 X(0)=1[12] .
R ERLER W SN T S \\/ /
AN ) W W
| \3\\\ )

-1
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3. Two similar (real) eigenvalues and two eigenvectors

: A0
y=]y ] = 0 A
y1 = Ay, V1 = }’103/“
Vo = Ay, Y2 = }’ZOQM

V1 _ Y10
Y2 Y20

- V2 = Ky,
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3)1221121:/—'0

O System has two similar eigenvalues and two different eigenvectors. The phase

plane portrait is as the following, depending to the sign of A

L T 7 7

L/

| I

|
/

T

/
N
|

I

!

|

\\\5& ] e ]
B = N L S
E an - /| s

A>0

d The trajectories are all along the initial conditions and they are 4 < 0 toward A

> 0 or outward the origin
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4. Two similar (real) eigenvalues and One eigenvectors

y=]y ] = g /11
y1=4y1+ 2 Y1 = Yi0e™t + yyote’t
Y2 = Ay, Yy = }’206’“

V1 = Y10%+y2%ln(%)
Vi = )’2(%+%1n <%))
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4)),2:},1:},:/:0

O System has two similar eigenvalues and only one eigenvector. The phase plane

portrait is as the following, depending to the sign of A

A>0

d The trajectories converge to zero or diverge to infinity along the system

eigenvector.
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Example 13:

4¥=[£E —EIX

det(AI——lfz_ _}2
—1 —1}(
1 —1+2
v = (1)

t+2ibx=0 o\ SRS
AN\
A
[)=2+22+1=0 A Ay = —1

4 - -
ml>=0 2 N

Vi O/ﬁ

)

IHELES

4 . \

4 2 0
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A is singular (det(A) = 0):

O System has at least one eigenvalue equal to zero and therefore infinite

number of equilibrium points. Three different categories can be specified

D/ll:O ) Az#:o
Dll,ﬂ.2=0 P Rank(A)=1

D /11,/12 =0 , Rank(A) =0
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_[0 0

DA =0, 4, %0 y=ry =],
y1 =0 Y1 = Y10
V2 = Ay> Y2 = Ya0et
/

ti/

d System has infinite number of non-isolated equilibrium points along a line

d System has two eigenvectors. Eigenvector corresponding to zero eigenvalue is in
fact loci of the equilibrium points

d Depending on the sign of the second eigenvalue, all the trajectoties move
inward or outward to v along v,
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X(0) - [2,-4]

Example 14: X+x=0 i\ - B
A\
., [0 1 s \\
X = [0 —1]X l \\\&
det(/ll—lg _11])=ﬂ.2+/1=() L =0 ,A,=—1
0 —1 1 4
b G-,
V1= ((1)) 0
-1 -1 ] <v21> _ 0 5 \
0 —-1+1l\p2)” \
4 - - - I
-4 -2 0 2 4
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: 0 1
2) 41,4, =0 , Rank(4) =1 y=ly I=[) ¢

Y1 =1Y2 Y1 = Y20t T Y10

y, =0 Y2 = Y20

A
]

Y

=

\\\\\

R

d System has infinite number of non-isolated equilibrium points along a line
d System has only one eigenvector, and it is loci of the equilibtium points

d All the trajectories move toward infinity along the system eigenvector (unstable

system).

69

Advanced Dynamics (Mehdi Keshmiri, Fall 96)




2) Allll =0 , Rank(A) =0

y=Jy ]=[8 8

y1 =0 Y1 = Y10

y2 =0 Y2 = Y20

d System is a static system. All the points are equilibrium points
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Summary

Six different type of isolated equilibrium points can be identified
AStable/unstable node
dSaddle point
AStable/ unstable focus

JCenter
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Stability Analysis of Higher Order Systems:

J Analysis and results for the second order LTI system can be
extended to higher order LTT system

dGraphical tool is not useful for higher order LTT system except for

third order systems.

This means stability analysis of mechanical system with more than

one DOF can not be materialized graphically

dStability analysis is performed through the eigenvalue analysis of the

A matrix.
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dConsider a linear time invariant (LTT) system

X =Ax+Bu
y =Cx+Du

dOrigin is the only equilibrium point of the system if A is non-
singular

det(A)=0

X = AX : Xe:O

dOtherwise the system has infinite number of equilibrium points, all

the points on null-space of A are in fact equil. points of the system.

det(A)=0

X=AX — X, ={X.|x. e Nullspace(A)}
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Details for Case of Non-Singular A

4 Origin is the only equilibrium point of the system
 This equilibrium point (system) is

 Exponentially stable if all eigenvalues of A are either real

negative or complex with negative real part.

J Marginally stable if eigenvalues of A have non-positive real part

and rank(A — Al) = n — r for all repeated imaginary

eigenvalues, A with multiplicity of

1 Unstable, otherwise.
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A is Non-Singular

4 Classification of the equilibrium point of higher order system into
node, focus, and saddle point is not as easy as second order system.

However some points can be emphasized:

v The equilibrium point is stable/unstable node if all

eigenvalues are real and have the negative/positive sign.

v' The equilibrium point is center if a pair of eigenvalues are pure
imaginary complex conjugate and all other eigenvalues have

negative real

v In the case of different sign in the real part of the eigenvalues
trajectories have the saddle type behavior near the equilibrium

point
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v Trajectories are along the eigenvector with minimum absolute
real part near the equilibrium point and along the eigenvector

with maximum absolute real part.

v'Trajectories have spiral behavior if there exist some complex

(obviously conjugates) eigenvalues.

v'Spiral behavior is toward/outward depending on the sign
(negative and positive) of real part of the complex conjugate

eigenvalues.

d These concepts can be visualized and better understood in three

dimensional case
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Lyapunov Indirect Method in
Stability Analysis of

Nonlinear Systems
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d There are two conventional approaches in the stability analysis of

nonlinear systems:
v’ Lyapunov direct method
v Lyapunov indirect method or linearization approach

d The direct method analyzes stability of the system (equilibrium

point) using the nonlinear equations of the system

d The indirect method analyzes the system stability using the

linearized equations about the equilibrium point.
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Motivation:

A nonlinear system near its equilibrium point behaves like a linear:

* Nonlinear system: X =Tf(X)
* Equilibrium point: f(x)=0=x,
* Motion about equilibrium point: X=X, +X

I inearized motion:

Xzf(x):>§<:f(xe+§<):ﬁ@qf+g—f %+H.0.T = X = A%
X

X

It means near X, : . °
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JThis means stability of the equilibrium point may be studied
through the stability analysis of the linearized system.

JThis is the base of the Lyapunov Indirect Method

dExample: in the nonlinear second order system

X, = X5 + X, COS X,
X, =X, +(L+ X)X + X SIN X,

origin is the equilibrium point and the linearized system is given by

xlm ANNEEe
0

=2
Xyoo (%) % =% +%,

X2
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Theorem (Lyapunov Linearization Method):

 If the linearized system is strictly stable (i.e. all eigenvalues of A are
strictly in the left half complex plane ) then the equilibrium point in

the original nonlinear system 1s asymptotically stable.
X =AX is strictlystable = x =f(x) Isasymptoticallystable

 If the linearized system is unstable (i.e. in the case of right half plane
eigenvalue(s) or repeated eigenvalues on the imaginary axis with
geometrical deficiency ( r>n—rank(Al —A) ), then the

equilibrium point in the original nonlinear system is unstable.

X = AX isunstable = X = f(x) isunstable
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Theorem (Lyapunov Linearization Method):

d If the linearized system is matginally stable (i.e. all eigenvalues of A are in the left
half complex plane and eigenvalues on the imaginary axis have no geometrical
deficiency) then one cannot conclude anything from the linear approximation. The
equilibrium point in the original nonlinear system may be stable, asymptotically

stable, or unstable.

(x =f(x) isasymptoticallystable
R=AX is marginallystable = { x =f(x) ismarginallystable
| X =1(x) Isunstable

d The Lyapunov linearized approximation method only talks about the local stability

of the nonlinear system, if anything can be concluded.
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Example 15:
O The nonlinear system X = ax + bx> is
v' Asymptotically stable if a < 0
v' Unstable if a > 0
v" No conclusion from linear approximation can be drawn if

 The origin in the nonlinear second order system

v 2
X, = X, + X, COS X,

X, =X, + 1+ X)X + X SInX, F O}
> —

|_?<>

is unstable because the linearized system 4

>X>
N
L

unstable L
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Lyapunov Direct Method in
Stability Analysis of

Nonlinear Systems
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Physical Motivation: Consider a single DOF damped nonlinear system

mX+cx+kx> =0 m,c,k >0
0 Kinetic energy of the system: T =1/2mx*
d Potential energy of the system: U = jox kEdE =1/ 4kx"

» let us define:
V(x,X)=E=T+U =1/2mx* +1/4kx"

. nonlinear
Tt is clear that: spring and linear

damper m

1. V(0,0)=0

NN

2. V(x,%) >0 V(x,%) % (0,0)

Advanced Dynamics (Mehdi Keshmiri, Fall 96)




é Y

\ v

3. Furthermore:  V (x,X) = (MX + kx®)x = —cx® <0

» This means if we consider the mechanical energy of the system:

It is always positive except at the equilibrium point which is zero

It is decreasing while the system is in motion.

 Rate of the decrease equals to the power of the damping force

» Therefore V converges to zero

4

Vi(x,x)=V(r)
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» It declares that once the system is perturbed from its equilibtium

point at origin, the motion of the system is such that the total energy

is decreasing and the system moves toward the rest position

» This is the meaning of the stability of the equilibrium point.

L 9%

w. Y

x(1)
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Theorem: I.et X =0 be an equilibrium point for X =f(X) and let
V(X):D—>R,DcR"

be a continuously differentiable function on a neighborhood Dof X =0

such that:
1.V(0)=0
2.V(x) >0 VxeD-{0}
3.V(X)<0 VxeD

then X=0 is locally (in D) stable.

Moreover it is asymptotically stable if \Y% (X)<0 VxeD-{0}
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Definition: / (X) with the above characteristics is called Lyapunov
function

The surface V (X) = ¢ for some C > Qis called Lyapunov surface or
level surface

Note that for a dynamic system with state-space equations

% = (X)

\/ (X) is calculated as the following

o2 (2
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Example 1 (local stability): 0+ 0+ sin(@) =0
92
d Lyapunov candidate function: V (x) — (]_— COS (9) + 7
1 For this candidate function

(1. V(0,0)=V(0=0,0=0)=0

—12. V>0 V (0,0)%(0,0) & —7<0<x

3. V=(Gind+6)0=-0*<0 V (0,0)#(0,0)

 Therefore V (X) is a Lyapunov function and the equilibrium point

is locally stable
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Example 2

(asymptotic stability):

J System equations

X, = X (X + X2 —2) —4X, X

. 2 2 2
X, = X (X + X5, —2) +4X X,

] Lyapunov candidate function \/ ()() — )(12 + X22

J Then

m—

-

1. V(0,0)=0
2. V>0 V (x,X%,)=(0,0)

3. V=2(x+X)(x2+x: -2) <0

.

v (%,%)#(0,0) &

(X, X,) e‘xf +x22‘ <2

O Therefore V (X) is a Lyapunov function and the equilibrium point

is locally asymptotic stable
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Positive Definite Function:

 functionV (X):D—>R,Dc R" satisfying :
1. V(0)=0
2.V(x)>0 VxeD-{0}

is called positive definite in D.

L If it satisfies a weaker conditionV (X) >0 VxeD —{O} 1t 1S

positive semi-definite

d FunctionV (X) is negative (semi) definite if£-\/ (X) is positive

(semi) definite
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d As an example we are already familiar with positive (semi) definite

quadratic function

V (X) = X' Px

where the symmetric matrix P =P is positive (semi) definite matrix,

i.e. for all eigenvalues of P we have

Viel2,..,nN)= A4 >0

Stability Theorem: The origin 1s stable if there is a continuously
differentiable , PD. function V (X) such that V (X) is N.S.D,, and it is
asymptotically stable if V(X) is N.D.
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Global Asymptotic Stability: Being D = R" is not enough to have

global stability. The Lyapunov function should be radially unbounded as

well, 1.e.
IX| >0 =V (x) >0

Theorem: Assume there exists a scalar function V(X) with continuous

first order derivative in X such that
1. V(X) is positive definite
2. V(X) is negative definite

3. V(X) is radially bounded

then the origin is globally asymptotically stable
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Example 3:

A class of first order system defined by:
X=—C(x) with xc(x)>0 ¥x=0
A Since C(X) is continuous, it means ¢(0) =0

L Intuitively this condition implies that —C(X) pushes the system

back to the origin (rest position)

3 We can see thatV (X) = X°is a Lyapunov function and satisfies
all the globally asymptotically stability conditions.

V(0)=0, V>0 (Vx#0), [xo>o=V(X)>wx
V =2xx=-2xc(X) <0 (vx#0)
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 Therefore the origin is globally asymptotically stable

> X=SiN° X—X and X = —X3are two other examples of this type

of first order systems
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Example 4:

2. A class of second order system defined by

Xb(X) >0 Vx=0

X+b(X)+c(x)=0 with {xc(x)>0 et

L b () L)

~\ :
S
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Example 4:

(JThe candidate function

1.

V (X, X) = > X° + joxc(o-)do-

is a Lyapunov function and satisties the following conditions

V(0,0) =0,
V>0 V(xX)=(0,0),

V =(%+c(x))x=-xb(X) <0 V(x,X)=(0,0)
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Example 4:

d This means the origin is at least stable (nothing can be said

about the asymptotically stability so far).

d Clearly V is decreasing dll\V = 0. At this state
V=0=x=0
 There can be two cases for this zero velocity state:

a) X = ( then the system is at its equilibrium point and stays
there

b) X#0 then since C(X) # 0 we conclude X # 0
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Example 4:

 This means the system moves away from this (X,0) state and

again V (X, X) decreases till it comes to the rest position (0,0) .

 Therefore the origin complies with the asymptotic stability

conditions as well.

EI Sincejxc(a)da is unbounded as |X| — oo then V (X, X) also
0

satisfies the radially unbounded condition, i.e.,

H[X,X]T H—) 00 =V (X, X) > ©

Hence it can be stated that the origin 1s globally asymptotically

stable (g.a.s.)equilibrium point.
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Example 4:

 Following examples ate from this category

X+X+x=0

K4+X +Xx°—Xx*sin* x=0
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Facts about Lyapunov Direct Method and Lyapunov Functions:

o Lyapunov direct method is established by introducing a positive

definite candidate function, V' (X) , and evaluation of negative

difinite-ness of V(X).

 This method is totally depended on introduction of the Lyapunov

function.

4 Lyapunov direct method is a necessary condition. Failing in the

candidate function does not mean instability

d A Lyapunov function is strictly defined based on the give system

equations

102
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Facts about Lyapunov Direct Method and Lyapunov Functions:

H BV} (X) is a Lyapunov function (positive definite function with

negative (semi) definite time derivative), then
V,(X) = pV“(X) with p>0,a>0
is also a Lyapunov function.

 Addition, and multiplication of two Lyapunov functions construct

a new Lyapunov function

V(X)=V,(X)+V,(X)>0 = V(X) =V,(X)+V,(x) <0

V(x) =V, (x)V,(x)>0 = V () = \/1 (XV,(X) +V, (X)vz (x)<0
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Facts about Lyapunov Direct Method and Lyapunov Functions:

1 Conclusions like local stability or marginal stability are the least
conclusions and a better selection of candidate function may lead

to stronger conclusions.

d In general a Lyapunov function may be pure mathematical
function, however a physical understanding of the system can help

in selection of good candidate for Lyapunov Function

104
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Example 5:

for a damped pendulum, 0+0+ sin(@) =0

> Candidate function, V (X) = (1—c0s8) + 0% | 2 which is the
mechanical energy of the system leads to V = —6? which is

negative semi definite. Therefore only local stability 1s concluded.
» A new candidate function,
1 5 : 2
V(X) = 2(1—0056’)+§ 0 +(6’+6’)

leads to V = —(92 + @sIN @) which is a negative definite function
and concludes locally asymptotically stability.

» This new function has less physical meaning to the system
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The main question in the analysis

ot dynamic system using
Lyapunov direct method 1s how

to obtain the Lyapunov function
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Linear system analysis based on Lyapunov Direct Method:

dWe already know how to analyze stability of a linear system, X = AX

through its eigenvalues.

dWe know that for any positive definite matrix, P, functionV = X' PX

is a positive definite.

dStarting from a positive definite matrix, P we may come up with a

negative semi definite derivative for

V=XPx =V =X"Px+X'Px=V =x"ATPx +Xx"PAX
=V =X (AP +PA)x =-x"Qx
0
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Theorem: A necessary and sufficient condition for a LTT system to

be strictly stable (asymptotically stable) is that, for any given P.D.
matrix Q, the unique matrix P, solution ot the Lyapunov equation,

A'P +PA =-Q to be symmetric positive definite.

dSince Q can be any positive definite matrix, a simple choice for Q is

the identity matrix.

JShort conclusion: )
P > 0 = strictlystable

selectQ >0 — solve AP+ PA =—-Q — <P >0 = noconclusion

P40 = unstablesystem

'This theorem is very much applicable in the control design for

linear systems
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Example 6:

. 0 4
X=AXx A=
{—8 —12}

Q=1

ATP +PA =-Q

{pﬂ plz}{O 4}{0 —ﬂ{pﬂ plz}{—l 0}
p12 pzz -8 -12 4 12 p12 p22 0 -1

. 5 1 .
Solution P = %L J > 0, therefore the system is asym. stable.
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Analysis of some nonlinear systems:

J Theorem (Krasovskii): consider the autonomous system, X =f(X)

with origin as the equilibrium point. Let A =[6f(X)/0x]| denotes
the Jacobian matrix of the system at this equilibrium point. If the
matrix F = A+ A'is negative definite in a neighborhood Q then the
equilibrium point is asymptotically stable. A Lyapunov function for
the system is V =f' (X)f (X). Moreover if £2is the whole space

and lImV — o as HXH —> 00 Then the equilibrium point is globally

asymptotically stable.
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Example 7:

, =—6X, +2X
» System: Xl ek 5
X, = 2%, —6X, —2X;

N _ A of |6 2
Jacobian: A= > |2 66

—12 4
»F matrix: F=A' + A= , <0
4  -12-12x;

» Lyapunov function: V (x) =f'f = (—6+2x,)° +(2x, —6X, —2X;)*

» Asymptotically stability: lImV — oo as ||X|| —> o0
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' Theorem (Generalized Krasovskii Thm): consider the

autonomous system, X =Tf(X) with origin as the equilibrium point
and the Jacobian matrix, A = [8f (x)/ 6X]X:O . Then a sufficient
condition for the origin to be asymptotically stable 1s that there exist
two positive definite matrices, P and Q, such that VX # 0, the
matrixF = ATP+PA+Q is negative semi definite in some
neighborhood € of the origin. The function VV =f'Pf is then a
Lyapunov function for the system. Moreover if €2 1s the whole

space and limV — oo as x| — o Then the equilibrium point is

globally asymptotically stable.
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Physically motivated Lyapunov function (Positioning a robotic

system:
JRobotic system: Mg+h(g,q)+9(q) =

dController (PD controller with gravity compensator):

T=-K,q-K q+g(q)

joint 2 T link 2

dClosed loop system dynamics: X!

LTI -

Md +h(a,6)+Koq+K,q=0 (3

d1Lyapunov candidate function:

V(6,0)=>(6"Md +a'K ,q)
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' Time derivative of V

. d . . . . .
V =a(KE)+qTqu =q' (t-g(@)+4'K q=-4'K4<0

input power

dTherefore the system is locally stable.

dBoth from physics and mathematics of the system it can be realized
that the system cannot be stuck at non-zero position, i.e.,q # 0 .
This means motion of the system is continued to V=0. Therefore,

the system 1s locally asymptotically stable.

dSince the Lyapunov function satisfies the radially unbounded

condition, the system is in fact globally asymptotically condition.
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Controller Design Using Lyapunov Direct Method :

ODynamic system:  X—X°+X* =U
dProposed controller: U =u,(X)+Uu,(X)
dClosed loop system dynamics: X —()'(3 + ul(X)) + (X2 —U, (X)) =0
Qu,(x)andu, (X) are selected such that:
X(X* =, (x))>0  Vx=0
X(X°+u (X)) <0 V%0
dThen the closed loop system will be globally asymptotically stable

1
O For example: U, (X) = - (x+x°) U (X)=-2%°
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Invariant Sets
and

Stability Analysis of Invariant Sets
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Definition: a subset A7of the state space 1s called an Invariant Set

for the dynamic system of X =f(X) if

X0)e M =x(t)e M Vt>0

Examples: Equilibrium points, Whole state space, Attraction region,

Limit cycle, A set of trajectories.
 Invariant set is an extension to the equilibrium point

J Analysis for the equilibrium points, like stability analysis, can be

extended to the invariant sets.
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Periodic or Closed Orbital Motions:

d A system oscillates when it has a nontrivial (non-constant) petriodic

solution

X(t+T)=x(t)

d The image of a periodic solution in the phase portrait is a closed

trajectory, called periodic orbit or closed orbit.

d There are two types of closed trajectory in dynamical systems

1. Closed trajectories around center equilibrium point (harmonic

oscillation).

2. Closed trajectories called /imit cycles
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Harmonic oscillations in a dynamic system

» are not unique or isolated.
> make a continuum of closed orbit.

» have amplitudes depended on the initial

conditions.

» are not robust and any perturbation, i.e.
the system moves in a new closed

trajectory

Example: non-damped pendulum, spring-

mass systems
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Another example
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Limit cycles:

> can be realized only in nonlinear systems

> are isolated closed orbits and do not make

a continuum set of closed orbits.

» have amplitude independent of the initial

conditions.
» are difficult both in realization and analysis.
Example: Van Der Pole system

X—u(l—x)X+x=0
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» There are three type of limit cycles:

1) Stable Limit Cycle e converging
} trajectories

Example:
1 = xo—x1(xf+x5 —1) ﬁ ‘ .

Xo = —X] — X2(X12 -+ X22 — 1) \’y

Polar Coordinates limit
cycle
Fo= —r(rf—1)
h = —1
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» There are three type of limit cycles:

1) Unstable Limit Cycle X.

(e diverging
Example:
X1 = xo+x1(xf +x5 —1) f‘ X
);(2 = —X1 +X2(X12+X22—] KJ o
Polar Coordinates
limit
roo= r(rz — 1) cycle

h = —1
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» There are three type of limit cycles:

B
1) Semi-stable Limit Cycle converging diverging
Example:
2 £
)-(1 = X2—X1(X12—|—X22—1) =
o = —x1 —xo(xf + x5 — 1)
Polar Coordinates limit
cycle

Fo= —r(r°—1)>?

H = —1
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Van Der Pole system

Example 7

0

X— pu(l— X)X+ X =

U< 0 Stable Limit Cycle

u> 0 Unstable Limit Cycle
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Example 9: The system
X] = —X1+X1%

X1 = Xx1+x2—2x1x2

has two equilibrium points at (0, 0) and (1, 1). The Jacobian:

o RS ER 3 I Iy
00) 1 1" x| 1) -1 -1

J(0; 0) is a saddle point and (1; 1) is a stable focus.

g
ox

dOnly a single focus can be encitcled by a stable focus.

dPeriodic orbit in other region such as that encircling both Eq. points

are ruled out.
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Theorem (Local Invariant Set Theorem): Consider an autonomous

system, X =f(X), with f continuous, and let V(X) be a scalar function

with continuous first partial derivatives. Assume that

» for some ¢ >0, the region Q, defined by V (X) < £ is bounded
> V(X)<0forallXin Q,

Let R be the set of all points within Q, whereV (X) = 0 and M be the

largest invariant set in R. then every trajectory X(t) originating in €,

tends to M as t —> o0

127

Advanced Dynamics (Mehdi Keshmiri, Fall 96)




Example 10: mass-spring-damper
* System: mX+bx|X|+k,x+kx* =0
. 1
* Lyapunov function:V = 2 (2mx* + 2k x> +k,x*)

e Time derivative of V:V = (MX+ K, X+ k1X3)X = —bx* |

d
* At least, locally stable by Lyapunov direct method
* Set of R: V =—-bX*|X|=0= R = x—axis

* Set of M, the biggest invariant set in R (all the trajectories and

equilibrium points, limit cycles and ... in R):

* Conclusion: asymptotically stability lim x(t) =0

t—oo
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Example 11: attractive limit cycle

System: X =X, =X/ (X +2x; —10)
X, ==X —3X; (X +2x; —10)

Consider a set defined by: L: X' +2x;-10=0

This set 1s invariant set:
%(x{‘ £ 22 —10) = —(4%° +12xE)(x* + 22 —10) = 0

Motion on the set: a closed orbit motion which is in fact a limit cycle

X =X, .
3}:>x1+xf’=0

X, ==X
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Lyapunov tunction: 'V = (X14 + 2 x,f —10)2

=V =-8(x° +3x0) (X +2xZ ~10)

It 1s negative definite for all points except for origin and the L set.

Therefore:

V =0=R={(x,%)[(0,0)and x{ +2x; -10=0 }

The M set: M=R

This means starting trajectory in every bounded region €2, defined

by V(X) </, for any ¢ >0 will converge to either the limit cycle and

origin (equilibrium point), obviously if this invariants exist there.
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Now question 1s which way trajectories go

1. Clearly trajectories from out side the

limit cycle converge to the limit cycle

2. Selecting ¢ >100 excludes origin from €2,

therefore trajectories inside the limit

A
cycle except at the origin converge to T

limit cycle

the limit cycle as well.

this concludes the limit cycle 1s a stable

™

x
2

limit cycle and the origin is an unstable

equilibrium point

.

¥
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Some Notes:

»Function Vis not necessarily positive definite, from the properties

assumed for this function, it is lower bounded.

» Lyapunov direct theorem is a special case of this theorem.
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Theorem (Global Invariant Set Theorem.): Consider an

autonomous system, X =f(X), with f continuous, and let V(X) be a

scalar function with continuous first partial derivatives. Assume that

limV — o as x| — oo

V(X)<@orall Xin €,

Let R be the set of all points where V (x) = 0and M be the largest

invariant set in R. Then all the trajectories asymptotically converge to

Mast—o
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