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Obyjectives of the section:

O Introducing the Phase Plane Analysis

Q Introducing the Concept of stability

Q1 Stability Analysis of Linear Time Invariant Systems
0 Lyapunov Indirect Method in Stability Analysis of

Nonlinear Systems
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Introducing

the Phase Plane Analysis
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Phase Plane Analysis

Phase Space form of a Dynamical System:

(

A

U

m—)

X=F(X, Ut

X

pu—

Time-Varying System

561 — fl(xl,xz, ey X, Uq, Up, ..., Uiy, t)
562 — fz(xl,xz, ...,xn,ul,uz, ...,um, t)

ky'cn = f,(X1, X0, cun) Xy, Uq, U,y weey Uy, T)

X=FX,U,¢t

XeR" UeR™
U X
) X =F(X,U)

Time-Invariant System
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Phase Plane Analysis

Phase Space form of a Linear Time Invariant (LTI) System:

X = AX + BU

XeR" JUeR™

Special Properties of Nonlinear Systems:
O Multiple isolated equilibria
0 Limit Cycle
O Finite escape time
0 Harmonic, sub-harmonic and almost periodic Oscillation

0 Chaos
0 Multiple modes of behavior
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Phase Plane Analysis

Phase Plane Analysis is a graphical method for studying

second-order systems respect to initial conditions by:

= providing motion trajectories corresponding to various initial

conditions.
* examining the qualitative features of the trajectories

* obtaining information regarding the stability of the equilibrium
points

(.

X1 = f1(x1,x2)

S

\952 = f2(x1,%2)
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Phase Plane Analysis

Advantages of Phase Plane Analysis:

O It is graphical analysis and the solution trajectories can be

represented by curves in a plane
O Provides easy visualization of the system qualitative

0 Without solving the nonlinear equations analytically, one can study
the behavior of the nonlinear system from various initial

conditions.

O It is not restricted to small or smooth nonlinearities and applies

equally well to strong and hard nonlinearities.

(0 There are lots of practical systems which can be approximated by

second-order systems, and apply phase plane analysis.
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Phase Plane Analysis

Disadvantage of Phase Plane Method:

A It is restricted to at most second-order

0 graphical study of higher-order is computationally and

geometrically complex.
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Phase Plane Analysis

Example: First Order LTI System

X = sin(x)

Analytical Solution Graphical Solution

dx
I sin(x)

dx
sin(x)

= dt

S T A O
t
fxsm(x) Jd X

cos(xg) + cot(xy)
cos(x) + cot(x)
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Phase Plane Analysis

Concept of Phase Plane Analysis:
O Phase plane method is applied to Autonomous Second Order System
X1 = f1(x1,%2) Xz = f2(x1,X2)
O System response X (t) = (x1(t), x,(t)) to initial condition Xy = (x1(0), x,(0))
is a mapping from R(Time) to R?(xq, x)

O The solution can be plotted in the x; — x, plane called State Plane or
Phase Plane

O The locus in the x; — x, plane is a curved named Trajectory that pass through

point X
O The family of the phase plane trajectories corresponding to various initial

conditions 1s called Phase portrait of the system.

A For a single DOF mechanical system, the phase plane is in fact is (x, X) plane
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Phase Plane Analysis

Example: Van der Pol Oscillator Phase Portrait
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Phase Plane Analysis

Plotting Phase Plane Diagram:

0 Analytical Method

O Numerical Solution Method
QIsocline Method

Vector Field Diagram Method
Delta Method

O Lienard’s Method

QPell’s Method
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Phase Plane Analysis

Analytical Method

0 Dynamic equations of the system is solved, then time parameter is omitted
to obtain relation between two states for various initial conditions

(.
X1 = f1(x1,%x2)

4
X = fo(x1,%3)

\

Solve ‘ x1(t;X0) — gl(t:XO)
x5 (t, Xo) = g2(t, Xo)

F(xy,x3) =0

v" For linear or partially linear systems
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Phase Plane Analysis

Example: Mass Spring System

%
'
%—mmnmm-— m mx +kx =0
o
Form=k=1: X+x=0
x(t) = xq cos(t) + x sin(t) ; V7 f\\\k\\
x(t) = —xg sin(t) + x, cos(t) ” - //
x% + %% = x¢ + x¢ 2 1 o0 1 2

Advanced Control (Mehdi Keshmiri, Winter 95)




Phase Plane Analysis

Analytical Method

O Time differential is omitted from dynamic equations of the system, then
partial differential equation is solved

(.
X1 = f1(x1,%3)
<
\552 = f2(x1,x7)
dXz . fz(xl, xZ) SOIVG

v

= F(x{,x,) =0
dx;  f1(x1,%3) v

v" For linear or partially linear systems
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Example: Mass Spring System

Phase Plane Analysis

7
%—‘\Mx’\iﬁf\:\-— m mx + kx =0
7
o
Form=k=1: XxX+x=0 — {;;51::_35;1
dx;  —Xx4
dxy B X oL I '
. /é,-—"—'\\
szxzdxz = jxl—xldxl > 0 (/ \ \\
X20 X10 1 \\ .// /l}
S

x2 + %% = x5 + x5

-2 -1
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Phase Plane Analysis

Numerical Solution Method

Dynamic equations of the system is solved numerically (e.g. Ode45) for
various initial conditions and time response is obtained, then two states are
plotted in each time.

<— pivot

= angle relative

1o pendulum at rest
<—arm

Example: Pendulum 6 + sin(0) = 0

| < [ " ‘
bob | ifarce gravity
i

1 1 _ _ _ — '
0.5 / /\ 05 0.5/ ,,,,,,,,,,,,,,,,,,,,,,,,,, \
g 0 \ / \\ f’w 0 \ SO0 _
Uk \ / \ 0.5 / \ / )
L\ N
Time(sec) Time(sec)
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Phase Plane Analysis

Isocline Method
Isocline: The set of all points which have same trajectory slope

(.
x1 = f1(x1,%3)

Xy = f2(x1,%2)

\

dx, _ f2(x1,%3) .
dx;  f1(x1,x3)

- f2(x1,%2) = afy(xq,x3)

First various isoclines are plotted, then trajectories are drawn.
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Example: Mass Spring System

Phase Plane Analysis

?
%—«Mﬁi««m— m mx + kx =0
Z
07
Form=k=1: X+x=0 — {5::1::_321
5
dxz ~ —x, ~ Slope=1 1
dxl = X = Slope=-1
> 0 Slope =infinite
x1t+ax, =0
©g 0 5

X
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Phase Plane Analysis

Vector Field Diagram Method

Vector Field: A set of vectors that is tangent to the trajectory

f1(x1,x2)] .

0 At each point (x4, x) vector () is tangent to the trajectories
2(X1, X2

O Hence vector field can be constructed in the phase plane and direction of

the trajectories can be easily realized with that

e e ot e B o B B o e "o " T —e B B

e e~ 5 B | e . ", —— . — i B

6 +sin(0) =0 S S

B e R . i e e R e A

“‘a“‘-&“ﬂh—u&—%ﬂﬂﬂ{”—%—e%%%ﬂ—%—&ﬂﬂ)

wawd_a/ﬂﬂ/;—;w‘m\‘mmﬂ,a/ﬂ/
B I L e r- .
B i o S R R
IV A I B T I T T W A A
'_é? FF IR AN R ) P A A VN B

X2 PSRN NN SV

1 J— P o NN e o i ol s
. j - - B e e P
ffffff A T R e e e e A R R

wwwwwwwww S T e e T B S

A a A e N e e T A b i = g s i o T e A

g e R e e g — e e e e S
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Phase Plane Analysis

Singular Points in the Phase Plane Diagram:

Equilibrium points are in fact singular points in the phase plane

diagram

fi1(x1,%2) =0 :

Slope of the trajectories at

filxy,x2) =0 B

equilibrium points

dx; 0

dxq

0

Q Singular point is an important concept which reveals great info about

properties of system such as stability.

Q Singular points are only points which several trajectories pass/approach

them (i.e. trajectories intersect).
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Example: Using Matlab

pplaned Setup - O >
File Edit Gallery Desktop Window Help o

Phase Plane Analysis

¥+06x+3x+x%2=0

The differential equations. X'=y
. [ 2
x| Ty y'=-06y-3x+x
L T e 10
—\
Parameters ; : /
ar = / / T —
eEpressions 5 / ‘
/ / S RN S~
The display windouw. The direction field. { / j /i f N
The minimum wvalue of x = B @ TR Number of 0 [ r [ m f’@ \/
. &)
The mazimum value of = @ D Imes fiald poirts per \l &_/
The minimum value of y = o O Nulines rom ar calumn. H x %/%
The mazimum wvalue of y = 10 ':::' Nane a0 | T \
-5 ; —
it Revert Procead \\ \\\ "\——\\
-10 = Cursor position: (-5.86, 13.9) - i
-6 -4 -2 2 4 6
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Phase Plane Analysis

Example: Using Maple Code
X . 2 .
with(DEtools): X +0.6x+3x +x° =0

xx:=x(t): yy:=y(t): 10 -
dx:=diff(xx,t): dy:=diff(yy,t): \ '
e0:=diff(dx,t)+.6*dx+3*xx+xx"2: '
el:=dx-yy=0:
e2:=dy+0.6*yy+3*xx+xx"2=0:
egn:=[el,e2]: depvar:=[x,y]:
rang:=t=-1..5: stpsz:=stepsize=0.005:
IC1:=[x(0)=0,y(0)=1]:

1C2:=[x(0)=0,y(0)=5]:
IC3:=[x(0)=0,y(0)=7]:
|IC4:=[x(0)=0,y(0)=7]:
IC5:=[x(0)=-3.01,y(0)=0]:
1IC6:=[x(0)=-4,y(0)=2]:
IC7:=[x(0)=1,y(0)=0]:
|C8:=[x(0)=4,y(0)=0]:
1C9:=[x(0)=-6,y(0)=3]:
1C10:=[x(0)=-6,y(0)=6]:

ICs:=[IC| |(1..10)]:
lincl:=linecolour=sin((1/2)*t*Pi):
mtd:=method=classical[foreuler]:
phaseportrait(eqn,depvar,rang,ICs,stpsz,lincl,mtd);
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Phase Plane Analysis

Example: Using Maple Tools

¥+ 0.6x+3x+x%=0

Phase Portraits for Autonomous Systems

Plot Window
10:4
=10 5 -10 10
=X . z=y=
Differential Equations
¥ 5]
x=Flxy)= F
v =G (x j=_'ﬁ'y_3'x_x2 ! ﬁi}
=Gty - \Qy
Equilibrium {Critical) Points
[0,0], [-3, 0] —\_5_
Parameter
- 100 o : Enter Data -10 -
Erase Phase Portrait Clear Al
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Phase Plane Analysis

Phase Plane Analysis for Single DOF Mechanical System

In the case of single DOF mechanical system

X =X X1 = X

¥+ g(x,x) =0 —
X2 =4 Xy = —g(xq1,%3)

O The phase plane is in fact (x — x) plane and every point shows the
position and velocity of the system.

O Trajectories are always clockwise. This is not true in the general phase
plane (x1 — XZ)
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Introducing

the Concept of Stability
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Stability, Definitions and Examples

O Stability analysis of a dynamic system is normally introduced in the state

space form of the equations.
X=FX, U1t
XeR" UeR™

Dynamic System
u [ x = f(x,u,t) } =

0 Most of the concepts in this chapter are introduced for autonomous

systems

Autonomous Dynamic System
u [ x = f(x, u) } X
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Stability, Definitions and Examples

Stability analysis of a dynamic system is divided in three
categories:
1. Stability analysis of the equilibrium points of the systems. We study the

behavior (dynamics) of the free (unforced, u = 0) system when it is perturbed

from its equilibrium point.

2. Input-output stability analysis. We study the system (forced system u # 0)

output behavior in response to bounded inputs.

3. Stability analysis of periodic orbits. This analysis is for those systems which
perform a periodic or cyclic motion like walking of a biped or orbital motion

of a space object.

v Our main concern is the first type analysis. Some preliminary issues of the

second type analysis will be also discussed.
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Stability, Definitions and Examples

Reminder:

X, 1s said an equilibrium point of the system if once the system reaches this
position it stays there for ever, i.e. f(X,) =0

Definition (Lyapunov Stability):
The equilibrium point X, is said to be stable (in the sense of Lyapunov
stability) or motion of the system about its equilibrium point is said to be

stable if the system states (X) is perturbed away from X, then it stays close to

X,. Mathematically X, is stable if

£>0,36=5()>0 |x(0)—X]|<S=|x(t)—x] <& Vt=0
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Stability, Definitions and Examples

0 Without loss of generality we can present our analysis about equilibrium
point X, = 0, since the system equation can be transferred to a new form

with zero as the equilibrium point of the system.

Y = F(Y) X=Y-Y, X =F(X)
Y, # 0 X, #0

v

A more precise definition:

The equilibrium point X, is said to be stable (in the sense of Lyapunov
stability) or motion of the system about its equilibrium point is said to be stable

if for any R > 0, there exists 0 < r < R such that

Hx(O)—xe” <r=|[x@)-x.[| <R vt=0
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Stability, Definitions and Examples

Definition (Lyapunov Stability):
The equilibrium point X, = 0 is said to be
Stable if
VR>0 30<r <R s.t.

IX(O)||<r = [IX@®)| <R Vt>0
JUnstable if it is not stable.
L Asymptotically stable if it is stable and

Vr >0 s.t.
Xl <7 = limX(t) =0

curve 1 - asymptotically stable

curve 2 - marginally stable

dMarginally stable if it is stable and not curve 3 - unstable
asymptotically stable

L Exponentially stable if it is asymptotically stable with an exponential rate

IXOll <r = IX®OIl < ae P IXOI >0
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Example: Undamped Pendulum

Stability, Definitions and Examples

. g .
9+751n(9)=0 0, =0 , Opp =T
v 6, is a marginally stable point and 6, is an unstable point
1.5+ - i ;
1 X(0) = (0,1) —~
L/ ™\
E \ /
B\ /
. \_/
5% 2 4 6 8 10
Time(sec)
40
30
= X(©) = 04)
©
32 //
2
10 //
00 2 4 6 8 10
Time(sec)
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Stability, Definitions and Examples

Example: damped Pendulum

é+69+%sin(9)=0 8, =0 , O,p =T

v' 0,118 an exponentially stable point and 6,, 1s an unstable point

0.5

5 0 /\
\ _ 05 /
- E
S / X(0) = (-2.5,0)
©
24 ° /
F .5
2 / -3
-2.5
0 5 10 15 -4 N\ X(0) = (-3.5,0)
Time(sec) = \
g
; -5
. ©
T T T
-4 2 4 i \
x 8F -6 \\/
ol /T o~
-7 L L

) / 0 5 10 15
=) / Time (sec)
g, X(0) = (-3,10)
)
()
oo

-2

4

0 5 10 15
Time(sec)
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Stability, Definitions and Examples

Example: Van Der Pol Oscillator

stateform )(1 — X2

X—(1-Xx)*%X+x=0 — K= x + (X)X =X =X, =
2 = 2

trajectories

v' x, = 0 1s an unstable point

Unstable origin of the Van der Pol
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Stability, Definitions and Examples

Definition:

it the equil. point X, is asymptotically stable, then the set of all
points that trajectories initiated at these point eventually converge
to the origin is called domain of attraction.

Definition:

if the equil. point X, is asymptotically/exponentially stable, then
the equil. point is called globally stable if the whole space is
domain of attraction. Otherwise 1t 1s called locally stable.
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Stability, Definitions and Examples

Example 1:

The origin in the first order system of X = —x is globally exponentially stable.

X=-—X=>X(t) =X, :>tlimx(t):0 VX, #0

Example 2:

The origin in the first order system x = —x> is globally asymptotically but

not exponentially stable.

X .
X=-X>= X(t) = 0 = limx(t)=0 VX,
\/1+ 2txs
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Example 3:

The origin in the first order system x = —x

exponentially stable.

%o
1+1X,

X

—Xx* = X(t) =

Domain of attraction 1s x, > 0.

m—

Stability, Definitions and Examples

2

limx(t) =0
lim Xx(t) >
[ t—>-1/%
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If x,>0
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Stability, Definitions and Examples

Example 4:

|
-

X+ x+x
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Stability, Definitions and Examples

Example 5: )

¥+0.6x+3x+x2=0

=

divergence
arca

1o infinim
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Example 6:

Stability, Definitions and Examples
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Stability Analysis of

Linear Time Invariant Systems
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Phase Plane Analysis of LTI Systems

(It is the best tool for study of the linear system graphically

OThis analysis gives a very good insight of linear systems

behavior
(The analysis can be extended for higher order linear system

(Local behavior of the nonlinear systems can be understood from

this analysis

The analysis 1s performed based on the system eigenvalues and

elgenvectors.
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Phase Plane Analysis of LTI Systems

Consider a second order linear system:
x = Ax A € R?*? x € R?

O If the A matrix 1s nonsingular, origin is the only equilibrium

point of the system

A isnon-singular = x, =0

O If the A matrix is singular then the system has infinite number
of equilibrium points. In fact all of the points belonging to the

null space of A are the equilibrium point of the system.

A issingular = X, = {X. | x. € Null(A)}
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Phase Plane Analysis of LTI Systems

Consider a second order linear system:

x = Ax
A € R?*2 x € R?

The analytical solution can be obtained based on eigenvalues (14, 4;):

—

If A4, A, are real and distinct x(t) = AeMt 1 Be#at
7 If A4, A, are real and similar x(t) = (A + Bt)et
If 1,, A, are complex conjugate x(t) = AeMt + Belat

—

= e% (A sin(ft) + B cos(Bt))
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Phase Plane Analysis of LTI Systems

Jordan Form (almost diagonal form)

This representation has the system eigenvalues on the leading diagonal, and
either O or 1 on the super diagonal.

X = Ax y =]y

b - 2 1

]n_ i /1i_

Obtaining Jordan form:

y =P 1x
J = P14P

P=[v1 .. Vy]
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Phase Plane Analysis of LTI Systems

A is non-singular:

The A matrix has 2 eigenvalues (either two real, or two complex
conjugates) and can have either two eigenvectors or one

eigenvectors. Four categories can be realized
1. Two distinct real eigenvalues and two real eigenvectors

2. Two complex conjugate eigenvalues and two complex

elgenvectors
3. Two similar (real) eigenvalues and two eigenvectors

4. Two similar (real) eigenvalues and one eigenvectors
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Phase Plane Analysis of LTI Systems

1. Two distinct real eigenvalues and two real eigenvectors

y=Jy J= [0 /12]
y1 =41 Y1 = )’109
Vo = A2)5 Yo = Yppet2t

A2

Y1>
()
In
> A \Dho
=/12t

Y20
ylolz/ﬂl

Y2 =

V1

V1

=ln<

A2/

() -
Y10

Y2 = Ky,

A2/44
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Phase Plane Analysis of LTI Systems

1. A ) Az < Al <0 Vo = Kyl/‘lz/)q

0 System has two eigenvectors vq,v, the phase plane portrait is as the

following R I |
1228151 B IEE ERIN | \ \
R BT
RIS AN A
\ / ﬁ} ,,,,,,,,, { & | \ \/ \ !
/ // \\ | k L \{\/ v
YR S R IR \ G S
SIS Y AR E R BBV NN
J J \ [EREN L

O Trajectories are:
v" tangent to the slow eigenvector (v;) for near the origin
v parallel to the fast eigenvector (v,) for far from the origin

 The equilibrium point X, = 0 1s called stable node
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Phase Plane Analysis of LTI Systems

1.5~

N . TN X(0) = [-1,10] |
Example 7: X+4x+2x=0 BN X0 = [11
0.5 \\
X:[O 1]X ol
—2 —4 _1/ | |
det(a1-[°, L])=2+41+2=0 2 =-059 4, =-341
[—0.59 —1 ] (v%) B = v .
— 2] “‘ \ ‘\
2 —0.59 +4l\p2 NS \ \

- (%) e S AR

[_341 —1 ] v11 0 Z \ \ \ \ .
2 —341+4l\p? al N | |

v2= (00 )
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1.B)A, >21, >0

y, = Ky, ?2/1

Phase Plane Analysis of LTI Systems

O System has two eigenvectors v; and v, the phase plane portrait is

opposite as the previous one

f
|

|

\

)

g e ALY
L f/ﬂ/ \ \} I \
L & BIERN\YS
\ o NS
NN

O Trajectories are:

v’ tangent to the slow eigenvector v, for near origin

v’ parallel to the fast eigenvector v, for far from origin

0 The equilibrium point X, = 0 is called unstable node
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Phase Plane Analysis of LTI Systems

Example 8: Eo3ptox=0 ==, /_
, 70 1 2 gy
X = [—2 3]X : —
det(/ll—[_oz §)=AZ_3A+2=O /11:1,12.:'2 -
— 7 —
2 1 < ) 0 2 /// :
o / /
—0.71 SRYERY / ~
L :(—0.71) 0 Q/ / / |
2 —1 <U11> —0 2k
2 2—3l\y2 | // /
2
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Phase Plane Analysis of LTI Systems

1.C)A, <0< 4 y, = Ky ?2/M
O System has two eigenvectors v, and v,, the phase plane portrait is as the
following
[T - i
L | -
I ==
T ~ LN — i
o [ Al ]
= [
B Il -
Ui ! BN
il

0 Only trajectories along v, are stable trajectories

O All other trajectories at start are tangent to v, and at the end are tangent
to V4

O This equilibrium point is unstable and is called saddle point
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Phase Plane Analysis of LTI Systems

8

x 10
3

Example 9: oi-=0 L [=mal
: 0 1 1
x=[, 1]x 0 4
det(a1-[) 1])=2-2-2=0 = -1 ,,12:4 |
30l o~
; 2 SE== /
L (_007711) 0 - \/ \ / / |
2 —1 (U%) ~0 _2/ / \ \
-2 2—-1l\yp2) ™ | ?_\\
—0.45 4 2 0 2 2
v = (o 90)
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Phase Plane Analysis of LTI Systems

2. Two complex conjugate eigenvalues and two complex eigenvectors

y =y I= |5 7]

a
r= v+

_1.Y2
0 = tan” (==
(yl)

= y1y1 + 2, = yilays — By2) + y2(Byy + ay,) = ar?

. o — V2 + ay,) —y,(ay, —
6(1 + tan 62) = Y1Y2 23’23’1 _ y1(By1 Y2) 23’2( Y1 — BY2) — B(1 + tan 62)
Y1 Y1

— r(t) = rpet 0(t) = 0, + Bt

Advanced Control (Mehdi Keshmiri, Winter 95)




2.A)Az, /‘ll: aiﬁi

b

a<0,6+0

Phase Plane Analysis of LTI Systems

r(t) = rye®t

o(t) =6, + Pt

0 System has no real eigenvectors the phase plane portrait 1s as the following

fffffff i SRS SN
= ‘
fffffffff =
=
RS EHLER

O The trajectories are spiral around the origin and toward the origin.

O This equilibrium point is called stable focus.
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Phase Plane Analysis of LTI Systems

Example 10: X+x+x=0

x=[0 Lx

det(a1-[° L])=2+21+1=0 A1,y = —0.5 + 0.866i
T 2, e
e | e\ x(0)=[1-2] |
: — / X(0) = [1,2]

) S, | 1

o / r / ?\\\\ L \ \ 0.5 \
TSR T NN
2 A = 0.5 \ )< —
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) S bl T2 4 8 10
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Phase Plane Analysis of LTI Systems

2.B)/‘lz, 21=aiﬁi - a>0,ﬁ:/_-0 T(t)=r0e“t
0(t) =0y + Bt

0 System has no real eigenvectors the phase plane portrait 1s as the following

V v

/i //\\ N

N = S SN
\\ | <(§\ | 3(/ [0 7\\ \ \\\ \\‘

é%%\\ \ BRIk \\@%&/ﬂ/

S R TN S
e PN M | =

fffj}/ V =

(0 The trajectories are spiral around the origin and diverge from the origin.

O This equilibrium point is called unstable focus.

Advanced Control (Mehdi Keshmiri, Winter 95)




Phase Plane Analysis of LTI Systems

Example 11: X—x+x=0

X=[_01 ﬂx

0 11\ _ _ _ :

det(/U— b 1]) =2 —1+1=0 A, A, = 0.5 + 0.866i
' P R 200 ; —~
; — : 0 —ﬁé/: :\
| 3 \
oL / / [ ////ﬂh | \\ | -200
JIERANASS iy s \

~ T -400 X(0) = [1,2]
2 ¥;i/ : X(0) = [1,-2]
_4))// = r 2 4 6 s
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2.C)Az,/‘ll:iﬁi ’ a=0,ﬁ=/—'0

Phase Plane Analysis of LTI Systems

r(t) = rye®t

o(t) =6, + Pt

0 System has two imaginary eigenvalues and no real eigenvectors the phase

plane portrait 1s as the following

//,\7\ i /// 7 /\ N\ \\
TN AN
/ \ LA
[ ) HH(/\WI
RERSZ)yIn QLAY
N\ / / AW
) WA

\>_W// ¥\\\ \\\t//////

 The trajectories are closed trajectories around the origin.

 This equilibrium point is marginally stable and is called center.
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Phase Plane Analysis of LTI Systems

Example 12: X+3x=0
: 0O 1
X = [_3 0] X
det (21 - [_03 é )=22+3=0 Ay, Ay = +1.732i

AN

1/ 1 -/\

1/ // N \\ \ \ l\\ / X(0) = [1,-2]
BN\ 0 X0)=[12] .
TV ) /

2\\\\\\ ] /) // ! \W \y\// \\/\</
j4 \\\ | 1//3/4
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Phase Plane Analysis of LTI Systems

3. Two similar (real) eigenvalues and two eigenvectors

: A 0
y=]y ] = 0 A
y1 = Ay, V1= }’103/“
Vo = Ay, Y2 = }’ZOBM

Y1 _ Y10
Y2 Y20

- V2 = Ky,
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Phase Plane Analysis of LTI Systems
3 ) )lz = /‘ll = ), 7+ O

O System has two similar eigenvalues and two different eigenvectors. The

phase plane portrait is as the following, depending to the sign of A

T —— i
\.\ ,,,,, ,, / /’ \R /f e
i V117
—— | &jw g ——— &H ‘ S
I o | —— 1 N i:\,,\EX , T
= e, =
1 AR — — /r ‘ 7 S
o //\\ = // \\
s \\ B8
\ ﬂ
o A 3
A<O0
A1>0

O The trajectories are all along the initial conditions and they are 4 < 0
toward A > 0 or outward the origin
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Phase Plane Analysis of LTI Systems

4. Two similar (real) eigenvalues and One eigenvectors

: A1
y=]y ] = 0 A
Vi =41+ V1 = yi0ett + yyotett
Y2 = Ay, Y2 = }’203/“
Y2 1 Y2
=Yio— t ¥,z In(—
Y1 = Y10 V2o Y2 7 ()’20)

Yoo A

1
Y1 = )’2(& + —In <£>)
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Phase Plane Analysis of LTI Systems

4)12:)[1213":0

O System has two similar eigenvalues and only one eigenvector. The phase

plane portrait is as the following, depending to the sign of A

A>0

O The trajectories converge to zero or diverge to infinity along the system

eigenvector.
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Phase Plane Analysis of LTI Systems

3F

Example 13: X+2x+x=0 2\/\\ o 5{51-331] |
x=[0 Llx N
det(a-[° Ll)=2+22+41=0 a1 =0—12 -
4 : \ -
. . 1
Fod)e e S SV
o = (071) RN :
JERNSaN l

-4 -2 0
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Phase Plane Analysis of LTI Systems

A is singular (det(A4) = 0):

O System has at least one eigenvalue equal to zero and therefore infinite
number of equilibrium points. Three different categories can be

specified

D/11=0 ; Az#:o
Dﬂ,l,ﬂ.1=0 p Rank(A)=1

D Aliﬂ'l =0 p Rank(A) =0
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Phase Plane Analysis of LTI Systems

. 10 0
y1 =20 Y1 = Y10
V2 = Ay> Y2 = Ya0et
s
‘/ /// /
/
- / WA Yy /
T/’y/ /

 System has infinite number of non-isolated equilibrium points along a line

0 System has two eigenvectors. Eigenvector corresponding to zero eigenvalue
is in fact loci of the equilibrium points

0 Depending on the sign of the second eigenvalue, all the trajectories move
inward or outward to v; along v,
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Example 14:

det (,11 -
b 1

0 -1+1

Phase Plane Analysis of LTI Systems

X(0) = [2.-4]
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X+x=0 ? \ X =[3.4] ]
1 0\\\
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20 2 . 6 8 10
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Phase Plane Analysis of LTI Systems

M)A, A =0 , Rank(4) =1 y=Jy J= 8 é
Y1 =Y2 Y1 = Y20t T Y10
y2 =0 Y2 = Y2o0

 System has infinite number of non-isolated equilibrium points along a line

O System has only one eigenvector, and it 1s loci of the equilibrium points

O All the trajectories move toward infinity along the system eigenvector

(unstable system).
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Phase Plane Analysis of LTI Systems

2) /11,11 =0 ; Rank(A) =0

y=Jy ]=[8 8

y1 =0 Y1 = Y10

y2 =0 Y2 = Y20

O System is a static system. All the points are equilibrium points
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Phase Plane Analysis of LTI Systems

Summary

Six different type of isolated equilibrium points can be identified

AStable/unstable node
Saddle point
(IStable/ unstable focus

dCenter
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Phase Plane Analysis of LTI Systems

Stability Analysis of Higher Order Systems:

L Analysis and results for the second order LTI system can be
extended to higher order LTI system

L Graphical tool is not usetul for higher order LTI system except

for third order systems.

This means stability analysis of mechanical system with more

than one DOF can not be materialized graphically

Stability analysis 1s performed through the eigenvalue analysis of
the A matrix.
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Phase Plane Analysis of LTI Systems

L Consider a linear time invariant (LTI) system

X =Ax+Bu
y = Cx+Du

LOrigin 1s the only equilibrium point of the system if A is non-
singular

det(A)=0

X = AX :> Xe:O

L Otherwise the system has infinite number ot equilibrium points,
all the points on null-space of A are in fact equil. points of the
System. det(A)=0

X=AX — X, ={X.|x. e Nullspace(A)}
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Phase Plane Analysis of LTI Systems

Details for Case of Non-Singular A

0 Origin is the only equilibrium point of the system
Q This equilibrium point (system) 1s

[ Exponentially stable if all eigenvalues of A are either real

negative or complex with negative real part.

(0 Marginally stable if eigenvalues of A have non-positive real

part and rank(A — AI) = n — r for all repeated imaginary

eigenvalues, 4 with multiplicity of »

[ Unstable, otherwise.
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Phase Plane Analysis of LTI Systems

A is Non-Singular

0 Classification of the equilibrium point of higher order system
into node, focus, and saddle point is not as easy as second order
system. However some points can be emphasized:

v' The equilibrium point is stable/unstable node it all
eigenvalues are real and have the negative/positive sign.

v' The equilibrium point is center if a pair of eigenvalues are
pure imaginary complex conjugate and all other eigenvalues
have negative real

v In the case ot different sign in the real part of the
eigenvalues trajectories have the saddle type behavior near
the equilibrium point
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Phase Plane Analysis of LTI Systems

v'Trajectories are along the eigenvector with minimum
absolute real part near the equilibrium point and along the

eigenvector with maximum absolute real part.

v'Trajectories have spiral behavior if there exist some complex

(obviously conjugates) eigenvalues.

v'Spiral behavior is toward/outward depending on the sign
(negative and positive) of real part of the complex conjugate

eigenvalues.

These concepts can be visualized and better understood in three

dimensional case
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Lyapunov Indirect Method in
Stability Analysis of

Nonlinear Systems
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Phase Plane Analysis of LTI Systems

[ There are two conventional approaches in the stability analysis

of nonlinear systems:
v' Lyapunov direct method
v' Lyapunov indirect method or linearization approach

(0 The direct method analyzes stability of the system (equilibrium

point) using the nonlinear equations of the system

0 The indirect method analyzes the system stability using the

linearized equations about the equilibrium point.
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Phase Plane Analysis of LTI Systems

A nonlinear system near its equilibrium point behaves like a linear:

Motivation:

Nonlinear system: X ="1(X)

Equilibrium point:  f(x)=0= X,

Motion about equilibrium point: X=X, +X

[inearized motion:

X:f(x):>>*<:f(xe+§<):j@<gf+gi %+H.O.T = % = AX
X

Xe

if x, =0

x=f(x) [ Xx=A%x —= x~X

It means near x, :
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Phase Plane Analysis of LTI Systems

This means stability of the equilibrium point may be studied
through the stability analysis of the linearized system.

O This 1s the base of the Lyapunov Indirect Method

L Example: in the nonlinear second order system

X, = X5 + X, COS X,
X, =X, + (14 X)X + X SIn X,

origin is the equilibrium point and the linearized system is given

by
<).(1>:{ﬂ} {)A(l}:MXl:Xl
\)22) OX X, =0 X2 \)22 = )21 -I-)’Z2

Advanced Control (Mehdi Keshmiri, Winter 95)




Phase Plane Analysis of LTI Systems

Theorem (Lyapunov Linearization Method):

L If the linearized system is strictly stable (i.e. all eigenvalues of A
are strictly in the left halt complex plane ) then the equilibrium

point in the original nonlinear system is asymptotically stable.
X =AX is strictlystable = x =f(x) Isasymptoticallystable

L If the linearized system 1s unstable (i.e. in the case of right half
plane eigenvalue(s) or repeated eigenvalues on the imaginary axis
with geometrical deficiency (r > n — rank(Al — A)), then the

equilibrium point in the original nonlinear system is unstable.

X = AX isunstable = x =f (X) isunstable
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Phase Plane Analysis of LTI Systems

Theorem (Lyapunov Linearization Method):

O If the linearized system is marginally stable (i.e. all eigenvalues of A are in the
left half complex plane and eigenvalues on the imaginary axis have no
geometrical deficiency) then one cannot conclude anything from the linear
approximation. The equilibrium point in the original nonlinear system may

be stable, asymptotically stable, or unstable.

(x =f(x) isasymptoticallystable
X=AX is marginally stable = < x =f(x) ismarginallystable
x=1(x) Isunstable

0 The Lyapunov linearized approximation method only talks about the local
stability of the nonlinear system, if anything can be concluded.
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Example 15:
O The nonlinear system x = ax + bx> is
v' Asymptotically stable if a < 0

v’ Unstableifa > 0

Phase Plane Analysis of LTI Systems

v" No conclusion from linear approximation can be drawn if

O The origin in the nonlinear second order system

X, = X5 + X, COS X,

X, = X, + (14 X)X + X SIn X,
0 1s unstable because the linearized system

~

2%

unstable |

<> e
N
1\
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