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Objectives

Objectives of the section:

 Introducing the Phase Plane Analysis

 Introducing the Concept of stability

 Stability Analysis of Linear Time Invariant Systems

 Lyapunov Indirect Method in Stability Analysis of 

Nonlinear Systems
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Introducing

the Phase Plane Analysis
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Phase Plane Analysis

Phase Space form of a Dynamical System:

 𝑥1 = 𝑓1 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑚, 𝑡
 𝑥2 = 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑚, 𝑡)

⋮
 𝑥𝑛 = 𝑓𝑛 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑚, 𝑡

 𝑋 = 𝐹 𝑋, 𝑈, 𝑡

𝑋 ∈ ℝ𝑛 𝑈 ∈ ℝ𝑚

 𝑋 = 𝐹 𝑋, 𝑈, 𝑡
𝑼 𝑿

 𝑋 = 𝐹 𝑋, 𝑈
𝑼 𝑿

Time-Varying System Time-Invariant System
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Phase Plane Analysis

Phase Space form of a Linear Time Invariant (LTI) System:

 𝑿 = 𝑨𝑿 + 𝑩𝑼

𝑋 ∈ ℝ𝑛 𝑈 ∈ ℝ𝑚

 Multiple isolated equilibria

 Limit Cycle

 Finite escape time 

 Harmonic, sub-harmonic and almost periodic Oscillation

 Chaos

 Multiple modes of behavior

Special Properties of Nonlinear Systems:
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Phase Plane Analysis

Phase Plane Analysis is a graphical method for studying 

second-order systems respect to initial conditions by:

 providing motion trajectories corresponding to various initial 

conditions.

 examining the qualitative features of the trajectories  

 obtaining information regarding the stability of the equilibrium 

points

 

 𝑥1 = 𝑓1(𝑥1, 𝑥2)

 𝑥2 = 𝑓2(𝑥1, 𝑥2)
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Phase Plane Analysis

Advantages of Phase Plane Analysis:

 It is graphical analysis and the solution trajectories can be 

represented by curves in a plane

 Provides easy visualization of the system qualitative 

 Without solving the nonlinear equations analytically, one can study 

the behavior of the nonlinear system from various initial 

conditions.

 It is not restricted to small or smooth nonlinearities and applies 

equally well to strong and hard nonlinearities.

 There are lots of practical systems which can be approximated by 

second-order systems, and apply phase plane analysis.
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Phase Plane Analysis

Disadvantage of Phase Plane Method: 

 It is restricted to at most second-order

 graphical study of higher-order is computationally and 

geometrically complex. 

8



Advanced Control (Mehdi Keshmiri, Winter 95)

Phase Plane Analysis

Example: First Order LTI System

 𝒙 = 𝐬𝐢𝐧(𝒙)

𝑑𝑥

sin(𝑥)
= 𝑑𝑡

Analytical Solution

 
𝑥0

𝑥 𝑑𝑥

sin(𝑥)
=  

0

𝑡

𝑑𝑡

𝑑𝑥

𝑑𝑡
= sin(𝑥)

𝑡 = ln
cos 𝑥0 + cot(𝑥0)

cos 𝑥 + cot(𝑥)

Graphical Solution

-6 -4 -2 0 2 4 6

-1

-0.5

0

0.5

1

x

sin(x)
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Phase Plane Analysis

Concept of Phase Plane Analysis:

 Phase plane method is applied to Autonomous Second Order System

 System response 𝑋 𝑡 = (𝑥1 𝑡 , 𝑥2(𝑡)) to initial condition 𝑋0 = 𝑥1 0 , 𝑥2 0

is a mapping from ℝ(Time) to ℝ2(𝑥1, 𝑥2)

 The solution can be plotted in the 𝑥1 − 𝑥2 plane called State Plane or 

Phase Plane

 The locus in the 𝑥1 − 𝑥2 plane is a curved named Trajectory that pass through 

point 𝑋0

 The family of the phase plane trajectories corresponding to various initial 

conditions is called Phase portrait of the system.

 For a single DOF mechanical system, the phase plane is in fact is (𝑥,  𝑥) plane

 𝑥1 = 𝑓1(𝑥1, 𝑥2)  𝑥2 = 𝑓2(𝑥1, 𝑥2)

10



Advanced Control (Mehdi Keshmiri, Winter 95)

Phase Plane Analysis

Example: Van der Pol Oscillator Phase Portrait

x
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Phase Plane Analysis

Plotting Phase Plane Diagram:

Analytical Method

Numerical Solution Method

Isocline Method

Vector Field Diagram Method

Delta Method

Lienard’s Method

Pell’s Method
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Phase Plane Analysis

Analytical Method

 Dynamic equations of the system is solved, then time parameter is omitted 

to obtain relation between two states for various initial conditions

 

 𝑥1 = 𝑓1(𝑥1, 𝑥2)

 𝑥2 = 𝑓2(𝑥1, 𝑥2)

Solve 𝑥1 𝑡, 𝑋0 = 𝑔1(𝑡, 𝑋0)

𝑥2 𝑡, 𝑋0 = 𝑔2(𝑡, 𝑋0)
𝐹 𝑥1, 𝑥2 = 0

 For linear or partially linear systems
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Phase Plane Analysis

Example: Mass Spring System

𝑚  𝑥 + 𝑘𝑥 = 0

For 𝑚 = 𝑘 = 1 :  𝑥 + 𝑥 = 0

𝑥 𝑡 = 𝑥0 cos(𝑡) +  𝑥0 sin(𝑡)

 𝑥 𝑡 = −𝑥0 sin 𝑡 +  𝑥0 cos(𝑡)

𝑥2 +  𝑥2 = 𝑥0
2 +  𝑥0

2

x

y

x2 + y2 - 4

-2 -1 0 1 2

-2

-1

0

1

2
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Phase Plane Analysis

Analytical Method

 Time differential is omitted from dynamic equations of the system, then 

partial differential equation is solved 

 

 𝑥1 = 𝑓1(𝑥1, 𝑥2)

 𝑥2 = 𝑓2(𝑥1, 𝑥2)

Solve

𝐹 𝑥1, 𝑥2 = 0
𝑑𝑥2
𝑑𝑥1

=
𝑓2(𝑥1, 𝑥2)

𝑓1(𝑥1, 𝑥2)

 For linear or partially linear systems
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Phase Plane Analysis

Example: Mass Spring System

𝑚  𝑥 + 𝑘𝑥 = 0

For 𝑚 = 𝑘 = 1 :  𝑥 + 𝑥 = 0

x

y

x2 + y2 - 4

-2 -1 0 1 2

-2

-1

0

1

2

 
 𝑥1 = 𝑥2
 𝑥2 = −𝑥1

𝑑𝑥2
𝑑𝑥1

=
−𝑥1
𝑥2

 
𝑥20

𝑥2

𝑥2𝑑𝑥2 =  
𝑥10

𝑥1

−𝑥1𝑑𝑥1

𝑥2 +  𝑥2 = 𝑥0
2 +  𝑥0

2
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Phase Plane Analysis

Numerical Solution Method

Dynamic equations of the system is solved numerically (e.g. Ode45) for

various initial conditions and time response is obtained, then two states are

plotted in each time.

Example: Pendulum  𝜃 + sin 𝜃 = 0

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time(sec)

x
2
(t

)
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0
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x
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x
2
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-1

-0.5

0
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1

Time(sec)

x
1
(t

)
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Phase Plane Analysis

Isocline Method

Isocline: The set of all points which have same trajectory slope

First various isoclines are plotted, then trajectories are drawn.

 

 𝑥1 = 𝑓1(𝑥1, 𝑥2)

 𝑥2 = 𝑓2(𝑥1, 𝑥2)

𝑑𝑥2
𝑑𝑥1

=
𝑓2(𝑥1, 𝑥2)

𝑓1(𝑥1, 𝑥2)
= 𝛼 𝑓2 𝑥1, 𝑥2 = 𝛼𝑓1(𝑥1, 𝑥2)
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Phase Plane Analysis

Example: Mass Spring System

𝑚  𝑥 + 𝑘𝑥 = 0

For 𝑚 = 𝑘 = 1 :  𝑥 + 𝑥 = 0  
 𝑥1 = 𝑥2
 𝑥2 = −𝑥1

𝑑𝑥2
𝑑𝑥1

=
−𝑥1
𝑥2

= 𝛼

𝑥1 + 𝛼𝑥2 = 0

x

y

x2 + y2 - 4

-5 0 5
-5

0

5

Slope=1

Slope=infinite

Slope=-1
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Phase Plane Analysis

Vector Field Diagram Method

Vector Field: A set of vectors that is tangent to the trajectory

 At each point (𝑥1, 𝑥2) vector 

𝑓1(𝑥1, 𝑥2)
𝑓2(𝑥1, 𝑥2)

is tangent to the trajectories

 Hence  vector field can be constructed in the phase plane and direction of 

the trajectories can be easily realized with that 

1 2

12

sin( ) 0

sin( )

x x

xx

 





 

   
   

   
f
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Phase Plane Analysis

 Singular point is an important concept which reveals great info about

properties of system such as stability.

 Singular points are only points which several trajectories pass/approach

them (i.e. trajectories intersect).

Singular Points in the Phase Plane Diagram:

Equilibrium points are in fact singular points in the phase plane 

diagram

21

𝑓1 𝑥1, 𝑥2 = 0

𝑓1 𝑥1, 𝑥2 = 0

Slope of the trajectories at

equilibrium points

𝑑𝑥2
𝑑𝑥1

=
0

0
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Phase Plane Analysis

22

Example: Using Matlab

x ' = y                  

y ' = - 0.6 y - 3 x + x2

 

 

 

 

 

 

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

x

y

 𝑥 + 0.6  𝑥 + 3𝑥 + 𝑥2 = 0
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Phase Plane Analysis

23

Example: Using Maple Code

with(DEtools):
xx:=x(t):   yy:=y(t):    
dx:=diff(xx,t):    dy:=diff(yy,t):
e0:=diff(dx,t)+.6*dx+3*xx+xx^2:
e1:=dx-yy=0:
e2:=dy+0.6*yy+3*xx+xx^2=0:
eqn:=[e1,e2]:  depvar:=[x,y]:    
rang:=t=-1..5:  stpsz:=stepsize=0.005:
IC1:=[x(0)=0,y(0)=1]:
IC2:=[x(0)=0,y(0)=5]:
IC3:=[x(0)=0,y(0)=7]:
IC4:=[x(0)=0,y(0)=7]:
IC5:=[x(0)=-3.01,y(0)=0]:
IC6:=[x(0)=-4,y(0)=2]:
IC7:=[x(0)=1,y(0)=0]:
IC8:=[x(0)=4,y(0)=0]:
IC9:=[x(0)=-6,y(0)=3]:
IC10:=[x(0)=-6,y(0)=6]:
ICs:=[IC||(1..10)]:
lincl:=linecolour=sin((1/2)*t*Pi):
mtd:=method=classical[foreuler]:
phaseportrait(eqn,depvar,rang,ICs,stpsz,lincl,mtd);

 𝑥 + 0.6  𝑥 + 3𝑥 + 𝑥2 = 0
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Phase Plane Analysis

24

Example: Using Maple Tools

 𝑥 + 0.6  𝑥 + 3𝑥 + 𝑥2 = 0
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Phase Plane Analysis

25

Phase Plane Analysis for Single DOF Mechanical System

In the case of single DOF mechanical system

 𝑥 + 𝑔 𝑥,  𝑥 = 0
𝑥1 = 𝑥

𝑥2 =  𝑥

 𝑥1 = 𝑥2

 𝑥2 = −𝑔(𝑥1, 𝑥2)

 The phase plane is in fact (𝑥 −  𝑥) plane and every point shows the

position and velocity of the system.

 Trajectories are always clockwise. This is not true in the general phase

plane (𝑥1 − 𝑥2)
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Introducing

the Concept of Stability
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Stability, Definitions and Examples

27

 Stability analysis of a dynamic system is normally introduced in the state

space form of the equations.

 𝑋 = 𝐹 𝑋, 𝑈, 𝑡

𝑋 ∈ ℝ𝑛 𝑈 ∈ ℝ𝑚

 Most of the concepts in this chapter are introduced for autonomous

systems

u xx = f(x,u)

Autonomous Dynamic System

u x,tx = f(x,u )

Dynamic System
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Stability, Definitions and Examples

28

 Our main concern is the first type analysis. Some preliminary issues of the

second type analysis will be also discussed.

Stability analysis of a dynamic system is divided in three 

categories:

1. Stability analysis of the equilibrium points of the systems. We study the

behavior (dynamics) of the free (unforced, 𝑢 = 0) system when it is perturbed

from its equilibrium point.

2. Input-output stability analysis. We study the system (forced system 𝑢 ≠ 0)

output behavior in response to bounded inputs.

3. Stability analysis of periodic orbits. This analysis is for those systems which 

perform a periodic or cyclic motion like walking of a biped or orbital motion 

of a space object.
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Stability, Definitions and Examples

29

Reminder: 

𝑋𝑒 is said an equilibrium point of the system if once the system reaches this

position it stays there for ever, i.e. 𝑓 𝑋𝑒 = 0

Definition (Lyapunov Stability):

The equilibrium point 𝑋𝑒 is said to be stable (in the sense of Lyapunov

stability) or motion of the system about its equilibrium point is said to be

stable if the system states (𝑋) is perturbed away from 𝑋𝑒 then it stays close to

𝑋𝑒. Mathematically 𝑋𝑒 is stable if

0)(,0   (0) ( ) 0e et t       x x x x
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Stability, Definitions and Examples

30

 Without loss of generality we can present our analysis about equilibrium

point 𝑋𝑒 = 0, since the system equation can be transferred to a new form

with zero as the equilibrium point of the system.

𝑋 = 𝑌 − 𝑌𝑒 𝑌 = 𝐹 𝑌

𝑌𝑒 ≠ 0

 𝑋 = 𝐹 𝑋

𝑋𝑒 ≠ 0

The equilibrium point 𝑋𝑒 is said to be stable (in the sense of Lyapunov

stability) or motion of the system about its equilibrium point is said to be stable

if for any 𝑅 > 0, there exists 0 < 𝑟 < 𝑅 such that

A more precise definition: 

(0) ( ) 0e er t R t      x x x x
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Stability, Definitions and Examples

31

The equilibrium point 𝑋𝑒 = 0 is said to be 

Definition (Lyapunov Stability): 

Stable if

∀𝑅 > 0 ∃0 < 𝑟 < 𝑅 𝑠. 𝑡.

𝑋 0 < 𝑟  𝑋 𝑡 < 𝑅 ∀𝑡 > 0

Unstable if it is not stable.

Asymptotically stable if it is stable and

∀𝑟 > 0 𝑠. 𝑡.

𝑋 0 < 𝑟  lim
𝑡→∞

𝑋(𝑡) = 0

Marginally stable if it is stable and not

asymptotically stable

Exponentially stable if it is asymptotically stable with an exponential rate

𝑋(0) < 𝑟  𝑋(𝑡) < 𝛼𝑒−𝛽𝑡 𝑋(0) 𝛼, 𝛽 > 0
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Stability, Definitions and Examples

32

Example: Undamped Pendulum

 𝜃 +
𝑔

𝑙
sin(𝜃) = 0 𝜃𝑒1 = 0 , 𝜃𝑒2 = 𝜋

 

RBrB

 𝜃𝑒1 is a marginally stable point and 𝜃𝑒2 is an unstable point
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Stability, Definitions and Examples

33

Example: damped Pendulum

 𝜃 + 𝐶  𝜃 +
𝑔

𝑙
sin(𝜃) = 0 𝜃𝑒1 = 0 , 𝜃𝑒2 = 𝜋

 𝜃𝑒1is an exponentially stable point and 𝜃𝑒2 is an unstable point
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Stability, Definitions and Examples

34

stateform
1 22

1 22

2 1 1 2

(1 ) 0 0
(1 ) e e

x x
x x x x x x

x x x x


      

   


Example: Van Der Pol Oscillator

 𝑥𝑒 = 0 is an unstable point
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Stability, Definitions and Examples

35

Definition:

if the equil. point 𝑋𝑒 is asymptotically stable, then the set of all

points that trajectories initiated at these point eventually converge

to the origin is called domain of attraction.

Definition:

if the equil. point 𝑋𝑒 is asymptotically/exponentially stable, then

the equil. point is called globally stable if the whole space is

domain of attraction. Otherwise it is called locally stable.
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Stability, Definitions and Examples

36

The origin in the first order system of  𝑥 = −𝑥 is globally exponentially stable.

Example 1:

0 0( ) lim ( ) 0 0t

t
x x x t x e x t x


       

The origin in the first order system  𝑥 = −𝑥3
is globally asymptotically but

not exponentially stable.

Example 2:

3 0
0

2

0

( ) lim ( ) 0
1 2 t

x
x x x t x t x

tx 
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Stability, Definitions and Examples

37

The origin in the first order system  𝑥 = −𝑥2
is semi-asymptotically but not 

exponentially stable.

Example 3:

0

0
2 0

00 1/

lim ( ) 0 if 0

( )
lim ( ) if 01

t

t x

x t x
x

x x x t
x t xtx





 


     
  

Domain of attraction is 𝑥0 > 0. 
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Stability, Definitions and Examples

38

Example 4: 

 𝑥 +  𝑥 + 𝑥 = 0
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Stability, Definitions and Examples

39

Example 5: 

 𝑥 + 0.6  𝑥 + 3𝑥 + 𝑥2 = 0
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Stability, Definitions and Examples

40

Example 6: 

 𝑥 +  𝑥 + 𝑥3 − 𝑥 = 0
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Stability Analysis of

Linear Time Invariant Systems
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Phase Plane Analysis of LTI Systems

42

It is the best tool for study of the linear system graphically

This analysis gives a very good insight of linear systems

behavior

The analysis can be extended for higher order linear system

Local behavior of the nonlinear systems can be understood from

this analysis

The analysis is performed based on the system eigenvalues and

eigenvectors.
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Phase Plane Analysis of LTI Systems

43

Consider a second order linear system:

 If the A matrix is nonsingular, origin is the only equilibrium

point of the system

 If the A matrix is singular then the system has infinite number

of equilibrium points. In fact all of the points belonging to the

null space of A are the equilibrium point of the system.

isnon-singular e A x 0

 * *issingular | ( )e Null  A x x x A

 𝑥 = 𝐴𝑥 𝐴 ∈ ℝ2×2 , 𝑥 ∈ ℝ2
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Phase Plane Analysis of LTI Systems

44

Consider a second order linear system:

 𝑥 = 𝐴𝑥

𝐴 ∈ ℝ2×2 , 𝑥 ∈ ℝ2

The analytical solution can be obtained based on eigenvalues (𝜆1, 𝜆2):

If 𝜆1, 𝜆2 are real and distinct

If 𝜆1, 𝜆2 are real and similar

If 𝜆1, 𝜆2 are complex conjugate

𝑥 𝑡 = 𝐴𝑒𝜆1𝑡 + 𝐵𝑒𝜆2𝑡

𝑥 𝑡 = (𝐴 + 𝐵𝑡)𝑒𝜆𝑡

𝑥 𝑡 = 𝐴𝑒𝜆1𝑡 + 𝐵𝑒𝜆2𝑡

= 𝑒𝛼𝑡(𝐴 sin 𝛽𝑡 + 𝐵 cos(𝛽𝑡))
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Phase Plane Analysis of LTI Systems

45

Jordan Form (almost diagonal form)

This representation has the system eigenvalues on the leading diagonal, and

either 0 or 1 on the super diagonal.

 𝑥 = 𝐴𝑥  𝑦 = 𝐽𝑦

𝐽 =
𝐽1

⋱
𝐽𝑛

𝐽𝑖 =
𝜆𝑖 1

⋱ 1
𝜆𝑖

Obtaining Jordan form:

𝑦 = 𝑃−1𝑥

𝑃 = 𝑣1 … 𝑣𝑛

𝐽 = 𝑃−1𝐴𝑃



Advanced Control (Mehdi Keshmiri, Winter 95)

Phase Plane Analysis of LTI Systems

46

The A matrix has 2 eigenvalues (either two real, or two complex

conjugates) and can have either two eigenvectors or one

eigenvectors. Four categories can be realized

1. Two distinct real eigenvalues and two real eigenvectors

2. Two complex conjugate eigenvalues and two complex

eigenvectors

3. Two similar (real) eigenvalues and two eigenvectors

4. Two similar (real) eigenvalues and one eigenvectors

A is non-singular: 
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1. Two distinct real eigenvalues and two real eigenvectors

 𝑦 = 𝐽𝑦 𝐽 =
𝜆1 0
0 𝜆2

 𝑦1 = 𝜆1𝑦1

 𝑦2 = 𝜆2𝑦2

𝑦1 = 𝑦10𝑒
𝜆1𝑡

𝑦2 = 𝑦20𝑒
𝜆2𝑡

ln
𝑦1
𝑦10

= 𝜆1𝑡

ln
𝑦2
𝑦20

= 𝜆2𝑡

𝜆2
𝜆1

ln
𝑦1
𝑦10

= ln
𝑦2
𝑦20

𝑦1
𝑦10

𝜆2
𝜆1

=
𝑦2
𝑦20

𝑦2 =
𝑦20

𝑦10
𝜆2/𝜆1

𝑦1
𝜆2/𝜆1 𝑦2 = 𝐾𝑦1

𝜆2/𝜆1
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1. A ) 𝝀𝟐 < 𝝀𝟏 < 𝟎 𝑦2 = 𝐾𝑦1
𝜆2/𝜆1

 System has two eigenvectors 𝑣1, 𝑣2 the phase plane portrait is as the

following

 Trajectories are:

 tangent to the slow eigenvector (𝑣1) for near the origin

 parallel to the fast eigenvector (𝑣2) for far from the origin

 The equilibrium point 𝑋𝑒 = 0 is called stable node

x ' = - 2 x 
y ' = - 12 y
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Example 7:  𝑥 + 4  𝑥 + 2𝑥 = 0

 𝑋 =
0 1
−2 −4

𝑋

det 𝜆𝐼 −
0 1
−2 −4

= 𝜆2 + 4𝜆 + 2 = 0 𝜆1 = −0.59 , 𝜆2 = −3.41

−0.59 −1
2 −0.59 + 4

𝑣1
1

𝑣1
2 = 0

𝑣1 =
0.86
−0.51

−3.41 −1
2 −3.41 + 4

𝑣1
1

𝑣1
2 = 0

𝑣2 =
−0.28
0.96
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X(0) = [-1,10]
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1. B ) 𝝀𝟐 > 𝝀𝟏 > 𝟎 𝑦2 = 𝐾𝑦1
𝜆2/𝜆1

 System has two eigenvectors 𝑣1 and 𝑣2 the phase plane portrait is

opposite as the previous one

 Trajectories are:

 tangent to the slow eigenvector 𝑣1 for near origin

 parallel to the fast eigenvector 𝑣2 for far from origin

 The equilibrium point 𝑋𝑒 = 0 is called unstable node

x ' = - 2 x 
y ' = - 12 y
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Example 8:  𝑥 − 3  𝑥 + 2𝑥 = 0

 𝑋 =
0 1
−2 3

𝑋

det 𝜆𝐼 −
0 1
−2 3

= 𝜆2 − 3𝜆 + 2 = 0 𝜆1 = 1 , 𝜆2 = 2

1 −1
2 1 − 3

𝑣1
1

𝑣1
2 = 0

𝑣1 =
−0.71
−0.71

2 −1
2 2 − 3

𝑣1
1

𝑣1
2 = 0

𝑣2 =
−0.45
−0.89
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X(0) = [-2,2]

X(0) = [-2,0.1]
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1. C ) 𝝀𝟐 < 𝟎 < 𝝀𝟏 𝑦2 = 𝐾𝑦1
𝜆2/𝜆1

 System has two eigenvectors 𝑣1 and 𝑣2, the phase plane portrait is as the

following

 Only trajectories along 𝑣2 are stable trajectories

 All other trajectories at start are tangent to 𝑣2 and at the end are tangent 

to 𝑣1

 This equilibrium point is unstable and is called saddle point

x ' = 3 x  
y ' = - 3 y
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Example 9:  𝑥 −  𝑥 − 2𝑥 = 0

 𝑋 =
0 1
2 1

𝑋

det 𝜆𝐼 −
0 1
2 1

= 𝜆2 − 𝜆 − 2 = 0 𝜆1 = −1 , 𝜆2 = 2

−1 −1
−2 −1 − 1

𝑣1
1

𝑣1
2 = 0

𝑣1 =
−0.71
0.71

2 −1
−2 2 − 1

𝑣1
1

𝑣1
2 = 0

𝑣2 =
−0.45
−0.89
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2. Two complex conjugate eigenvalues and two complex eigenvectors

 𝑦 = 𝐽𝑦 𝐽 =
𝛼 −𝛽
𝛽 𝛼

𝑟 ≡ 𝑦1
2 + 𝑦2

2

𝜃 ≡ tan−1(
𝑦2
𝑦1
)

𝑟  𝑟 = 𝑦1  𝑦1 + 𝑦2  𝑦2 = 𝑦1 𝛼𝑦1 − 𝛽𝑦2 + 𝑦2 𝛽𝑦1 + 𝛼𝑦2 = 𝛼𝑟2

 𝜃 1 + tan 𝜃2 =
𝑦1  𝑦2 − 𝑦2  𝑦1

𝑦1
2 =

𝑦1 𝛽𝑦1 + 𝛼𝑦2 − 𝑦2 𝛼𝑦1 − 𝛽𝑦2

𝑦1
2 = 𝛽 1 + tan𝜃2

 𝑟 = 𝛼𝑟

 𝜃 = 𝛽
𝑟 𝑡 = 𝑟0𝑒

𝛼𝑡 𝜃 𝑡 = 𝜃0 + 𝛽𝑡
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2. A ) 𝝀𝟐, 𝝀𝟏 = 𝜶± 𝜷𝒊 ,     𝜶 < 𝟎 ,𝜷 ≠ 𝟎

 System has no real eigenvectors the phase plane portrait is as the following 

 The trajectories are spiral around the origin and toward the origin.

 This equilibrium point is called stable focus.

𝑟 𝑡 = 𝑟0𝑒
𝛼𝑡

𝜃 𝑡 = 𝜃0 + 𝛽𝑡

x ' = - 2 x - 3 y
y ' = 3 x - 2 y  
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Example 10:  𝑥 +  𝑥 + 𝑥 = 0

 𝑋 =
0 1
−1 −1

𝑋

det 𝜆𝐼 −
0 1
−1 −1

= 𝜆2 + 𝜆 + 1 = 0 𝜆1, 𝜆2 = −0.5 ± 0.866𝑖

x ' = y      
y ' = - x - y
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x(0) = [1,-2]

X(0) = [1,2]
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2. B ) 𝝀𝟐, 𝝀𝟏 = 𝜶 ± 𝜷𝒊 ,     𝜶 > 𝟎 ,𝜷 ≠ 𝟎

 System has no real eigenvectors the phase plane portrait is as the following 

 The trajectories are spiral around the origin and diverge from the origin.

 This equilibrium point is called unstable focus.

𝑟 𝑡 = 𝑟0𝑒
𝛼𝑡

𝜃 𝑡 = 𝜃0 + 𝛽𝑡

x ' = - 2 x - 3 y
y ' = 3 x - 2 y  
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Example 11:  𝑥 −  𝑥 + 𝑥 = 0

 𝑋 =
0 1
−1 1

𝑋

det 𝜆𝐼 −
0 1
−1 1

= 𝜆2 − 𝜆 + 1 = 0 𝜆1, 𝜆2 = 0.5 ± 0.866𝑖

x ' = y      
y ' = - x + y
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X(0) = [1,2]

X(0) = [1,-2]
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2. C ) 𝝀𝟐, 𝝀𝟏 = ±𝜷𝒊 ,     𝜶 = 𝟎 ,𝜷 ≠ 𝟎

 System has two imaginary eigenvalues and  no real eigenvectors the phase 

plane portrait is as the following 

 The trajectories are closed trajectories around the origin.

 This equilibrium point is marginally stable and is called center.

𝑟 𝑡 = 𝑟0𝑒
𝛼𝑡

𝜃 𝑡 = 𝜃0 + 𝛽𝑡

x ' = 3 y  
y ' = - 3 x
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Example 12:  𝑥 + 3𝑥 = 0

 𝑋 =
0 1
−3 0

𝑋

det 𝜆𝐼 −
0 1
−3 0

= 𝜆2 + 3 = 0 𝜆1, 𝜆2 = ±1.732𝑖

x ' = y    
y ' = - 3 x
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3. Two similar (real) eigenvalues and two eigenvectors

 𝑦 = 𝐽𝑦 𝐽 =
𝜆 0
0 𝜆

 𝑦1 = 𝜆𝑦1

 𝑦2 = 𝜆𝑦2

𝑦1 = 𝑦10𝑒
𝜆𝑡

𝑦2 = 𝑦20𝑒
𝜆𝑡

𝑦1
𝑦2

=
𝑦10
𝑦20

𝑦2 = 𝐾𝑦1
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x ' = 2 x
y ' = 2 y
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𝜆 < 0

3 ) 𝝀𝟐 = 𝝀𝟏 = 𝝀 ≠ 𝟎

 System has two similar eigenvalues and two different eigenvectors. The 

phase plane portrait is as the following, depending to the sign of 𝜆

 The trajectories are all along the initial conditions and they are 𝜆 < 0

toward 𝜆 > 0 or outward the origin      
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4. Two similar (real) eigenvalues and One eigenvectors

 𝑦 = 𝐽𝑦 𝐽 =
𝜆 1
0 𝜆

 𝑦1 = 𝜆𝑦1 + 𝑦2

 𝑦2 = 𝜆𝑦2

𝑦1 = 𝑦10𝑒
𝜆𝑡 + 𝑦20𝑡𝑒

𝜆𝑡

𝑦2 = 𝑦20𝑒
𝜆𝑡

𝑦1 = 𝑦10
𝑦2
𝑦20

+ 𝑦2
1

𝜆
ln(

𝑦2
𝑦20

)

𝑦1 = 𝑦2(
𝑦10
𝑦20

+
1

𝜆
ln

𝑦2
𝑦20

)
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𝜆 > 0
𝜆 < 0

4 ) 𝝀𝟐 = 𝝀𝟏 = 𝝀 ≠ 𝟎

 System has two similar eigenvalues and only one eigenvector. The phase 

plane portrait is as the following, depending to the sign of 𝜆

 The trajectories converge to zero or diverge to infinity along the system 

eigenvector.  

x ' = 0.5 x + y
y ' = 0.5 y    
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Example 13:  𝑥 + 2  𝑥 + 𝑥 = 0

 𝑋 =
0 1
−1 −2

𝑋

det 𝜆𝐼 −
0 1
−1 −2

= 𝜆2 + 2𝜆 + 1 = 0 𝜆1, 𝜆2 = −1

−1 −1
1 −1 + 2

𝑣1
1

𝑣1
2 = 0

𝑣1 =
−0.71
0.71
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X(0) = [2,3]

X(0) = [2,-4]
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A is singular (𝒅𝒆𝒕 𝑨 = 𝟎): 

 System has at least one eigenvalue equal to zero and therefore infinite

number of equilibrium points. Three different categories can be

specified

 𝜆1 = 0 ,   𝜆2 ≠ 0

 𝜆1, 𝜆1 = 0 ,   𝑅𝑎𝑛𝑘 𝐴 = 1

 𝜆1, 𝜆1 = 0 ,   𝑅𝑎𝑛𝑘 𝐴 = 0
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1) 𝜆1 = 0 ,   𝜆2 ≠ 0  𝑦 = 𝐽𝑦

 𝑦1 = 0

 𝑦2 = 𝜆𝑦2

𝑦1 = 𝑦10

𝑦2 = 𝑦20𝑒
𝜆𝑡

𝐽 =
0 0
0 𝜆

 System has infinite number of non-isolated equilibrium points along a line

 System has two eigenvectors. Eigenvector corresponding to zero eigenvalue 

is in fact loci of the equilibrium points

 Depending on the sign of the second eigenvalue, all the trajectories move 

inward or outward to 𝑣1 along 𝑣2

x ' = 0  
y ' = 2 y
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Example 14:  𝑥 +  𝑥 = 0

 𝑋 =
0 1
0 −1

𝑋

det 𝜆𝐼 −
0 1
0 −1

= 𝜆2 + 𝜆 = 0 𝜆1 = 0 , 𝜆2 = −1

0 −1
0 1

𝑣1
1

𝑣1
2 = 0

𝑣1 =
1
0

−1 −1
0 −1 + 1

𝑣1
1

𝑣1
2 = 0

𝑣1 =
1
−1

 
 

 
 

 
 

-4 -2 0 2 4
-4

-2

0

2

4

x

y

0 2 4 6 8 10
-2

-1

0

1

2

3

 

 

X(0) = [2,-4]

X(0) = [3,-4]
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2) 𝜆1, 𝜆1 = 0 ,   𝑅𝑎𝑛𝑘 𝐴 = 1  𝑦 = 𝐽𝑦

 𝑦1 = 𝑦2

 𝑦2 = 0

𝑦1 = 𝑦20𝑡 + 𝑦10

𝑦2 = 𝑦20

𝐽 =
0 1
0 0

 System has infinite number of non-isolated equilibrium points along a line

 System has only one eigenvector, and it is loci of the equilibrium points

 All the trajectories move toward infinity along the system eigenvector

(unstable system).
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2) 𝜆1, 𝜆1 = 0 ,   𝑅𝑎𝑛𝑘 𝐴 = 0

 𝑦 = 𝐽𝑦

 𝑦1 = 0

 𝑦2 = 0

𝑦1 = 𝑦10

𝑦2 = 𝑦20

𝐽 =
0 0
0 0

 System is a static system. All the points are equilibrium points
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Summary

Six different type of isolated equilibrium points can be identified 

Stable/unstable node

Saddle point

Stable/ unstable focus

Center
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Stability Analysis of Higher Order Systems:

Analysis and results for the second order LTI system can be 

extended to higher order LTI system

Graphical tool is not useful for higher order LTI system except 

for third order systems. 

This means stability analysis of mechanical system with more 

than one DOF can not be materialized graphically 

Stability analysis is performed through the eigenvalue analysis of 

the A matrix.
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Consider a linear time invariant (LTI) system

Origin is the only equilibrium point of the system if A is non-

singular

Otherwise the system has infinite number of equilibrium points,

all the points on null-space of A are in fact equil. points of the

system.



 

x = Ax Bu

y Cx Du

det( ) 0

e




A

x = Ax x 0

 
det( ) 0

* *| Nullspace( )e



 
A

x = Ax x x x A
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Details for Case of Non-Singular A

 Origin is the only equilibrium point of the system

 This equilibrium point (system) is

 Exponentially stable if all eigenvalues of A are either real 

negative or complex with negative real part.

 Marginally stable if eigenvalues of A have non-positive real 

part and 𝑟𝑎𝑛𝑘 𝐴 − 𝜆𝐼 = 𝑛 − 𝑟 for all repeated imaginary 

eigenvalues, 𝜆 with multiplicity of r

 Unstable, otherwise.
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A is Non-Singular

 Classification of the equilibrium point of higher order system

into node, focus, and saddle point is not as easy as second order

system. However some points can be emphasized:

 The equilibrium point is stable/unstable node if all

eigenvalues are real and have the negative/positive sign.

 The equilibrium point is center if a pair of eigenvalues are

pure imaginary complex conjugate and all other eigenvalues

have negative real

 In the case of different sign in the real part of the

eigenvalues trajectories have the saddle type behavior near

the equilibrium point
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Trajectories are along the eigenvector with minimum

absolute real part near the equilibrium point and along the

eigenvector with maximum absolute real part.

Trajectories have spiral behavior if there exist some complex

(obviously conjugates) eigenvalues.

Spiral behavior is toward/outward depending on the sign

(negative and positive) of real part of the complex conjugate

eigenvalues.

These concepts can be visualized and better understood in three

dimensional case
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Lyapunov Indirect Method in 

Stability Analysis of 

Nonlinear Systems
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 There are two conventional approaches in the stability analysis

of nonlinear systems:

 Lyapunov direct method

 Lyapunov indirect method or linearization approach

 The direct method analyzes stability of the system (equilibrium

point) using the nonlinear equations of the system

 The indirect method analyzes the system stability using the

linearized equations about the equilibrium point.
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A nonlinear system near its equilibrium point behaves like a linear:

• Nonlinear system:

• Equilibrium point:

• Motion about equilibrium point:   

• Linearized motion:

• It means near 𝑥𝑒 :         

Motivation: 

( )x f x

( ) 0 e f x x

ˆ
e x x x

ˆ ˆ( ) ( ) ( )e e    x f x x f x x f x ˆ H.O.T ˆ ˆ

e


  



xx

x xx A
f

if

ˆ ˆ ˆ( )
e 

  
x 0

x f x x Ax x x
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This means stability of the equilibrium point may be studied

through the stability analysis of the linearized system.

This is the base of the Lyapunov Indirect Method

Example: in the nonlinear second order system

origin is the equilibrium point and the linearized system is given

by

2

1 2 1 2

2 2 1 1 1 2

cos

(1 ) sin

x x x x

x x x x x x

 

   

1 11 1

202 2 1 2

ˆ ˆˆ ˆ

ˆˆ ˆ ˆ ˆ
e

x xx x

xx x x x

      
              x

f

x
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Theorem (Lyapunov Linearization Method):

 If the linearized system is strictly stable (i.e. all eigenvalues of A

are strictly in the left half complex plane ) then the equilibrium

point in the original nonlinear system is asymptotically stable.

 If the linearized system is unstable (i.e. in the case of right half

plane eigenvalue(s) or repeated eigenvalues on the imaginary axis

with geometrical deficiency (𝑟 > 𝑛 − 𝑟𝑎𝑛𝑘(𝜆𝐼 − 𝐴)), then the

equilibrium point in the original nonlinear system is unstable.

ˆ ˆ isstrictlystable ( ) isasymptoticallystable  x Ax x f x

ˆ ˆ isunstable ( ) isunstable  x Ax x f x
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Theorem (Lyapunov Linearization Method):

 If the linearized system is marginally stable (i.e. all eigenvalues of A are in the

left half complex plane and eigenvalues on the imaginary axis have no

geometrical deficiency) then one cannot conclude anything from the linear

approximation. The equilibrium point in the original nonlinear system may

be stable, asymptotically stable, or unstable.

 The Lyapunov linearized approximation method only talks about the local

stability of the nonlinear system, if anything can be concluded.

( ) isasymptoticallystable

ˆ ˆ ismarginallystable ( ) ismarginallystable

( ) is unstable




  
 

x f x

x Ax x f x

x f x
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 The nonlinear system  𝑥 = 𝑎𝑥 + 𝑏𝑥5
is

 Asymptotically stable if 𝑎 < 0

 Unstable if 𝑎 > 0

 No conclusion from linear approximation can be drawn if 

 The origin in the nonlinear second order system

 is unstable because the linearized system                                   is 

unstable

Example 15: 

2

1 2 1 2

2 2 1 1 1 2

cos

(1 ) sin

x x x x

x x x x x x

 

   
1 1

22

ˆ ˆ1 0

ˆ1 1ˆ

x x

xx

     
    
     


