Matrix Methods for Linear Systems of Differential Equations

We now present an application of matrix methods to linear systems of differential equations. We shall
follow the development given in Chapter 9 of Fundamentals of Differential Equations and Boundary
Value Problems by Nagle, Saff, Snider, third edition.

Calculus of Matrices

If we allow the entries ajj(t) in an n x n matrix A(t) to be functions of the variable t, then A(t) is a

matrix function of t. Similarly if the entries x;(t) of a vector x(t) are functions of t, then x(t) is a vector
function of t. A matrix A(t) is said to be continuous at tg if each ajj(t) is continuous at tg. A(t) is
differentiable at to if each ajj(t) is differentiable at ty and we write

92 (t0) = A'(to) = [4fj(to) ]

nxn

Also

j: A(D)dt = [ | : ajj (t)dt}

We have the following differentiation formulas for matrices

nxn

d _cdA -
at (CA)=C at C a constant matrix

da _dA ., dB
at AR = Tt o

da _adB _ pdA
at AB) = ASqe + By

In the last formula the order in which the matrices are written is important, since matrix multiplication
need not be commutative.

Linear Systems in Normal Form
A system of n linear differential equations is in normal form if it is expressed as

x'(t) = A(D)X(t) + f(t)
where x(t) and f(t) are n x 1 column vectors and A(t) = [ajj(t)]

nxn’

A system is called homogeneous if f(t) = 0; otherwise it is called nonhomogeneous. When the

(1)



elements of A are constants, the system is said to have constant coefficients.

We note that a linear nth order differential equation

y™W () + pn_r Oy ™D + -+ po(t)y = g(t) (2)

can be rewritten as a first order system in normal form using the substitution

x1(t) = y(®), x2(t) =y'(®),...., xn(t) = y"D(t) (2.5)
Then
Xp() = y'(t) = xa(t)
Xa(t) = y"(t) = x3(t)
Xp-1 (1) = YD (1) = xn(t)
xn(t) =y (t) = -pp_a )y — - —po(t)y + g(t)
From (2.5) we can write this last equation as
Xn(t) = —po(t)X1(t) — --- = Pn_1(t)xn(t) + g(t)
Thus the differential equation (2) can be put in the form (1) with
_ “ _ - o
w=| 2 liw=|
| Xn | - 9(® ]
and
_ . ) _
0 1
A= : : : : :
0 0 0 0 1
| —po(® —p1(®) —p2(®) -+ —pn2®) —pna(®)

The initial value problem for the normal system (1) is the problem of finding a differential vector
function x(t) that satisfies the system on an interval | and also satisfies the initial condition x(tg) = X,
where tg is a given point of | and xg is a given constant vector.



Example:
Convert the initial value problem

y'+3y' +2y =0
y(0) =1
y'(0) =3

into an initial value problem for a system in normal form.
Solution: y" = =3y' —2y.  x1() = y(t)  xo(t) = y'(t)

Thus

0 1
We also have the initial condition x(0) = x1(0) = = Xp.
X2(0) 3

Theorem 1 (Existence and Uniqueness)

Suppose A(t) and f(t) are continuous on an open interval | that contains the point tg. Then, for any
choice of the initial vector xq there exists a unique solution x(t) on the entire interval I to the initial
value problem

X'(t) = Ax®) + (1), x(to) = xo

Remark: Just as in Ma 221 we may introduce the Wronskian of n vectors functions and use it to test for
linear independence. We have

Definition: The Wronskian of the n vector functions

X1(t) = col(X11,X21, -+, Xp1 ), .- .-, Xn(t) = col(X1n, X2n, .. ... . Xnn)
is defined to be the real-valued function



X11(t) X12(t) -+ X1n(t)

Wika, o xa]() = | 20 X220 Xen

Xn1 (1) Xp2(t) -+ Xnn(t)

One can show that the Wronskian of solutions X1,....,xn to X' = Ax is either identically zero or never
zero on and interval I. Also, a set of n solutions x1,..... ,Xn to x' = Ax on I is linearly independent if
and only if their Wronskian is never zero on I. Thus the Wronskian provides us with an easy test for
linear independence for solutions of x' = Ax.

Theorem 2 (Representation of Solutions - Homogeneous Case)
Let x1,X2,....,Xn be n linearly independent solutions to the homogeneous system

x'(t) = A(D)X(t) )

on the interval I, where A(t) is an n x n matrix function continuous on I. Then every solution of (3) on
I can be expressed in the form

X(t) = c1X1(t) + --- + Cnxn(t) 4)

where cq,....,Cn are constants.

A set of solutions {x1,....,xn} that are linearly independent on 1 is called a fundamental solution set
for (3). The linear combination (4) is referred to as the general solution of (3).

Exercise:
o2t et et
Verify that e2t |, 0 , et is a fundamental solution set for the system
et et 0
011
XM= 101 [x® ®)
110
011 -1 -1 1
1 0 1 |,eigenvectors: 1 , 0 o -1, 1 o2
110 0 1



et

Consider x3(t) = et |. Then
0
et et ]
Axst)=| 1 0 1 et |=| -t |=x30)
0 0

Remark: The matrix X(t) = | e2t 0 et is a fundamental matrix for the DE (5). The general
et et 0
solution of (5) can be written as

p2t et et
X(t) = X(H)c =cq| e?t |[+cy 0 +c3| et
et et 0
Remark: If we define an operator L by
L[x] = x' — Ax

then this operator is linear. That is, L[C1X1 + CoX2] = ¢1L[X1] + CoL[x2]. Thus if x1 and x» are
homogeneous solutions of the homogeneous equation

x' = Ax
the c1x1 + CoX2 is also a solution of this equation. Another consequence of this linearity is the
superposition principle for linear systems. It states that if xp, and xp, are solutions respectively of the

nonhomogeneous systems L[x] = g1 and L[x] = g2, then Xp, + Xp, is a solution of L[x] = g1 + g>.
This leads to

Theorem 3 (Representation of Solutions - Nonhomogeneous Case)
Let xp be a particular solution to the nonhomogeneous system

x'(t) = AX(t) + f(t) (6)

on the interval I, and let {x1,X2,....,Xn} be a fundamental solution set on I for the corresponding
homogeneous system x'(t) = A(t)x(t). Then every solution to (6) on | can be expressed in the form

X(t) = Xp(t) + c1xqa(t) + -+ + CnXn(t) (7)

where c1,....,Cn are constants.



Remark: The linear combination of xp, X1,....,Xn written in (7) with arbitrary constants cq,..... ,Cn IS
called the general solution of (6). We may express this solution as X = Xp + Xc, where X is a
fundamental matrix for the homogeneous system and c is an arbitrary constant vector.

Solving Normal Systems

1. To determine a general solution to the n x n homogeneous system x' = Ax :

a. Find a fundamental solution set {x1,..... ,Xn ; that consists of n linearly
independent solutions to the homogeneous equation.

b. Form the linear combination
X = XC = C1X1 + :-- +CnXn

where ¢ = col(cy,..... ,Cn) is any constant vector and X = [x1,..... ,Xn] is the
fundamental matrix, to obtain a general solution.

2. To determine a general solution of to the nonhomogeneous system x' = Ax +f :
a.  Find a particular solution xp to the nonhomogeneous system.

b. Form the sum of the particular solution and the general solution
XC = C1X1 + -+ + CnXn to the corresponding homogeneous system in part 1,

X = Xp + XC = Xp +C1X1 + -+ + CnXn

to obtain a general solution.

Homogeneous Linear Systems with Constant Coefficients
Consider now the system

x'(t) = Ax(t) (8)
where A is a (real) constant n x n matrix.

Theorem 4
Suppose the n x n constant matrix A has n linearly independent eigenvectors uq,U»,...,un. Letr; be
the eigenvalue corresponding to the uj. Then

{eMtuq,ef2tu,,. .., eMtup) 9)

is a fundamental solution set on (—oo, o) for the homogeneous system x' = Ax. Hence the general
solution of X' = Ax is

X(t) = ciefttug + --- + cpefntup

where cq,....,Cn are arbitrary constants.



Remark: The eigenvalues may be real or complex and need not be distinct.
Proof
Since Auj = rju; we have
L (etu;) = riety; = eMtAu; = A@e"tu;)
so each element of the set (9) is a solution of the system (8). Also the Wronskian of these solutions is
W(t) = det[eftuy,.....,eMtup] = etz Tndtgetfuy, ...... un] =0

since the eigenvectors are linearly independent.

Example
Find a general solution of

, eigenvectors: o1, -4
-1 0 1 1
-1 4
Thus x(t) = clet|: . :| + c2e4t|: . :|

Thus the solution is

x1(t) = —c1et — 4c et
Xo(t) = crel + coet

SNB gives the following strange looking result:

o x1(t) = —%Clet + %Cle‘“ + %Cze‘lt - %Cget
, , Exact solution is: 1 1 A 1
X5 = —X1 Xa(t) = —5Cref+ +Cret + 3Coet — $Coet

This is correct and is equivalent to (x), if we letc; = +C1 + 3Cpand ¢y = —(%Cl + %Cz).
However, it is a most cumbersome form of the solution.



Exercise:

Nagle and Saff page 535 #23. Find a fundamental matrix for the system

2 1 1 -1
0 -10 1
x'(t) =
0 0 3 1
0O 0 0 7
Solution:
2 1 1 -1 1
0 -1 0 1 . -
, eigenvectors: o =1,
0 0 3 1
0 0 0 7
1
0
- 3
1
0
Hence the four linearly independent solutions are
1 1 -1 1
ot -3 2t 0 Tt 1 3t 0
0 0 2 1
0 0 8 0
Therefore a fundamental matrix is
-3¢t 0 et 0
0 0 2eft g3t
0 0 8™ 0

We know that if a matrix has n distinct eigenvalues, then the eigenvectors associated with these

eigenvalues are linearly independent. Hence

Corollary

If the n x n constant matrix A has n distinct eigenvalues r, ..

x(t)

o O O

..,n and u; is an eigenvector associated

with rj then {e"tuy,....,e"tun} is a fundamental solution set for the homogeneous system x' = Ax.



Example
Solve the initial value problem

1 2 -1 -1
XM= 1 0 1 [x®) x(0)=| 0
4 -4 5
1 2 -1
Solution:| 1 0 1 , eigenvectors:
4 -4 5
-1 -2 -1
<1, 1 2, 1 )
4 4
-1 -2 -1 —cqpel — 2cpe2t — cqedt
Thus x(t) = ciet| 1 |+cpe?| 1 |+cgzed| 1 |= crel +cpe?t 4+ cgedt
4 2cqet + 4cpe?t + 4cgedt
—cqpet — 2c et — cgedt
We define x(t) via this. x(t) = ciel + cpet 4 cgedt so that
2cqet + 4cpe?t + 4cqedt
—C1 —2Cy —C3 -1
X(0) = C1+Cy+C3 =
2Ccq +4cy +4cg 0

-1 -2 -1 -1 100 O
Thus we form 1 1 1 0 , row echelon form: 010 1 . Hence

2 4 4 0 001-1

c1 = 0,cp = 1,c3 = —1. Then the solution is

-2 -1
x(t)=e2| 1 |[-e3% 1
4 4

Complex Eigenvalues



We now discuss how one solves the system
x'(t) = Ax(t) (%)

in the case where A is a real matrix and the eigenvalues are complex. We shall show how to obtain two
real vector solutions of the system (x). Recall that if r{ = a + i is a solution of the equation that
determines the eigenvalues, namely,

p(A) = det(A—rl) =0

thenr, = a —if is also a solution of this equation, and hence is an eigenvalue. Recall that r» is called
the complex conjugate of ry and rq = ro.

Letz = a + ib, where a and b are real vectors, be an eigenvector corresponding to r1. Then it is not
hard to see that z = a — ib is an eigenvector corresponding to r,. Since

(A-rihz=20
then taking the conjugate of this equation and noting that since A and I are real matrices then A = A and

(A-rih)z=(A-T1)z=(A-r21)2=0
S0 Z is an eigenvector corresponding to ry. Therefore the vectors
wy(t) = e@B(a 1 ib)
and
ws(t) = e@BAtl@ — ib)

are two linearly independent vector solutions of (x). However, they are not real. To get real solutions
we proceed as follows: Since

e(@Hp)t — eat(cos Bt + isin ft)

then
wi(t) = e@Bla + ib) = e?t{(cos Bta — sin Atb) + i(sin fta +cos fth)
Therefore
wi(t) = x1(t) +ixa(t)
where

x1(t) = e?(cos pta — sin tb)
Xo(t) = e(sin pta +cos Stb)
Since w1 (t) is a solution of (x), then
wi(t) = Awg(t)
o)
X1 (1) +ix5(1) = Axg(t) + iAXa(t)
Equating real and imaginary parts of this last equation leads to the real equations
X1(1) = Axp(t)  X5H(t) = Axa(t)

10



so that x4 (t) and x»(t) are real vector solutions of (x) corresponding to the eigenvalues a * if.

Note that we can get the two expressions above for x4 (t) and x»(t) by taking the real and imaginary
parts of w1 (t)

Example
Find the general solution of the initial value problem

SRR

We first find the eigenvalues and eigenvectors of the matrix. We want the roots of

-3-r -1 5
=@B+rnNl+r+2=rc+4r+5=0
2 -1-r
Thus
-4+ /16 -4(1)(5
LA 16406

2
The system of equations to determine the eigenvectors is
(-3-rx1—-x2=0
2X1+(-1-rx2 =0
or
B+rx1+x2 =0
2X1+(=1-r)x2 =0
Forr = -2 + i we have
(L+i)X1+%x2 =0
2X1+(1-i)x2 =0
Multiplication of the first equation by i — i yields the second equation, since (1 =i)(1—-1i) = 2.
Thus
X2 = —(1 + i)Xl

Letting x1 = 1 gives the eigenvector |: ] :| Since the second eigenvector is the complex

11
conjugate of the first we have

T o 2]
L ]

1 0
Thusa =-2,=1,a :|: 1 :|,b =|: 1 :| The two linearly independent solutions are

11



2t it
Wit = a2+t 1 _ le™“'e _
~1-i (-1-i)e2telt
~ e2t(cost + isint) ~ e2tcost + ietsint
(-1 -i)e~?t(cost + isint) e~2t(—cost + sint) + ie 2!(~cost — sint)
1 0 1 0
= e~ cost —sint +ie 2 sint + cost
-1 -1 -1 -1
Therefore
t . ot 1 | o
X1(t) = e*(cospta—sinfth) = e cost 1 —sint 1
t(ei 2t o 1 0
Xo(t) = e®'(sinfta+cospth) = e sint ) + cost 1
Thus

1 . 0 . 1 0
X(t) =cle‘2t<cost|: _1 :|—smt|: _1 :D+c2e‘2t<smt|: , :|+cost|: , :D
x(%) = —cle‘”|: 01 :|+c2e‘”|: 11 :| = |: 2 :| Therefore

ci1=e"and co =0

x(t)=e”‘2t<cost|: . :|—sint|: 0 :D
1 1

Example Find a [real] general solution to

1 | | 31 X1
Xb -2 1 x2 |
Solution: We first find the eigenvalues and eigenvectors of the matrix. We want the solutions to

-2 —-r

SO

Thus

4+ [I6-4D)5)

2
The system of equations to determine the eigenvectors is

r

12



B-rx1+x2=0
-2X1+(L-r)x2 =0
Forr = 2 +iwe have
1-i)x1+%x2 =0
—-2X1+(-1-i)x2 =0
or
(1-i)X1+%x2 =0
2X1+ (1 +i)x2 =0

One can see that the first and second equations are the same by multiplying the first equation by 1 + i
and recalling that (1 +i)(1 —i) = 2. Thus
1

X2=——1_iX1

0= o (27 (He (34

Letting xo = 2 we have the eigenvector
-1-i
2

Since the eigenvectors are complex conjugates we have that the eigenvalues of the matrix

We have

. . L -1-i ~1+i
are 2 +iand 2 — i and the corresponding eigenvectors are 5 and 5 :

. . 3 1 . . L
The eigenvalues of the matrix L are 2 +iand 2 — i and the corresponding eigenvectors are
—1—ij —1+i
i and 1+i .
2 2
Letri =2+1i,s0a =2,8 = 1. Also
-1 -1
soa = and b = :
2 0
t i 2t -1 i -1
X1(t) = e*(cos fta —sin ftb) = e<!| cost ) —sint 0
t(ai 2t g -1 -1
X(t) = e*(sin pta +cos ptb) = e<*| sint ) + cost 0

13



-1 . -1 . -1 -1
x(t)=c1e2t<cost|: , :|—smt|: . :D+c2e2t<smt|: , :|+cost|: . :D

e2t(—cost + sint) e2(—sint — cost)
=C1 +Co .
2e2tcost 2e2tsint

Nonhomogeneous Linear Systems
The techniques of Undetermined Coefficients and Variation of Parameters that are used to find
particular solutions to the nonhomogeneous equation

y" +p(x)y +a()y = g(x)
have analogies to nonhomogeneous systems. Thus we now discuss how one solves the
nonhomogeneous system

x'(t) = AD)X() + f(t)

Undetermined Coefficients
Consider the nonhomogeneous constant coefficient system

x'(t) = Ax(t) + f(t)

Before presenting the method for systems we recall the following result for second nonhomogeneous
order differential equations. For more on this see Linear Second Order DEs (Hold down the Shift key
and click.)

A particular solution of
ay” + by’ +cy = Ke™
where a, b, ¢ are constants is

yp = K€% i p(a) # 0

p(a)
Kxe® - /
yp = —~7=— if p(e) =0, p'(a) #0
" YW@
_ K 200X i _n/ _
Yp = —>—X°e if pla)=p(a)=0
p p//(a)
where
p(r) = ar2 +br+c
Example

y" -5y’ + 4y = 2¢X

14



Homogeneous solution: p(A) = A2 —5A+4=(A-4)(A-1) =1=4, 1=y, = creX +cre¥
Now to find a particular solution for 2eX. = a =1 p(1) =0 Sincep’(1) =21-5
p’(l)=2-5=-3%0

=
kxe®* 2xeX
Yp = 3 =
p (@) -3
=
_ _ X a4 _ 2 nX
Yy =Ynh+Yyp =cCieX+cCpe 3xe
Example Problem 3, page 547 of text.
Find the general solution of
1 -2 2 2¢t
XM =] -2 1 2 [x®)+| 4et
2 21 —2et
Solution:
We first find the homogeneous solution.
1 -2 2 -1 -1 1
-2 1 2 |,eigenvectors: -1 - =3, 1 || o - 3
2 21 1 0
Since these eigenvectors are linearly independent, then
-1 -1 1
Xn(t) = c1e 3 1 |+c0e3 1 |+c3ed 0
1 1
We seek a particular solution of the form
az
xp(t) =et| a,
as
Then
ag 2et 1 -2 2 ap 2et
xp) =e'| a, |=Axp(t)+| 4et |=¢ef| 2 1 2 ap |+| 4et
as —2et 2 2 1 as —2et
/ ap — 2ap + 2as 2
= el —2a; +ap + 2as + 4
\ 2a1 + 2as + as -2
Thus

15



a; =a;—2ay+2az3+2

a, =-2a;+apx+2a3+4

az =2a;+2ax+az—2
, Solution is: {ap = 0,a; = 1,a3 = -1}

Therefore
xp(t) =et| 0
-1
and
-1 -1 1 1
X(t) = Xp(t) +xp(t) = c1e73Y —1 | +ced| 1 |+c3ed| 0o [+ef| 0
1 -1

Note: the Method of Undetermined Coefficients works only for constant coefficient systems.

Example Problem 2, Page 547 of text. Find a general solution to

11 -t-1
x'(t) = x(t) +
© |:41:|() |:—4t—2:|
Solution: We first find a general homogeneous solution.

1-r 1

—(1-N2-4=r2_9r-3=(r—
4 1oy 1l-rnNc—-4=r-2r-3=(r-3)(r+1)

Thus the eigenvalues are r = —1, 3. The equations that determine the eigenvectors are
(L-rx1+x2 =0
X1+ (L -r)x2 =0
Forr = 3 we have
—2X1+X%X2 =0
4x1—=3x2 =0

. . 1
Thus xo = 2x1 and an eigenvector is |: ) :|

For r = —1 we have
2X1+X2 =0
IX1 +2x2 =0

-1
Thus x1 = —%xz and we have the eigenvector |: ) :| Hence

16



1 -1
Xh (1) =cle3t|: , :|+c2e‘t|: , :|

t+b
Xp(t)=|: o :|
art+by
Plugging into the DE we have

a B 0 11 ait+bq N -t-1
ar 4 1 art+bo -4t -2

0 by —-t+by+tag +tap -1
4by — 4t + by +4tag +tap — 2

To find xp we let

since f(t) is a polynomial.

Equating the coefficients of t on both sides we have
0=-1+a;+ay
0=-4+ 4a1 + a
or
ai+a =1
48.1 +ay = 4

Thereforea; = 1,a, = 0.
Equating the constant terms on both sides we have
a; =by+by-1
a, =4b1+by -2
Using the values for aj ap we have
b1 + b2 =2
4b1 + b2 =2
Thus by = 0,by = 2. With these values for the constants we have that

t
Xp(t) = |: 5 :|
1 -1
X(t) = Xp(t) + Xp(t) = c1e3t|: ) :| +cze‘t|: , :| + |: ; :|

Example Problem 4, page 547 of text. Find a general solution to

Finally

17



e | 22 —4cost
X(t)_|: 2 2 :|X(t)+|: —sint :|

Solution: We first find a homogeneous solution.
2-r 2

=Q2-N2-4=4-4r+r2-r=r2—4r=r(r-4)
2 2-r

Thus the eigenvalues are r = 0, 4.
The equations for the eigenvectors are

2-rx1+2x2 =0
2X1+(2-rx2 =0
For r = 0 we have
2X1+ 2% =0

. -1
or X1 = —Xp. Thus we have the eigenvector 1 . Forr = 4 we have

—2X1+2%x2 =0
2X1 —2X2 =0

. 1
or X1 = X» Thus we have the eigenvector Ll

Hence
-1 1
Xp(t) = cqelt +coedt
" 1 1
We assume
ajcost+ bqsint
Xp(t) = )
ascost + bysint
Hence

X|/o :|: —agsint+ by cost :|
—assint + bocost
Plugging into the DE vyields
|: —aqsint+ bq cost :|:|: 2 2 :||: ajcost+ bqsint :|+|: —4cost :|
—assint + bo cost 2 2 ascost + bosint —sint

—ajsint+ bq cost 3 2a1cost+2agcost+2blsint+2bzsint+ —4 cost
—apsint+ by cost 2a1cost+ 2ajcost + 2bg sint + 2by sint —sint

We equate the coefficients of the sint and cost terms. Thus

or

18



or

To solve this system we form

by =2a;+2a,-4

b2 = 2a1 +2as
—ag =2by +2by
—ay =2b1+2by -1

2a1+2a—by1 =14
2a1+2a2—b2:0
a;+2b1+2by =0
ay+2by +2by =1

102 2 0 |
01 2 2 1
22 -1 0 4
22 0 =10
and row reduce.
10 2 2 0 10 2 2 0 10
—2R1+R3 —2R2+R3
012 21 RyRy | 01 2 21 R,y | 01
22 -1 0 4 02 -5-44 00
22 0 10 02 -4 -50 00
10 2 2 0 2 0 1
R | 012 21 | o 12 1 | ReRrs| ©
00 9 8 -2 09 -2 0
00 -8 -9 -2 01 -1 -4 0
102 2 O 102 2 O
CRgRg | 0122 1 | g | 0122 1 | pop
001 -1 -4 001 -1 -4
000 17 34 000 1 2
1002 4 | 1000 0
—2R3+R> —2R4+R>»
CRgR, | 01025 | pag | 01001
0010 -2 0010 -2
0001 2 0001 2

2 2 0

2 2 1
-9 -8 2
-8 9 -2

02 2 0
12 2 1
01 -1 -4
09 8 -2

1022 0
01221
001
0001 2

0 -2

19



Thusa; = 0,as = 1,by = -2,by = 2 and

-2sint
Xp(t) = .
cost+ 2sint
Finally a general solution is

-1 1 -2sint
X(t) = xp(t) +xp(t) = cl|: ) :| +02e4t|: ) :|+ |: costflznsint :|

1
Example The eigenvalues of the matrix |: 1 :| are 2 +iand 2 — i and the corresponding

. -1-i —1+i
eigenvectors are |: ) :| and |: ) :|

Find a [real] general solution to

ol e ]l o || 2
X5 21 X2 | 0 _'

/ _ _
X 3 1 X
Solution: First we find a real general solution to /1 = Lo
X -2 1 X2
-1-i -1 -1
Herea = 2, = 1 and = +1i = a+ib.
2 2 0
Since

X1 (t) = e®(cos fta — sin ftb)
Xo(t) = e?(sin pta +cos ftb)

1 1
X1(t) = eZt<cost|: ) :| —sint|: . :D
-1 -1
Xo(t) = e2t<sint|: , :|+cost|: 0 :D

Xp(t) = c1X1(t) + CaX2 (1)

e2t(—cost + sint) e2t(—sint — cost)
=0 2t +C2 2t i
2e<tcost 2e<tsint

Or we may expand one of the complex solutions and take the real and imaginary parts.

then

Hence
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e(2+i)t|: -1 :|:e2t(cost+isint)|: -1 :|
2 2

_ ot (—cost + sint) + i(—sint — cost)
- (2cost) + i(2sint))

| e®(—cost+sint) N e2t(—sint — cost)
2e2tcost 2e2tsint
. —c e?!(—cost + sint) e e2!(—sint — cost)
h=C1 2 :
2e2tcost 2e?tsint
| e?(—cost+sint) e?'(-sint - cost) c1
2e2tcost 2e2tsint Cy

Next, we find a particular solution to the given non-homogeneous equation. Since the
non-homogeneous term is a polynomial of degree one, the solution must be the same. Thus let

| oxa | at+b
Xp(t)_|: X2 :|_|: ct+d :|

We substitute into the system of DEs and find the coefficients.

O O - I | IO I
X5 -2 1 X2 0
_a___ 3 1__at+b_+ 25t
c -2 1 ct+d 0
[ a | [ Garor+@b+a) |2t
c (-2a+c)t+(-2b+d) 0
We equate like terms.
0=3a+c+25
0=-2a+c
a=3b+d
c=-2b+d

Thus (from the first pair of equations) a = -5, ¢ = =10 and thenb = 1 and d = —8. Combining
homogeneous and particular solutions, we have a general solution.



1
xX X
ORI

I
Il

e2t(—cost + sint) e2(—sint — cost) —5t+1
C1 + C2 i +
2e2tcost 2e2tsint -10t -8
| e®(-cost+sint) e?(-sint—cost) a |, —5t+1
2e2tcost 2e2tsint Cy ~10t -8
Example a) Find the eigenvalues and eigenvectors of

A=|:i_21 ]

Solution: We solve det(A—rl) = 0.

2-r -1
det(A—rl) =
2-r
—2-n%+1
2-r?=-1
2-r=+4i
r=2+i

So, the eigenvalues are a complex conjugate pair. We find the eigenvector for one and take the
complex conjugate to get the other. Forr = 2 + i, we solve

A-rhu=20
-i -1 uq _ 0
1 i us 0
Thus we have the equations
—iup—-up =0
ug — iUg =0
. . . . 1 .
The second row is redundant, so —iuq —us = 0 or us = —i - u1. Hence any multiple of |: ) :| is an
—i

: . . . . 1
eigenvector for r = 2 +i. Then an eigenvector correspondingtor = 2 —i is |: ] :|
i

b) Find the [real] general solution to

M NI

Solution: The solution is the general solution (xp) to the homogeneous equation plus one [particular]
solution (xp) to the full non-homogeneous equation. First we’ll find xp. It is in the form

Xp = 2t
Co€
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Substituting into the D.E., we obtain
X} _ 2c1e?t | 2 cret .\ 0
X5 2coe2t 1 2 coelt 12e2t

2cqe?t 2cqe2t — cpet 0 2cqe2t — cpet
= + =
2c et c1e2t + 2c et 12e2t c1e2t + 2coe?t + 122t

Hence

We can divide by e2t (which is never zero) and move the unknowns to the left side to obtain

—C»2 N 0
—C1 12
[ _10e2t
Xp = 0

To find a solution to the homogeneous solution we use the eigenvalue 2 + i = a + i and the

] ) 1 1 ) 0 ]
corresponding eigenvector 1=, +i Ll a+ib.
_I —_—
Since
x1(t) = e?t(cos fta — sin ftb)
Xo(t) = e(sin pta +cos ptb)
then
1 0
X1(t) = e2t{ cost —sint
1 0
Xo(t) = e2t| sint +cost
Hence

Xp(t) = c1X1(t) + CaXo(t)

. e2tcost . e2tsint
=Cq ) +C2
e2tsint —e2tcost

]

Or, for the solution to the homogeneous equation, we may use one of the eigenvalues and eigenvectors

found in 2a to write a complex solution and break it into real and imaginary parts. we’ll use 2 + 1.

23



. 1 .. 1
x=e(2+')t|: _ :|:e2t(cost+|smt)|: _ :|
—i —i
| e®cost+ie?tsint
e2tsint — ie?t cost
. e2lcost ‘e e?tsint
h =C1 . 2
e2tsint —e2tcost
| e®cost e?sint 1
e2lsint —e2tcost cy

Finally, we add to obtain the desired solution.

e2tcost e2tsint c1 —12e2t
X = ) +
e?tsint —e?tcost Co 0
Variation of Parameters (This material is not covered in Ma 227.)

Consider now the nonhomogeneous system
x'(t) = ADX() +f(D) 1)

where the entries in A(t) may be any continuous functions of t. Let X(t) be a fundamental matrix for
the homogeneous system

x'(t) = A(DX(t) (2)

The general solution of (2) is
X(t)c

where c is an n x 1 constant vector. To find a particular solution of (1), consider

Xp(t) = X(O)v(t)
where v(t) is an n x 1 vector function of t that we wish to determine. Then

Xp(t) = X(HV'(t) + X' (t)v(t)
so that (1) yields
XV (1) + X Ov(t) = Alt)xp(t) + f(t) = ADX(E)v(t) + f(t)

Since X(t) is a fundamental matrix for (2), then X'(t) = AX(t), so the last equation becomes
X(OV' (1) + AD)XE)V(t) = AR)X(E)V(L) + f(t)
or
X(OV' (1) = f(t)

Since the columns of X(t) are linearly independent, X1(t) exists and
V(1) = X7 L(f(t)
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Hence
v(t) = jx—l (Of(t)dt

and

Xp(t) = X(OV(D) = X(©) [ X LOftydt
Finally the general solution is given by
X(t) = xp(t) +xp(t) = X(t)c + X(t) j X~L(t)f(t)dt 3)

Example 2 Page 578
Solve the initial value problem

pe | 2 -3 et | 1
X(t)—[ L o ]x(t)+[ . ] x(O)—[ 0 ]
Solution:

We first find a fundamental matrix for the homogeneous solution.

12 e 1]

3 t —t -1 1 1

et e t t

Hence = 2e 2e =x1
2et 2t

Formula (3) yields

- ar T - 1 1
| Bt et c1 et et 2ot et et
X(t) = + 1 3 dt
et e C2 el e 55T oo 1
L L I _ 2t 2et
B 0 B 7] dat, 1
3el et c1 3el et 2 &t et
= +
t et t -t _1.3t, _3
etet [ e | | et et | g€+ o5
- A 7 [ aet(Lets 1Y .et(_1e3t, _3
_ et et c1 N 3e <2e + 5t )T ( 667 T 5o
t -t _
el e c t(Llgt, 1 t<_; 3t, _3
B L c2 | e<2e+Zet +e g€+ o5
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t, 1 ~t(_1g3t, 3
3et gt c1 3e<2e +e ( alrves
o 2et e
X(t) = ¢t +
el e Co t( ot 4 +e—t< 1g3t, 3
2 2t 6

26t
X(0) = 3c1+Co+ }3 ) |: 1 :|
Ci+Co+ 3 0
Thus
3C1 +Co + 133 =-1
C1+Co+ % =0
, Solution is: {c, = —2,c1 = -3 }. Finally

X(t) = [ st e ] - w(Fet i r) et (et g
el e -~ t(zet 2t +e—t< ledty 2§—t

—+e?(27et + 573 —8 - 18e72)

—LeZ(9e7t+ 573 —2 - 1272

oo Nojw

The Matrix Exponential Function (Not covered in 12F)

Recall that the general solution of the scalar equation x(t) = ax(t) where a is a constant is x(t) = cea!.
We will now see that the general solution of the normal system

x'(t) = Ax(t) 1)

where A is a constant n x n matrix is x(t) = eAtc. We must, of course, define eAt.

Definition: Let A be a constant n x n matrix. The we define

0
n n
eAt—|+At+A2t2, -+A”B—!+---=§:A”h )

This is an n x n matrix.

Remark: If D is a diagonal matrix, then the computation of ePt is straightforward.

Example

-1 0
LetD = . Then
0 2

26



pz-| 1P p3_| FO | pro| VO
04 | 0 8 | 0o 2

Therefore
0 n th
eDt B iDn o 2n=0(—1) W 0 B |: e—t 0 :|
B nt © AntN B 2t
=0 0 Zn:()z o 0 e
In general if D is an n x n diagonal matrix with rq,r»,....,rn down its main diagonal, then ePt is the
diagonal matrix with "1t e"2t .. et down its main diagonal.

It can be shown that the series (2) converges for all t and has many of the same properties as the scalar
exponential eat,

Remark: It can be shown that if a matrix A has n linearly independent eigenvectors, then P~1 AP is a
diagonal matrix, where P is formed from the n linearly independent eigenvectors of A. Thus

P-1AP =D (3)

where D is a diagonal matrix. In fact, D has the eigenvalues of A along its diagonal.

1 2 41 -1 -1 -2
Let A = 1 0 1 . Then 1 « 3, 1 - 1, 1 2
4 -4 5 4 2 4
11 2 1 0 <
Thus P = 1 1 1 | inverse: 0 2 _% =p-1
4 2 4 1 -1 0
10 % 12 1 R 300
Hence P~1AP = 0 2 —% 1 0 1 1 1 1 = 010
1 -1 0 4 -4 5 4 2 4 00 2

Now (3) implies that when A has n linearly independent eigenvalues we have

A = pPDP1

so that
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eAt = ePDPt — |1 pDP-1t+ £ (PDP1t) (PDP1t) + -

|+ PDP~1t+ £ (PDP1) (PDP1)e2 + ...

-1, 1 2p-1\¢2
| + PDP t+§<PDP 2+

P(1+Dt+ (On2+ - )Pt

= Pebtp-L

Example:

5 4 _ 2 1
LetA = ,, elgenvectors: « 3, -1

21 -2 1 2 10 |
P= Pl and D = . Show that A = P~1DP and use this to
1 1 -1 -1 0 3

compute eAt,

-1 -2 10 1 2 5 4
A =PDP1 = = as required.
1 1 0 3 -1 -1 -2 -1
5 4
t
-2 -1 —el 423t 2e3t_ et
Thus e = . from SNB.

—e3t et 2et—¢g3

10

t
Also PePtp-1 = -1 el 03 } 12 )
1 1 -1 -1

S B ] t 423t _opt 4 2a3t
oAt _ peDtp-1 _ -1 -2 e 0 1 2 |_| —&+2e" —2e+2
1 1 0 edt -1 -1 et g3t  opt _ g3t

This eAt is a fundamental matrix for the system

x'(t) = X(t)

since if we let
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Xh(t)

cp(2e3 - 2et) —cq (et - 2e3)
ci(et—ed) —cp(edt—2et)

cp (263 —2et) —cq (et - 2e3)
ci(et—e3) —cp(ed—2et)

then
) — cp(6e3t—2et) —cq (et — 6e)
h c1(et—3e3) —cp(3e3t - 2et)
and
B 2e3t _ 2at) _ t_9g3t
= 5 4 co(2e et) —cy(et-2e%)
2 -1 ci(et—e3) —cp(ed - 2et)

- 0 4c1 (et —e3) —5cq (et — 2e3) —4cy (3 - 2et) +5¢, (203 - 2et)
- 2c1 (et —2e%) —cy (et —e3) + (3t — 2et) — 2c, (263 - 2¢t)

[ 6e1e3t — 2cpet —cqet+ 6epedt | | ca(Be3t - 2et) —cp (et - 6e3)
c1 (et —3e3) —cp(3e3t - 2et)

crel + 2cet — 3cqe3t — 3cpedt

Theorem 5 (Properties of the Matrix Exponential Function)

Let A and B be n x n constant matrices and r,s and t be real (or complex) numbers. Then
1. a ef0—g0—

pA(t+s) _ gAtgAs

<eAt>—1 _ oAt

e(A+B)t — eAteBt proyided that AB = BA

d (oAt _ apAt

E(e ) = Ae

L R 2 =)

Remark: c. tells us that the matrix eAt has an inverse.

Proof of f.

5 4
t
. -2 -1 c1 | | —et+2e3t —2et+2et c1
Cy el — g3t et _ g3t Cy

} = Xp ()
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d /aAty _ o d 282 o ant"
dt<e )—d (I+At+A e+ A T )

t 2!
CALAZ At At 22 o ant?
=A+At+A 5T+ +A (n—l)!+ =Al Il +At+A 5T+ +A ot
= AeAt

Theorem 6 (e” is a Fundamental Matrix)

If A is an n x n constant matrix, then the columns of the matrix eAt form a fundamental solution set for
the system x'(t) = Ax(t). Therefore, e/t is a fundamental matrix for the system, and a general solution
is x(t) = eAlc.

Lemma (Relationship Between Fundamental Matrices)

Let X(t) and Y(t) be two fundamental matrices for the same system x’ = Ax. Then there exists a
constant column matrix C such that Y(t) = X(t)C.

Remark: Let Y(t) = eAt = X(t)C and sett = 0. Then
I = X(0)C = C=X(0)1
and
eAt = X()X(0)™1

If the nxn matrix A has n linearly independent eigenvectors uj, then [e"tuy e"2tuy,...,e™!]isa
fundamental matrix for x' = Ax and

eAl = [eMtug e"tuy,...,e"[ug,up, ..., un] ™2

Calculating e”! for Nilpotent Matrices

Definition: An nxn matrix A matrix is nilpotent if for some positive integer k
Ak =0,

Since

o0

At _ 2 12 n t" _ n t"

A = 1+ ALHAZ T + -+ A HJ“"_Z%A o
n=

we see that if A is nilpotent, then the infinite series has only a finite number of terms since
Ak = Ak+l — ... — 0 and in this case

At _ 212 | k1 k1
et =1+At+A 2!+ +A &1

This may be taken further. The Cayley-Hamilton Theorem says that a matrix satisfies its own
characteristic equation, that is, p(A) = 0. Therefore, if the characteristic polynomial for A has the form
p(r) = (=1)"(r—rq)", that is A has only one multiple eigenvalue rq, then

p(A) = (-1)"(A-r1)" = 0. Hence A —rq1 is nilpotent and

AL _ g(rHA-TiDt _ griltg(A-riht _ em[, Attt (A rll)n—lﬁJ

Example Find the fundamental matrix e/t for the system
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2 1 1

x'(t) = Ax(t) where A = 1 2 1
-2 -2 -1
Solution: The characteristic polynomial for A is
2-r 1 1
p(ry=detf 1 2-r 1 =r343r2-3r+1=—(r-1)°3
-2 -2 -1-r

Hence r = 1 is an eigenvalue of A with multiplicity 3. By the Cayley-Hamilton Theorem (A — I)3 =0
and

2
Al = el Dt — e 1+ (A= D+ (A- 2L |

1 1 1 000
A-l=| 1 1 1 |and(A-D?=| 000
2 2 -2 000
Thus
0 1 1 1 el +tel  tel tel
eAt—ell 010 |+tfl 12 1 1 |= tel  el+tel  tel
0 -2 -2 -2 —2tet  —2te! el—2et
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