3 Lebesgue Measure

1 Introduction

The length /(1) of an interval I is defined, as usual, to be the differ-
ence of the endpoints of the interval. Length is an example of a sef
function, that is, a function which associates an extended real number
to each set in some collection of sets. In the case of length the domain
is the collection of all intervals. We should like to extend the notion

of length to more complicated sets than intervals. For instance, we
could define the “1F~noﬂ1” of an onen set to be the sum of the lengths
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of the open 1ntervals of which it is composed. Since the class of
open sets is still too restricted for our purposes, we would like to
construct a set function m which assigns to each set £ in some
collection 9 of sets of real numbers a nonnegative extended real
number mE called the measure of E. Ideally, we should like m to
have the following properties:

i. mE is defined for each set E of real numbers; that is, 9t = ®(R);
ii. for an interval I, mI = I(I);
iii. if (E,) is a sequence of disjoint sets (for which m 1s defined),

m(U E,) = “mkE,;

iv. m is translation invariant; that is, if £ is a set for which m is
defined and if E + y is the set {x + y: x ¢ E}, obtained by
replacing each point x in E by the point x 4 y, then

m(E + y) = mE.
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Unfortunately, as we shall see in Section 4, it is impossible to
construct a set function having all four of these properties, and it is
not known whether there is a set function satisfying the first three
properties.' Consequently, one of these properties must be weakened,
and it is most useful to retain the last three properties and to weaken
the first condition so that mE need not be defined for all sets E of
real numbers.” We shall want mE to be defined for as many sets as
possible and will find it convenient to require the family on of sets
for which m is defined to be a g-algebra. Thus we shall say that m is
a countably additive measure if it is 2 nonnegative extended real-valued
function whose domain of definition is a g-algebra 9 of sets (of real
numbers) and we have m(UJ E,) = mE, for each sequence (E,) of
disjoint sets in 9. Our goal in the next two sections will be the
construction of a countably additive measure which is translation
invariant and has the property that mI = [(I) for each interval 1.

Problems

Let m be a countably additive measure defined for all sets in a ¢-algebra
IN.

1. If 4 and B are two sets in 91 with 4 C B, then mA < mB. This
property is called monotonicity.

2. Let {E,) be any sequence of sets in 9. Then m(U En) < > mE,.
[Hint: Use Proposition 1.2.] This property of a measure is called countable
subadditivity.

3. If thereis a set 4 in 97 such that m4A < oo, then m@ = 0.

4. Let nE be oo for an infinite set £ and be equal to the number of
elements in E for a finite set. Show that » is a countably additive set func-
tion which is translation invariant and defined for all sets of real numbers.
This measure is called the counting measure.

1 If we assume the continzum hypothesis (that every noncountable set of real numbers
can be put in one-to-one correspondence with the set of all real numbers), then such a
measure is impossible.

2 Weakening property () is not the only approach; it is also possible to replace
property (iii) of countable additivity by the weaker property of finite additivity: for
each finite sequence (E,) of disjoint sets we have m(U E,) = Y mE, (see Prob-
lem 10.21). Another possible alternative to property (iii) is countable subadditivity,
which is satisfied by the outer measure we construct in the next section (see
Problem 2).
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2 Outer Measure

For each set 4 of real numbers consider the countable collections
{I,) of open intervals which cover A4, that is, collections for which
Ac U1, and for each such collection consider the sum of the
lengths of the intervals in the collection. Since the lengths are
positive numbers, this sum is uniquely defined independently of the
order of the terms. We define the outer measure® m*4 of 4 to be
the infimum of all such sums. In an abbreviated notation

m*4 = inf > KL,).

ACUI,

It follows immediately from the definition of m™* that m*@ = 0
and that if 4 C B, then m*4 < m*B. Also each set consisting of a
single point has outer measure zero. We establish two propositions
concerning outer measure:

1. Proposition: The outer measure of an interval is its length.

Proof: We begin with the case in which we have a closed finite
interval, say [a, b]. Since the open interval (a — €, b + €) contains
[a, b] for each positive ¢, we have m*|a, b] < l{a — ¢, b + ¢€) =
b — a -+ 2e. Since m*[a, b] < b — a + 2 for each positive ¢, we
must have m*[a, b] < b — a. Thus we have only to show that
m*la, b] > b — a. But this is equivalent to showing that if i1, is
any countable collection of open intervals covering [a, b}, then

(1) S L) >b—a

By the Heine-Borel theorem, any collection of open intervals covering
[a, b] contains a finite subcollection which also covers [a, ], and
since the sum of the lengths of the finite subcollection is no greater
than the sum of the lengths of the original collection, it suffices to
prove the inequality (1) for finite collections {7,} which cover [a, b].
Since ¢ is contained in U 7,, there must be one of the 7,’s which
contains a. Let this be the interval (ay, b,). We have a; < a < b;.
If b, < b, then b, ¢ [a, b], and since b, # (a,, by), there must be an

¢ In order to distinguish this outer measure from the more general outer measures to
be considered in Chapter 12, we call this outer measure Lebesgue outer measure, after
Henri Lebesgue. Since we consider no other outer measure in this chapter, we refer to
m* simply as outer measure.
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interval (a,, b,) in the collection {7} such that b, ¢ (a,, bs); that 1s,
as < by < by. Continuing in this fashion we obtain a sequence
(ai, by), . . ., (az, by) from the collection {/,} such that a;, < b,_; <
b,.

Since {I,; is a finite collection, our process must terminate with
some interval (a;, b,). But it terminates only if b e (ay, by), that is,
ifa, < b < b;. Thus

2 i) = 2. lay, by)
= (by — Clk) + (bk—1 - ak-1) + ...+ (b1 - 01)
= by — (@ — br—1) — (Gr—1 — br_3)

"‘..."‘(ﬂg"‘bl)'—al_)bk“al;

since g; < b,_{. Butb, > band g; < a, and so we have b, — a; >
b — a, whence 2_I(I,) > (b — a). This shows that m*[qa, b} = b — a.

If Iis any finite interval, then, given ¢ > 0, there is a closed interval
J C I such that /(J) > I(I) — €. Hence

N — ¢ <)) =m*J < m*l < m*I = D) = I(]).
Thus for each ¢ > 0,
Yy — e < m*I < I(]),

and so m*I = I(]).

If 7 is an infinite interval, then given any real number A, there is
a closed interval J C I with I(J) = A. Hence m*I > m*J = [(J) = A.
Since m*I > A for each A, m*] = « = [(]). ]

2. Proposition: Let {A,} be a countable collection of sets of real
numbers. Then

m*(U 4,) <3 m*A4,.

Proof: If one of the sets 4,, has infinite outer measure, the inequal-
ity holds trivially. If m*A4,, is finite, then, given ¢ > 0, there 1s a
countable collection {7, ;}; of open intervals such that 4, c U I,

A—gn MNTmczry 4lan e Manel o (7 L __
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and 2 I{({,;) < m*4, + 27% N

o]

U {7} is countable, being the union of a countable number of
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countable collections, and covers J 4,. Thus

n k2

m (U 4) < il.) =3 il..) <> (m*4, + &™)

,,,,,,

m*(U 4,) < > m*A4,. 1
3. Corollary: If A is countable, m*4 = 0.
4. Corollary: The set [0, 1] is not countable.

S. Proposition: Given any set A and any e > 0, there is an open set
O such that A C O and m*O < m*A + €. There is a G e G such
that A C G and m*A = m*G.

Problems

5. Let A be the set of rational numbers between 0 and 1, and let {I,} be
a finite collection of open intervals covering A. Then 3 /(1) > 1.

6. Prove Proposition 5.
7. Prove that m* 1s translation invariant.
8. Prove that if m*4 = 0, then m*(4 U B) = m*B.

3 Measurable Sets and Lebesgue Measure

While outer measure has the advantage that it is defined for all sets,
it is not countably additive. It becomes countably additive, however,
if we suitably reduce the family of sets on which it is defined. Perhaps
the best way of doing this is to use the following definition due to
Carathéodory:

Definition: 4 set E is said to be mgasumbleq‘ if for each set A we
have m*A = m*(A n E) + m*(4 n E).

Since we always have m*4 < m*(4 N E) + m*(4 n E), we see
that E is measurable if (and only if) for each A we have m*4 >

4 In the present case m™ 1s Lebesgue outer measure, and we say E 18 Lebesgue measur-
able. More general notions of measurable set are considered 1n Chapters 11 and 12.
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m*(4 n E) + m*(4 n E). Since the definition of measurability 1s
symmetric in E and E, we have £ measurable whenever F is. Clearly
& and the set R of all real numbers are measurable.

6. Lemma: If m*E = 0, then E is measurable.

Proof: Let A be any set. Then 4 N E C E, and so m*(4 n E) <
m*E = 0. Also 4 D A n E, and so

m*4d > m*(A 0 Ey = m*(An E)+ m*(A4nE),
and therefore E is measurable.

7. Lemma: If E, and E, are measurable, so is E, U E.,.

Proof: Let A be any set. Since E» is measurable, we have
m*(A N E)) = m*(A nE, nEsy) + m*(4 n E, nEy),
and since 4 N (E, UEs) = [An EJu[4 n Es n E,], we have
m*(4 N [E, U Es]) < m*(4 N E,)) + m*(4 n Exn E).
Thus

m*(4 N[E; U Es]) + m*(4 n E nE) < m*(4n E))
+ m*(ANE,nE)+ m*AnE, nkE,)
= m*(4 N E,) + m*(4d n E,) = m*4,

by the measurability of E,. Since ~(E, U E,) = E, n E,, this shows
that E;, U E, is measurable.

8. Corollary: The family 9 of measurable sets is an algebra of
sets.

9. Lemma: Let A be any set, and E, . .., E, a finite sequence of
disjoint measurable sets. Then

[ 5] £ s

Proof: We prove the lemma by induction on n. It is clearly true
for n = 1, and we assume it is true if we have n — 1 sets E,. Since
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the E; are disjoint sets, we have

An[l.nJ EJnEn=AnEn
Ls }

== 1
and

An[Ln) Ei}nEH:An[nUIEJ-

=1 ~bi=1

Hence the measurability of E, implies

e (100 1) - et o s[5 )

n—1

= m*(ANnE,)+ > m*(4nkE)
im1

by our assumption of the lemma for n — 1 sets. I

10, Theorem: The collection 9n of measurable sets is a o-algebra,
that is, the complement of a measurable set is measurable and the
union (and intersection) of a countable collection of measurable sets is
measurable. Moreover, every set with outer measure zero is measurable.

Proof: We have already observed that aw is an algebra of sets,
and so we have only to prove that if a set £ is the union of a countable
collection of measurable sets it is measurable. By Proposition 1.2
such an £ must be the union of a sequence (E,) of pairwise disjoint

measurable sets. Let 4 be any set, and let F, = U E,. Then F, is
=1

measurable, and F, > E. Hence

m*A = m*(AnF,) + m*(4nkE,) > m*(nF,) + m*4nE).

n

m* A NF) = 3 m*(4 N E,).

=1

Thus

m*4 > i m*(4 0 E;) + m*(A4 n E).

1=1
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Since the left side of this inequality is independent of n, we have

m*4 > 2 m*(4n E;) + m*(4 n E)

i=1

> m*(4  E) + m*(4 n E)

by the countable subadditivity of #*, I
11. Lemma: The interval (a, «) is measurable.

Proof: Let A be any set, 4, = An (a, ©), 42 = AN (—»,q].
Then we must show m*4, + m*4, < m*4. If m*4 = «, then
there is nothing to prove. If m*4 < oo, then, given € > 0, there is a
countable collection {I,} of open intervals which cover 4 and for
which

S I < m*4 + e

Let I =1,n(a »)and I, = I, n (— o, q]. Then I, and I, are
intervals (or empty) and

L) = KIL) + KLY = m*T, + m*I_.
Since A, ¢ U I, we have
m*d, < (U L) < m*r,

anmd clmen A 1l 777 n hoss
dart, SiiiCC A, i

M

=3
b2
(¢]
=
™
<
(¢]

Thus
m*d, + m¥d, <3 (m*l, + m*IY)
< S II) < m*4 + e

But e was an arbitrary positive number, and so we must have m*4, +
m*A, < m*A4. |\l

12. Theorem: Every Borel set is measurable. In particular each
open set and each closed set is measurable.
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Proof: Since the collection 9 of measurable sets is a o-algebra,
we have (— «, a] measurable for each g since (— w0, a] = ~(a, ®).

Since (— w0, 5) = U (— w0, b — 1/n), we have (— w0, b) measur-
able. Hence each o%erll interval (a, b)) = (— =, b) n (a, ») is meas-
urable. But each open set is the union of a countable number of open
intervals and so must be measurable. Thus 91 is a g-algebra con-
taining the open sets and must therefore contain the family ® of
Borel sets, since ® is the smallest o-algebra containing the open
sets. [Nofe: The theorem also follows immediately from the fact
that 9 is a o-algebra containing each interval of the form (g, «)
and the fact that @ is the smallest o-algebra containing all such

intervals.] I

If E is a measurable set, we define the Lebesgue measure mE to
be the outer measure of E. Thus m is the set function obtained by
restricting the set function m* to the family 9n of measurable sets.
Two important properties of Lebesgue measure are summarized by
the following propositions:

13. Proposition: Let (E;) be a sequence of measurable sets. Then

m(U E) < 22 mE;
If the sets E, are pairwise disjoint, then

Proof: The inequality is simply a restatement of the subaddi-

disjoint measurable sets, then Lemma 9 with 4 = R implies that

and so m is finitely additive. Let (E;) be an infinite sequence of
pairwise disjoint measurable sets. Then
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and so

m(U Ei) > m(U E@-) = >, mE,.

=1 =1 i=1

Since the left side of this inequality is independent of n, we have
=1 1=1

The reverse inequality follows from countable subadditivity, and
we have '

m(U Ei) = Y mE,. |
i=1 =1

14. Proposition: Let (E,) be an infinite decreasing sequence of
measurable sets, that is, a sequence with E, ,; C E, for eachn. Let mE;
be finite. Then

m(n Ez) = lim mE,,.
=1

7 — 00

Proof: Let E = () E;, and let F; = E; ~ E; ;. Then
i=1

E.~E= UF,
r==1

==

and the sets F; are pairwise disjoint. Hence

co ]

m(Ey ~E)= Y, mF; = >, m(E; ~ E;y1).

=1 =1

But mE, = mE + m(E; ~ E),and mE; = mE;; + m(E; ~ E;,),
since ECE; and E; ; CE; Since mE;, < mE; < «, we have
m(E; ~ E) = mE, — mEand m(E; ~ E; 1) = mE; — mE; ;. Thus

mE, — mE = ), (mE; — mE; 1)
t=1

n

= lim > (mE; — mE; ;)

n—o t=1

= lim (mE; — mkE,)

7 —00

= mE, — lim mE,.

n—0
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Since mE,; < oo, we have

mE = lim mE,. 1

H—0

The following proposition expresses a number of ways in which a
measurable set is very nearly a nice set. The proof is left to the
reader (Problem 13).

15. Proposition: Let E be a given set. Then the following five
statements are equivalent:

1. E is measurable;

ii. given € > O, there is an open set O > E with m*(0 ~ E) < ¢;
iii. given € > 0, there is a closed set F C E with m*(E ~ F) < ¢;
iv. there is a G in G; with E C G, m*(G ~ E) = 0;

v. there is an F in 5, with F C E, m*(E ~ F) = 0;

If m*E is finite, the above statements are equivalent to:

vi. given ¢ > 0, there is a finite union U of open intervals such that
m*(U A E) < e

Problems

9. Show that if Eis a measurable set, then each translate £ + y of F'is
also measurable.

10. Show that if E; and E,; are measurable, then m(E; U E3) +
m(Ey N Eg) = mE; + mE,.

11. Show that the condition mE; < oo is necessary in Proposition 14
by giving a decreasing sequence (E, ) of measurable sets with & = () E,
and mkE, = oo for each n.

12. Let (E,) be a sequence of disjoint measurable sets and 4 any set.

o0

Then m*(4 N |J E) = > m*(4 N E).
1=1

=1
13. Prove Proposition 15. [Hints:
a. Show that for m*E < oo, (i) = (ii) & (vi) (cf. Proposition 5).
b. Use (a) to show that for arbitrary sets E, (i) = (ii) = (iv) = (i).
¢. Use (b) to show that (i) = (iii)) = (v) = (1).]
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14. a. Show that the Cantor ternary set (Problem 2.36) has measure
zero.

b. Let F be a subset of [0, 1] constructed in the same manner as the
Cantor ternary set except that each of the intervals removed at the nt®
step has length «37™ with 0 < « < 1. Then F is a closed set, ¥ dense in
[0, 1]and mF = 1 — «. Such a set F is called a generalized Cantor set.

*4 A Nonmeasurable Set

We are going to show the existence of a nonmeasurable set. If x and
y are real numbers in [0, 1), we define the sum modulo 1 of x and
ytobex+y,if x+y<l,andtobex+y—1ifx+ypy >1.
Let us denote the sum modulo 1 of x and y by x + y. Then £ is a
commutative and associative operation taking pairs of numbers in
[0, 1) into numbers in [0, 1). If we assign to each x ¢ [0, 1) the angle
2wx, then addition modulo 1 corresponds to the addition of angles.
If E is a subset of [0, 1), we define the translate modulo 1 of F to
be theset E + y = {z: z = x + y for some x ¢ E}. If we consider
addition modulo 1 as addition of angles, translation modulo 1
by y corresponds to rotation through an angle of 27y. The following
lemma shows that Lebesgue measure is invariant under translation
modulo 1.

16. Lemma: Let E C [0, 1) be a measurable set. Then for each
y ¢ [0, 1) the set E + y is measurable and m(E + y) = mE.

Proof: Let E; = EN[0,1 — yand E; = EN[l — y, 1). Then
E, and FE, are disjoint measurable sets whose union is E, and so

mE = mE, + mE,.

Now E; + y = E, + y, and so E; + y is measurable and we have
m(E; + y) = mE;, since m is translation invariant. Also E, 1 y =
E;, + (y ~ 1), and so E; i y is measurable and m(F; £ y) = mkE,.
But Ef y=(E,+») u(E.+y) and the sets (E; + y) and
(E; + p) are disjoint measurable sets. Hence E - y is measurable
and

m(E + y) = m(E, + y) + m(Ex + y)
mE, + mkE,
= mkE. 1
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We are now in a position to define a nonmeasurable set. If x — y
is a rational number, we say that x and y are equivalent and write
x ~ y. This is an equivalence relation and hence partitions {0, 1) into
equivalence classes, that is, classes such that any two elements of one
class differ by a rational number, while any two elements of different
classes differ by an irrational number. By the axiom of choice there
is a set P which contains exactly one element from each equivalence
class. Let (r;)>_, be an enumeration of the rational numbers in [0, 1)
with 7o = 0, and define P, = P + r. Then P, = P. Let x ¢ P, N P,.
Then x = p; + r; = p; + r; with p; and p, belonging to P. But
p; — p;j = r; — r;is a rational number, whence p; ~ p,. Since P has
only one element from each equivalence class, we must have i = J.
This implies that if i = j, P, N P, = &, that is, that (P,) is a pair-
wise disjoint sequence of sets. On the other hand, each real number x
in [0, 1) is in some equivalence class and so is equivalent to an
element in P. But if x differs from an element in P by the rational
number r,, then x ¢ P,. Thus |J P, = [0, 1). Since each P, is a trans-
lation modulo 1 of P, each P; will be measurable if P is and will
have the same measure. But if this were the case,

m[0, 1) = Zmp = ZmP

i=1

and the right side is either zero or infinite, depending on whether
mP is zero or positive. But this is impossible since m{0, 1) = 1, and
consequently P cannot be measurable.

While the above proof that P is not measurable is a proof by
contradiction, it should be noted that (until the last sentence) we
have made no use of properties of Lebesgue measure other than
translation invariance and countable additivity. Hence the foregoing
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17. Theorem: If m is a countably additive, translation invariant
measure defined on a g-algebra containing the set P, then ml[0, 1) is
either zero or infinite.

The nonmeasurability of P with respect to any translation invariant
countably additive measure m for which m[0, 1) is 1 follows by
contraposition.
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Problems

15. Show that if £ is measurable and F C P, then mE = 0. [Hint:
t

Let E, = E + r,. Then (E,) is a disjoint sequence of measurable sets and
mE, = mE. Th usZmE =mJ E, < m[0, 1].]

16. Show that, if A4 is any set with m*4 > 0, then there is a non-
measurable set £ C A. [Hint' IfAC@O 1), letE, = A N P,. The measur-
ability of E, implies mE, = 0, while }_m*E, > m*4 > 0.]

17. a. Give an example "'here (E,) is a disjoint sequence of sets and

b. Give an example of a sequence of sets (E,) with E, D E,,
mrE; < a *( ('\ )

w, u.n | £4) < 11].11 lll*Ez

b Measurable Functions

Since not all sets are measurable, it is of great importance to know
that sets which arise naturally in certain constructions are measurable.
If we start with a function f'the most important sets which arise from
it are those listed in the following proposition:

18. Proposition: Let f be an extended real-valued function whose
domain is measurable. Then the following statements are equivalent:

i. For each real number o the set {x: f(x) > o} is measurable.
ii. For each real number o the set {x: f(x) > o} is measurable.
iii. For each real number o the set \x: f(x) < a} is measurable.

<

iv. For each real number o the set {x: f(x) < o} is measurable.
These statements imply

v. For each extended real number o the set {x: f(x) = a} is
measurable.

Proof: Let the domain of f be D. We have (i} = (iv), since
X f(x) <aj = D~ {x: f(x) > of and the difference of two
measurable sets is measurable. Similarly, (iv) = (i) and (ii) < (iii).
Now (i) = (ii), since {x: f(x) > o} = ) {x: f(x) > « — l/n},

n==1

and the intersection of a sequence of measurable sets is measurable.

Similarly, (i) = (i), since {x: f(x) > @) = U {x:(9) = a + 1/},
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and the union of a sequence of measurable sets is measurable. This
shows that the first four statements are equivalent. If « is a real
number, 1x:f(x) = o} = {x: f(x) > af N {x: f(x) < af, and so
(11) and (iv) = (v) for a real. Since

{x: f(x) = =} = él {x: f(x) = n},

(i) = (v) for a = . Similarly, (iv) = (v) for « = —w, and we
have (i) & (iv) = (v). 1

Definition: An extended real-valued function fis said to be (Lebesgue)
measurable if its domain is measurable and if it satisfies one of the
first four statements of Proposition 18.

Thus if we restrict ourselves to measurable functions, the most
important sets connected with them are measurable. It should be
noted that a continuous function (with a measurable domain) is
measurable, and of course each step function is measurable. If fis a
measurable function and F is a measurable subset of the domain of
f, then the function obtained by restricting f to E is also measurable.
The following proposition tells us that certain operations performed
on measurable functions lead again to measurable functions:

19. Proposition: Let ¢ be a constant and f and g two measurable
real-valued functions defined on the same domain. Then the functions

f+c cf.f+ g g — f and fg are also measurable.
Proof: We shall use condition (iii) of Proposition 18. Then
i f() + <o = X flx) <a-—cd,

and so f -+ c is measurable when fis. A similar argument shows cf
to be measurable.

If f(x) 4+ g(x) < a, then f(x) < « — g(x) and by the corollary
to the axiom of Archimedes there is a rational number r such that

f(x) <r < a— gx).
Hence

X f(x) + gx) < of = U ({x:1f(x) <r}n {x:8(x) <a—r})

Since the rationals are countable, this set is measurable and so '+ g
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is measurable. Since —g = (—1)g is measurable when g is, we have
f — g measurable.
The function f* is measurable, since

{x: f2(x) > a} = x: /(%) > Vo) U {x: f(x) < =V}

for « > 0 and

X f3(x) > of =

if « < 0, where D is the domain of f. Thus

2 =3+ 27 -/ —g’

1s measurable. I

We will often want to use Proposition 19 for extended real-valued
functions fand g. Unfortunately, f + g is not defined at points where

it is of the form « — . However, fg is always measurable and
f <+ g is measurable if we always take the same value for f - g at
points where it is undefined. Also, /' 4 g is measurable no matter
what values we take at the points where it is not defined, provided
these points are a set of measure zero. See Problem 22.

20. Theorem: Let (f,) be a sequence of measurable functions (with
the same domain of definition). Then the functions sup {fis oo Sk
inf {£1, ..., ful, SUP fo, inf £, lim f£,,, and lim £, are all measurable.

Proof: If h is defined by A(x) = sup {fi(x), ..., f.(x)}, then
x:h(x) > of = U {x: fi(x) > «}. Hence the measurability of the

=]

/. implies that of 4. Similarly, if g is defined by g(x) = sup f,(x), then
{x:g(x) > o} = U {x: fulx) > «}, and so g is measurable. A

n=1

similar argument establishes the corresponding statements for inf.
Since lim £, = inf sup f;, we have lim f,, measurable, and similarly

n k>n
for lim £,. 1

A property is said to hold almost everywhere’ (abbreviated a.e.) if
the set of points where it fails to hold is a set of measure zero. Thus
in particular we say that f = g a.e. if fand g have the same domain

5 French: presque partout (p.p.).
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and m{x: f(x) # g(x)} = 0. Similarly, we say that £, converges to g
almost everywhere if there is a set E of measure zero such that f,,(x)
converges to g(x) for each x not in E. One consequence of equality
a.e. 15 the following:

21. Proposition: If f is a measurable function and f = g a.e., then
g is measurable.

Proof: Let E be the set {x: f(x) # g(x)}. By hypothesis mE = 0.
Now

x:g0) >af = {x:f(x) >t U{xeE glx) > o
~{xeE: gx) <af.

The first set on the right is measurable, since fis a measurable func-
tion. The last two sets on the right are measurable since they are
subsets of £ and mE = 0. Thus {x: g(x) > a} is measurable for
each «, and so g is measurable. §

The following proposition tells us that a measurable function is
“almost” a continuous function. The proof is left to the reader
(cf. Problem 23).

22. Proposition: Let f be a measurable function defined on an
interval [a, b, and assume that f takes the values 1= o only on a set of
measure zero. Then given € > 0, we can find a step function g and a
continuous function h such that

If—gl <e and |f— hl <e

except on a set of measure less than e; i.e. m{x: | f(x) — g(x)| > ¢} <e
and m{x: |f(x) — Kx)| > & < e If in addition m < f < M, then
we may choose the functions g andh so thatm < g < Mandm < h <
M.

If A is any set, we define the characteristic function X , of the set 4
to be the function given by

I ifxed

X =
4(%) {0 if x ¢ A.

R o e e T
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The function X, is measurable if and only if 4 is measurable. Thus
the existence of a nonmeasurable set implies the existence of a non-
measurable function.

A real-valued function ¢ is called simple if it is measurable and
assumes only a finite number of values. If ¢ is simple and has the

[

values aq, ..., a, then ¢ = 2 a,X 4, where 4, = {x: o(x) = ..

=]

The sum, product, and difference of two simple functions are simple.

Problems

18. Show that (v) does not imply (iv) in Proposition 18 by constructing
a function fsuch that {x: f(x) > 0} = E, a given nonmeasurable set, and
such that f assumes each value at most once.

19. Let D be a dense set of real numbers, that is, a set of real numbers
such that every interval contains an element of D. Let f be an extended
real-valued function on R such that {x: f(x) > a} is measurable for each
a £ D. Then f is measurable.

20. Show that the sum and product of two simple functions are simple.
Show that

XanB = X4 ' XB
X4uB = X4 + XBp — X4 XB
X4 1 — x4.

21. a. Let D and E be measurable sets and f a function with domain
D U E. Show that fis measurable if and only if its restrictions to D and £

are measurable,
b L

Let f be a function with measurable domain D. Show that f is
measurable iff the function g defined by g(x) = f(x) for xe D and
g(x) = Ofor x ¢ D is measurable.

22. a. Let f be an extended real-valued function with measurable
domain D, and let D; = {x: f(x) = wo}, Dy = {x: f(x) = —o0}. Then
fis measurable if and only if D and D, are measurable and the restriction
of fto D ~ (D; U Dy) is measurable.

b. Prove that the product of two measurable extended real-valued
functions i1s measurable.

¢. If fand g are measurable extended real-valued functions and «
a fixed number, then f + g is measurable if we define f+ g to be «
whenever it is of the form ¢ — o0 or —o0 + 0.
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d. Let fand g be measurable extended real-valued functions which
are finite almost everywhere. Then f -+ g is measurable no matter how it is
defined at points where it has the form « — oo.

23. Prove Proposition 22 by establishing the following lemmas:

a. Given a measurable function f on [a, b] which takes the values
+ oo only on a set of measure zero, and given € > 0, there is an M such
that | f| < M except on a set of measure less than ¢/3.

b. Let f be a measurable function on [a, ]. Given ¢ > 0 and M,
there is a simple function ¢ such that | f(x)} — ¢(x)] < € except where

[fx)| > M. Ifm < f < M, then we may take ¢ so that m < ¢ < M,

¢. Given a simple function ¢ on [a, b], there is a step function g on
[a, b] such that g(x) = ¢(x) except on a set of measure less than e/3.
[Hint: Use Proposition 15.]1 If m < ¢ < M, then we can take g so that
m<g< M.

d. Given a step function g on [a, 4], there is a continuous function
A such that g(x) = A(x) except on a set of measure less than ¢/3. If
m < g < M, then we may take Aso thatm < 2 < M.

24. Let f'be measurable and B a Borel set. Then f ~*[B] is a measurable
set. [Hint: The class of sets for which f ~![E]is measurable is a o-algebra.]

25. Show thatif fis a meaurable real-valued function and g a continuous
function defined on (—co, o), then g o f is measurable.

26. Borel measurability. A function f is said to be Borel measurable if
for each « the set {x: f(x) > «} is a Borel set. Verify that Propositions 18
and 19 and Theorem 20 remain valid if we replace “measurable set” by
“Borel set” and “‘(Lebesgue) measurable” by “Borel measurable.” Every
Borel measurable function is Lebesgue measurable. If f is Borel measur-
able, and B is a Borel set, then f~![B] is a Borel set. If f and g are Borel
measurable, so is f o g, If fis Borel measurable and g is Lebesgue measur-
able, then f o g is Lebesgue measurable.

27. How much of the preceding problem can be carried out if we
replace the class & of Borel sets by an arbitrary o-algebra @ of sets?

28. Let f; be the Cantor ternary function (cf. Problem 2.46), and
define f by f(x) = f1(x) + x.
a. Show that f is 2 homeomorphism of [0, 1] onto [0, 2].
b. Show that f maps the Cantor set onto a set F of measure 1.
c. Let g = /1. Show that there is a measurable set 4 such that

A IT AT 50 At e criea s
8 L4 ] 18 Not measuraoie.

d. Give an example of a continuous function g and a measurable
function 4 such that 4 o g is not measurable. Compare with Problems 25
and 26.

e. Show that there is a measurable set which is not a Borel set.
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6 Littlewood’s Three Principles

Speaking of the theory of functions of a real variable, J. E.
Littlewood says,® “The extent of knowledge required is nothing like
so great as is sometimes supposed. There are three principles, roughly
expressible in the following terms: Every (measurable) set is nearly a
finite union of intervals; every [measurable] function is nearly
continuous; every convergent sequence of [measurable] functions is
nearly uniformly convergent. Most of the results of [the theory] are
fairly intuitive applications of these ideas, and the student armed with
them should be equal to most occasions when real variable theory is
called for. If one of the principles would be the obvious means to
settle the problem if it were ‘quite’ true, it is natural to ask if the
‘nearly’ is near enough, and for a problem that is actually solvable
it generally is.”

We have already met two of Littlewood’s principles: Various forms
of the first principle are given by Proposition 15. One version of the
second principle is given by Proposition 22, another version by
Problem 31, and a third is given by Problems 4.15 and 6.14. The
following proposition gives one version of the third principle. A
slightly stronger form is given by Egoroff’s theorem (Problem 30),
but you will generally find the weak form adequate.

23. Proposition: Let E be a measurable set of finite measure, and
{fn) a sequence of measurable functions defined on E. Let f be a measur-
able real-valued function such that for each x in E we have f,(x) —
f(x). Then, given ¢ > 0 and 6 > 0, there is a measurable set A C E
with mA < 6 and an integer N such that for all x ¢ A and all n > N,

|falX) — f()] < e
G, = {xe E: | fu(x) — f(x)] > ¢,

Ey = CJ G, = {x ¢ E: | fu(x) — f(x)| > efor some n > N}.

We have Ey ., C Ey, and for each x ¢ E there must be some Ey to
which x does not belong, since f,(x) — f(x). Thus ()} Ey = &, and
so, by Proposition 14, lim mFE, = 0. Hence given 6 > 0, 3N so that

6 Lectures on the Theory of Functions, Oxford, 1944, p. 26.
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mEy < 0, that is,

mix e E: | f(x) — f(x)| > efor somen > N} < 4.
If we write A4 for this E,, then m4 < 6 and

A= {xeE: |f,(x) — f(x)] < eforalln > N}.1

If, as in the hypothesis of the proposition, we have f,.(x) — f(x)
for each x, we say that the sequence {f,,) converges pointwise to / on
E. If there is a subset B of E with mB = 0 such that f,, — fpointwise
on E ~ B, we say that f,, — fa.e. on E. We have the following trivial
modification of the last proposition:

24, Proposition: Let E be a measurable set of finite measure, and
{f,) a sequence of measurable functions which converge to a real-valued
function fa.e. on E. Then, givene > Oand 6 > 0, there isaset A C E
with mA < 0, and an N such that for all x ¢ Aand alln > N,

[fulx) = f(D)] < e

Problems

29. Give an example to show that we must require mE < oo in Proposi-
tion 23.

30. Prove Egoroff’s Theorem: If {f, ) is a sequence of measurable func-
tions which converge to a real-valued function f a.e. on a measurable set
E of finite measure, then, given » > 0, there is a subset 4 C E with
mA < u such that f,, converges to f uniformly on E ~ A. [Hint: Apply
Proposition 24 repeatedly with ¢, = 1/nand 8, = 27 "9.]

31. Prove Lusin’s Theorem: Let f be a measurable real-valued function
on an interval [a, b]. Then given & > 0O, there is a continuous function
¢ on [a, b] such that m{x: f(x) # o(x)} < §. Can you do the same on the
interval (— oo, o¢)? [Hint: Use Egoroff’s theorem, Propositions 15 and
22, and Problem 2.39.]

32. Show that Proposition 23 need not be true if the integer variable
n is replaced by a real variable ¢; that is, construct a family {f;) of
measurable real-valued functions on [0, 1] such that for each x we have

lim fi{{x) = 0, but for some § > 0 we have m*{x: f,(x) > 3} > 4. Hint:
t—0

Let P, be the sets in Section 4. For 277! < ¢ < 27" define f; by
1 ifxeP, and x = 271 — 1

0 otherwise.

Jux) = [



