III. Banach Spaces

PROOF. Fix x in \mathscr{X} . By the hypothesis and Corollary 14.3, $\sup\{\|A(x)\|: A \in \mathscr{A}\} < \infty$.

A special form of the PUB that is quite useful is the following.

14.6. The Banach-Steinhaus Theorem. Zf X and \mathcal{Y} are Banach spaces and $\{A_n\}$ is a sequence in $\mathcal{B}(\mathcal{X},\mathcal{Y})$ with the property that for every x in X there is a y in \mathcal{Y} such that $||A_nx - y|| \to 0$, then there is an A in $\mathcal{B}(\mathcal{X},\mathcal{Y})$ such that $||A_nx - Ax|| \to 0$ for every x in X and $\sup ||A_n|| < \infty$.

PROOF. If $x \in X$, let $Ax = \lim_{n \to \infty} A_n x$. By hypothesis $A: \mathcal{X} \to \mathcal{Y}$ is defined and it is easy to see that it is linear. To show that A is bounded, note that the PUB implies that there is a constant M > 0 such that $||A_n|| \le M$ for all n. If $x \in X$ and $||x|| \le 1$, then for any $n \ge I$, $||Ax|| \le ||Ax - A_n x|| + ||A_n x|| \le ||Ax - A_n x|| + M$. Letting $n \to \infty$ shows that $||Ax|| \le M$ whenever $||x|| \le 1$.

The Banach-Steinhaus Theorem is a result about sequences, not nets. Note that if Z is the identity operator on X and for each $n \ge 1$, $A_n = n^{-1}I$ and for $n \le 0$, $A_n = nI$, then $\{A_n : n \in \mathbb{Z}\}$ is a countable net that converges in norm to 0. but the net is not bounded.

14.7. Proposition. Let X be locally compact and let $\{f_n\}$ be a sequence in $C_n(X)$. Then $\iint_n d\mu \to \iint_n d\mu$ for every μ in M(X) if and only if $\sup_n ||f_n|| < \infty$ and $f_n(x) \to f(x)$ for every x in X.

PROOF. Suppose $\iint_n d\mu \to \iint d\mu$ for every μ in M(X). Since M(X) = C,(X)*, (14.3) implies that $\sup_n ||f_n|| < \infty$. By letting $\mu = \delta_x$, the unit point mass at x, we see that $\iint_n d\delta_x = f_r(x) \to f(x)$. The converse follows by the Lebesgue Dominated Convergence Theorem.

Exercises

- 1. Here is another proof of the PUB using the Baire Category Theorem. With the notation of (14.1), let $B_n = \{x \in \mathcal{X}: ||Ax|| \le n \text{ for all } A \text{ in } \mathcal{A} \}$. By hypothesis, $\bigcup_{n=1}^{\infty} B_n = \mathcal{X}$. Now apply the Baire Category Theorem.
- 2. If $1 and <math>\{x_n\} \subseteq l^p$, then $\sum_{j=1}^{\infty} x_n(j) y(j) \to 0$ for every y in l^q , 1/p + 1/q = 1, if and only if $\sup_n ||x_n||_p < \infty$ and $x_n(j) \to 0$ for every $j \ge 1$.
- 3. If $\{x,\}\subseteq l^1$, then $\sum_{j=1}^{\infty}x_n(j)y(j)\to 0$ for every y in c_0 if and only if $\sup_n||x_n||_1<\infty$ and $x_n(j)\to 0$ for every $j\geq 1$.
- 4. If (X, Ω, μ) is a measure space, $1 , and <math>\{f_n\} \subseteq L^p(X, \Omega, \mu)$, then $\int fg \, d\mu \to 0$ for every g in $L^q(\mu), 1/p + 1/q = 1$, if and only if $\sup\{\|f_n\|_p : n \ge 1\} < \infty$ and for every set E in Ω with $\mu(E) < \infty$, $\int_E f_n \, d\mu \to 0$ as $n \to \infty$.
- 5. If (X, Ω, μ) is a u-finite measure space and $\{f_n\}$ is a sequence in $L^1(X, \Omega, \mu)$, then $\iint_n g \, d\mu \to 0$ for every g in $L^{\infty}(\mu)$ if and only if $\sup\{\|f_n\|_1 : n \ge 1\} < \infty$ and $\iint_E f_n \, d\mu \to 0$ for every E in Ω .

- 6. Let \mathscr{H} be a Hilbert space and let \mathscr{E} be an orthonormal basis for \mathscr{H} . Show that a sequence $\{h_n\}$ in \mathscr{H} satisfies $\langle h_n, h \rangle \to 0$ for every h in \mathscr{H} if and only if $\sup\{\|h_n\|: n \ge 1\} < \mathrm{cc}$ and $\langle h_n, e \rangle \to 0$ for every e in \mathscr{E} .
- 7. If X is locally compact and $\{\mu_n\}$ is a sequence in M(X), then $L(\mu_n) \to 0$ for every L in M(X)* if and only if $\sup\{\|\mu_n\|: n \ge 1\} < \text{cc}$ and $\mu_n(E) \to 0$ for every Borel set E.
- 8. In (14.6), show that $||A|| \le \limsup ||A_n||$.
- 9. If (S, d) is a metric space and X is a normed space, say that a function $f: S \to X$ is a Lipschitz function if there is a constant M > 0 such that $||f(x) f(t)|| \le Md(s, t)$ for all s, t in S. Show that if $f: S \to X$ is a function such that for all L in \mathcal{X}^* , $L \circ f: S \to \mathbb{F}$ is Lipschitz, then $f: S \to X$ is a Lipschitz function.
- 10. Let X be a Banach space and suppose $\{x_n\}$ is a sequence in X that is linearly independent and such that for each x in X there are scalars $\{a, \}$ such that $\lim_{n \to \infty} \|x \sum_{k=1}^{n} \alpha_k x_k\| = 0$. Such a sequence is called a *basis*. (a) Prove that X is separable. (b) Let $\mathscr{Y} = \{\{a, \} \in \mathbb{F} : \sum_{n=1}^{\infty} \alpha_n x_n \text{ converges in X} \}$ and for $y = \{a, \}$ in \mathscr{Y} define $\|y\| = \sup_n \|\sum_{k=1}^n \alpha_k x_k\|$. Show that \mathscr{Y} is a Banach space. (c) Show that there is a bounded bijection $T: \mathscr{X} \to \mathscr{Y}$. (d) If $n \ge 1$ and $f_n: \mathscr{X} \to \mathbb{F}$ is defined by $f_n(\sum_{k=1}^{\infty} \alpha_k x_k) = \alpha_n$, show that $f_n \in \mathscr{X}^*$. (e) Show that $x_n \notin$ the closed linear span of $\{x_k : k \ne n\}$.