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Abstract

We develop the critical-line algorithm for solving portfolio optimization prob-
lems with low and high bound asset constraints.
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1 Introduction

In [8] we developed the classical mean-variance optimization theory for uncon-
strained portfolios. In this theory, all possible combinations of asset weights are
permitted, even negative weights (short-selling) and weights greater than 100%
(leverage). The only restriction is the budget constraint, which says that the
sum of the asset weights must equal 1.

In many situations additional external constraints are imposed on investors. For
example, typical 401(k) and 403(b) plans do not make it possible to sell short
or use leverage. In these kinds of cases we often wish to constrain all the asset
weights to the range 0-100%. In other cases we may wish to impose other kinds
of lower and upper bounds on individual assets.

In this paper we generalize the theory to handle these kinds of lower and upper
bound constraints. Each asset may be unconstrained, have a lower bound but
not an upper bound, have an upper bound but not a lower bound, or have both
lower and upper bounds.

As in [8], we closely follow Sharpe’s presentation in [10]. Our development of
the algorithm, especially the proofs, is also guided by Markowitz [6, 7].

We use the notation of [8]. We have n assets. We are given a vector x of
instantaneous expected returns αi, a symmetric positive semidefinite matrix V
of covariances ρi,j , and an iso-elastic coefficient of relative risk aversion A. The
decision variable is the vector w of asset weights wi. The problem is to maximize
expected utility:

f(w) = w′x− 1
2
Aw′V w

subject to the constraints:
n∑

i=1

wi = 1

Li ≤ wi ≤ Hi for i = 1 . . . n

We require Li ≤ Hi, and we permit Li = −∞ and/or Hi = +∞, which means
that there is no low or high constraint respectively on the asset weight wi.

Definition 1.1 The feasible set F is the set of all vectors of asset weights w
which satisfy the constraints:

F =

{
w |

n∑
i=1

wi = 1 and Li ≤ wi ≤ Hi

}

We can state the problem more succinctly in terms of the feasible set F as
follows:

maximize f(w) = w′x− 1
2
Aw′V w over w ∈ F
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or even more simply:
maximize f over F

Note that the objective function f is parameterized by the coefficient of relative
risk aversion A. So we are really solving a whole family of maximization prob-
lems parameterized by A. Thus, when demanded by the context, we will often
say:

maximize f over F for A

As in [8], we make the important assumption that the assets are linearly inde-
pendent and that there are no arbitrage opportunities.

1.1 Outline of the Solution

In the unconstrained problem, as the coefficient of relative risk aversion A
changes, asset weights for the efficient portfolio change smoothly. Some as-
set weights increase as A increases, and some decrease. We review the basic
properties of the solution to the unconstrained problem in section 2.

In the constrained problem, as A changes, asset weights also change, and as an
asset weight changes it may encounter its low or high bound. At this point, the
asset weight becomes “pinned” to its low or high bound, and ceases to change
as A changes. The reverse can also happen. As A changes, an asset weight that
was formerly pinned to a bound may come alive and start to change.

For a particular efficient portfolio for a given value of A, each asset is in one of
three states: It is pinned to its low bound, it is pinned to its high bound, or it is
in between its low and high bounds. Following Sharpe [10], we call these three
states down, up, and in.

The down, in and up states have a direct relationship with the first partial
derivatives of the objective function f(w) at the efficient portfolios which are
solutions to the problem. This relationship is expressed by the critical Kuhn-
Tucker conditions, which we discuss in detail in section 3.

A segment is a range of values of A over which the assets do not change their
states. We define this notion in section 4 and show how to compute the efficient
portfolios within a segment and the endpoints of a segment.

As A changes, when we encounter the end of a segment, at least one asset
changes state. If we know the states of all of the assets in the first segment, we
can compute what the states will be in the next segment. We show how to do
this in section 5. This is called the critical-line algorithm. It was first discovered
by Harry Markowitz.

If we know any one of the segments in a constrained solution, we can use the
critical-line algorithm to find all the other segments and completely solve the
problem for all values of A. Thus all that remains is to find some way to discover
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an initial segment. We discuss how to do this in section 5.4, by solving a convex
quadratic programming problem to find the minimum variance portfolio.

1.2 Notation

We will sometimes use the gradiant notation as a compact way to express equa-
tions involving partial derivatives of functions. The ∇ symbol (“nabla”) is used
to do this. It gathers all of the partial derivatives of a function into a vector.
For example, suppose f(w) is a function of n variables w1 . . . wn. Then:

∇f =
(

∂f

∂w1
, . . . ,

∂f

∂wn

)
and:

∇f(w) =
(

∂f

∂w1
(w), . . . ,

∂f

∂wn
(w)
)

As an example, the following equation is a compact way of saying that all the
first partial derivatives of f evaluated at some point w are greater than or equal
to 0:

∇f(w) ≥ 0

We take the liberty of sometimes using this notation to represent a column
vector, and sometimes a row vector. The meaning will always be clear from the
context.

We also use boldface 1 and 0 symbols to represent column or row vectors all of
whose elements are 1 or 0 respectively. For example, if λ is a number, then λ1
is a vector with each of its elements equal to λ, and if x is a vector, then x1 is
the sum of all the elements of x. When the context demands more clarity, we
use c and r subscripts to denote column and row vector versions. E.g., 1c and
1r.

As an example of these two notations combined, the following equation says
that all the first partial derivatives of f evaluated at w are equal to λ:

∇f(w) = λ1

We use the symbol ⇒ for logical implication. A ⇒ B means “if A then B.”

Finally, we take the liberty of mildly overloading the prime symbol (′). In some
contexts, we use the symbol to take the transpose of a vector, as in the definition
of our objective function f(w) = w′x− 1

2Aw′V w. In other contexts, we use it to
talk about pairs of vectors or numbers, as in “let s and s′ be two state vectors.”
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2 Review of the Unconstrained Problem

Recall the solution to the unconstrained problem in [8].

The problem is to maximize expected utility:

f(w) = w′x− 1
2
Aw′V w

subject to the budget constraint:

n∑
i=1

wi = 1

The first order partial derivatives of f are:

∂f

∂wi
= αi −A

n∑
j=1

ρi,jwj (1)

or, using gradiant notation:

∇f = x−AV w (2)

To deal with the budget constraint, we introduce a Lagrange multiplier λ and
a new objective function f̂ :

f̂(w, λ) = f(w) + λ

(
1−

n∑
i=1

wi

)
(3)

To solve the problem, we take the n + 1 partial derivatives of f̂ and set them
equal to 0.

∂f̂

∂wi
= αi −A

n∑
j=1

ρi,jwj − λ = 0 (4)

∂f̂

∂λ
= 1−

n∑
i=1

wi = 0 (5)

Rewrite these equations as:

n∑
j=1

ρi,jwj + λ/A = αi/A (6)

n∑
i=1

wi = 1 (7)

This is a set of n + 1 linear equations in n + 1 unknowns which we can solve
using linear algebra. Define vectors and matrices as follows:
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V̂ =
(

V 1c

1r 0

)
ŵ =

(
w

λ/A

)
x̂ =

(
x
0

)
ŷ =

(
0c

1

)

Then equations (6) and (7) become:

V̂ ŵ =
1
A

x̂ + ŷ (8)

Let:
ĉ = V̂ −1x̂ (9)

d̂ = V̂ −1ŷ (10)

Our solution is:

ŵ =
1
A

ĉ + d̂ (11)

The solution vector w is the first n elements of ŵ. The Lagrange multiplier λ
is:

λ = ĉn+1 + Ad̂n+1 (12)

We can arrive at this solution only if the enhanced covariance matrix V̂ is non-
singular, so that we can use its inverse V̂ −1 in equations (9) and (10). In [8] we
showed that this matrix is non-singular if there are no arbitrage opportunities
or linearly dependent assets. We make this assumption throughout this paper.

Note that at a solution w, equation (4) says that:

∇f(w) = λ1 (13)

The economic meaning of this equation is that efficient portfolios are always in
equilibrium in the sense that the marginal utility of each asset is the same. The
Lagrange multiplier λ is a measure of that marginal utility.
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3 Kuhn-Tucker Conditions

3.1 Asset States and Slope Conditions

The objective function f we wish to maximize is a quadratic function of n vari-
ables. We have a number of constraints, including both the budget constraint
and low and high bound constraints on each variable.

To help develop some insight into the solution, we begin by drastically simpli-
fying the problem. Consider the trivial optimization problem where we have
just one variable x, a quadratic objective function f(x) we wish to maximize,
no “budget constraint,” and a single pair of low and high bound constraints L
and H on the variable.

This problem is easy to solve. Figure 1 illustrates the solution. There are three
cases.

The graph of the objective function is a simple parabola with a global maximum
value at some point.

If the global maximum is less than the low bound, the solution is the low bound.
This is the down case, the top graph in Figure 1. The slope of the parabola at
the solution is negative in this case.

If the global maximum is between the low and high bounds, it is the solution.
This is the in case, the middle graph in Figure 1. The slope of the parabola at
the solution is zero in this case.

If the global maximum is greater than the high bound, the solution is the high
bound. This is the up case, the bottom graph in Figure 1. The slope of the
parabola at the solution is positive in this case.

The slope of the parabola is the first derivative of the objective function. In
our simple problem we have the following conditions on this derivative at the
solution point x:

f ′(x)

 ≤ 0 if the state is down
= 0 if the state is in
≥ 0 if the state is up

The intuition behind these conditions should be clear. If our solution is at the
high bound, f must be increasing in value as we approach the high bound from
below. If our solution is at the low bound, f must be increasing in value as we
approach the low bound from above, which means it is decreasing in value if we
approach the low bound from below. If our solution is in the middle somewhere,
the slope must be zero.
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Figure 1: Asset States and Slope Conditions
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For our full problem, we can expect that there will be some kind of similar
conditions on the first order partial derivatives of our objective function which
are related to the states of the individual assets. For example, our intuition tells
us that if the solution has asset i at its high bound, the value of our objective
function f must be increasing (or at least non-decreasing) as asset i approaches
its high bound from below, which implies that the first partial derivative of f
with respect to asset i must be non-negative, and so on.

In the next section we work out all the mathematical details to show that this
is indeed the case, with a correction involving a little bit of extra complexity
due to the budget constraint and the Lagrange multiplier λ we use to deal with
that constraint.

3.2 Definitions and Theorems

Definition 3.1 A state vector s is a vector of dimension n where each element
of the vector has one of the three possible values si = down, up or in. Given
such a state vector, define:

Ds = {i | si = down}
Is = {i | si = in}
Us = {i | si = up}

We will omit the subscripts on D, I and U when the context is clear.

Definition 3.2 Let s be a state vector, w a vector of asset weights, λ a Lagrange
multiplier, and A a coefficient of relative risk aversion. The Kuhn-Tucker con-
ditions for (s, w, λ,A) are:

w ∈ F

wi =
{

Li for all i ∈ D
Hi for all i ∈ U

∂f

∂wi
(w)

 ≤ λ for all i ∈ D
= λ for all i ∈ I
≥ λ for all i ∈ U

We will prove in a moment that the solutions to our maximization problem
satisfy the Kuhn-Tucker conditions, and vice-versa. This is the multidimensional
version of the intuition we developed in the previous section about slopes (first
derivatives) and solutions to quadratic maximization problems with low and
high bound constraints.

Note the clear economic meaning behind these conditions, similar to the eco-
nomic meaning behind equation (13) in the unconstrained solution. For con-
strained efficient portfolios, the in assets all have the same marginal utility and
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are in equilibrium, as in the unconstrained case. The up and down assets are
not, however, in equilibrium. Assets that are up and pinned at their high bounds
have greater or equal marginal utility, which means that we might be able to
improve our portfolio (increase its utility) if the bound were not present. Sim-
ilarly, down assets have lesser or equal marginal utility, which means that we
might be able to improve our portfolio if we could go below the lower bounds.

We will need the following definition momentarily:

Definition 3.3 A function f is convex if for all u and v in the domain of f
and 0 ≤ α ≤ 1:

f(αu + (1− α)v) ≤ αf(u) + (1− α)f(v)

In order to prove our theorem, we need the fundamental Kuhn-Tucker Theorem
from mathematical programming theory. This theorem generalizes the classical
Lagrange multiplier theory to handle inequality constraints as well as equality
constraints. We state the theorem here without proof:1

Theorem 3.1 (Kuhn-Tucker) Let f be a convex continuously differentiable func-
tion, h = (h1 . . . hm) a vector of linear functions, and g = (g1 . . . gr) a vector of
linear functions. Consider the problem:

minimize f(w) subject to the constraints:

h(w) = 0

g(w) ≤ 0

w is a solution to the problem if and only if there exist Lagrange multipliers
λ = (λ1 . . . λm) and µ = (µ1 . . . µr) which satisfy:

∇f(w) + λ∇h(w) + µ∇g(w) = 0

µ ≥ 0

µg(w) = 0

This theorem says a great deal using only a few symbols.

First note that there is no restriction on the signs of the Lagrange multipliers
λ for the equality constraints, but all of the Lagrange multipliers µ for the
inequality constraints are non-negative.

1The version of the Kuhn-Tucker theorem we state here is just one simplified form of
the full theorem, a form that is sufficient for our needs. For more information on this im-
portant theorem and proofs of its various versions, see any good textbook on mathematical
programming.
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When we write the first two equations out in full we get:

∂f

∂wi
(w) +

m∑
j=1

λj
∂hj

∂wi
(w) +

r∑
k=1

µk
∂gk

∂wi
(w) = 0 (for all i = 1 . . . n)

µk ≥ 0 (for all k = 1 . . . r)

Because µk ≥ 0 and gk(w) ≤ 0 for all k, the last equation µg(w) = 0 is a terse
way of saying the following:

gk(w) < 0 ⇒ µk = 0 (for all k = 1 . . . r)

In other words, we always know that for each inequality constraint k we have
µk ≥ 0. In addition, if the solution w is not “at the constraint boundary”
(gk(w) < 0), then we also know that µk = 0.

In our problem we are maximizing our objective function f . The Kuhn-Tucker
theorem is stated in terms of minimizing functions. Maximizing f is clearly
equivalent to minimizing −f .

This version of the Kuhn-Tucker theorem we are using requires that the ob-
jective function being minimized must be convex. This convexity condition is
what makes it possible to state the conclusion with the “if and only if” clause.
Without convexity, the “only if” part of the theorem still holds, but not the
“if” part.

It is easy to show that g = −f is convex, because the covariance matrix V is
positive semidefinite. Suppose u and v are vectors and 0 ≤ α ≤ 1. Then:

αg(u) + (1− α)g(v)− g(αu + (1− α)v)
= −αf(u)− (1− α)f(v) + f(αu + (1− α)v)

= −α

[
u′x− 1

2
Au′V u

]
− (1− α)

[
v′x− 1

2
Av′V v

]
+

(αu + (1− α)v)′x− 1
2
A(αu + (1− α)v)′V (αu + (1− α)v)

= α
1
2
Au′V u + (1− α)

1
2
Av′V v − 1

2
A(αu + (1− α)v)′V (αu + (1− α)v)

=
1
2
A
[
αu′V u + (1− α)v′V v − α2u′V u− (1− α)2v′V v − 2α(1− α)u′V v

]
=

1
2
Aα [u′V u + v′V v − αu′V u− αv′V v − 2(1− α)u′V v]

=
1
2
Aα(1− α) [u′V u + v′V v − 2u′V v]

=
1
2
Aα(1− α) [(u− v)′V (u− v)]

≥ 0 because A > 0, α ≥ 0, (1− α) ≥ 0 and V is positive semidefinite



3 KUHN-TUCKER CONDITIONS 12

We can now prove the main theorem of the paper. This theorem is what makes
the critical-line algorithm work.

Theorem 3.2 w maximizes f over F for A iff there is a state vector s and a
Lagrange multiplier λ such that (s, w, λ,A) satisfies the Kuhn-Tucker conditions.

Proof:

First note that w maximizes f over F for A iff w minimizes −f for A subject
to the following constraints:

h(w) =
n∑

i=1

wi − 1 = 0

gL
k (w) = Lk − wk ≤ 0 (for k = 1 . . . n, Lk 6= −∞)

gH
k (w) = wk −Hk ≤ 0 (for k = 1 . . . n, Hk 6= +∞)

By the Kuhn-Tucker theorem, w maximizes f over F for A iff there exist La-
grange multipliers λ, µL

k ≥ 0 and µH
k ≥ 0 which satisfy:

− ∂f

∂wi
(w) + λ

∂h

∂wi
(w) +

n∑
k=1

µL
k

∂gL
k

∂wi
(w) +

n∑
k=1

µH
k

∂gH
k

∂wi
(w) = 0 (for all i = 1 . . . n)

gL
k (w) < 0 ⇒ µL

k = 0

gH
k (w) < 0 ⇒ µH

k = 0

Evaluate the partial derivatives of h, gL
k and gH

k and rearrange and simplify.
Because our constraint functions are so simple, most of the partial derivatives
are 0, so their terms drop out and we get:

∂f

∂wi
(w)− λ = µH

i − µL
i (for all i = 1 . . . n)

Li < wi ⇒ µL
i = 0

wi < Hi ⇒ µH
i = 0

(14)

Note that using gradiant notation we can write the first equation above as:

∇f(w)− λ1 = µH − µL

Suppose w maximizes f over F for A. Then by equations (14) we have:

∂f

∂wi
(w)− λ =



−µL
i ≤ 0 if Li = wi < Hi

0 if Li < wi < Hi

µH
i ≥ 0 if Li < wi = Hi

µH
i − µL

i if Li = wi = Hi
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Define the state vector s as follows:

si =



down if Li = wi < Hi

down if Li = wi = Hi and µH
i ≤ µL

i

in if Li < wi < Hi

up if Li < wi = Hi

up if Li = wi = Hi and µH
i > µl

i

Then (s, w, λ,A) satisfies the Kuhn-Tucker conditions.

Conversely, suppose (s, w, λ,A) satisfies the Kuhn-Tucker conditions. Define:

µL
i =

 λ− ∂f

∂wi
(w) if i ∈ D

0 otherwise

µH
i =


∂f

∂wi
(w)− λ if i ∈ U

0 otherwise

Then µL ≥ 0, µH ≥ 0 and equations (14) are satisfied, so w maximizes f over
F for A.

For computational reasons that will become clear in the following sections, we
need to work with state vectors that always have at least one in state. So we
prove the following simple extension of Theorem 3.2.

Theorem 3.3 w maximizes f over F for A iff there is a state vector s with at
least one in state and a Lagrange multiplier λ such that (s, w, λ,A) satisfies the
Kuhn-Tucker conditions.

Proof:

The “if” direction is immediate. To prove the “only if” direction, start with the
state vector s and Lagrange multiplier λ we derived in the proof of Theorem
3.2. Suppose that s has only down and up elements. We know that:

∂f

∂wi
(w)

{
≤ λ if i ∈ D
≥ λ if i ∈ U

Define:

λ′ =


max
i∈D

[
∂f

∂wi
(w)
]

if D 6= {}

min
i∈U

[
∂f

∂wi
(w)
]

if D = {}
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s′i =


si if

∂f

∂wi
(w) 6= λ′

in if
∂f

∂wi
(w) = λ′

Then (s′, w, λ′, A) satisfies the Kuhn-Tucker conditions, and s′ has at least one
in state, and our proof is complete.

Note that in everything we have done so far, the coefficient of relative risk
aversion A has been held constant. We want to find a solution for the whole
family of problems, not just one of them, so we will soon start to vary A over
its domain (0,∞). In particular, we will be looking at what happens to the
Kuhn-Tucker conditions as A varies. For this purpose, the following definitions
will prove useful.

Definition 3.4 A state vector s is valid for a coefficient of relative risk aversion
A if it contains at least one in asset and there is some w ∈ F and λ for which
(s, w, λ,A) satisfies the Kuhn-Tucker conditions.

Definition 3.5 A state vector s is valid if it is valid for at least one coefficient
of relative risk aversion A.
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4 Solution Segments

4.1 Computing a Solution

Suppose a state vector s is valid for a coefficient of relative risk aversion A.
Then it contains at least one in asset, and there is a vector of asset weights
w ∈ F and a Lagrange multiplier λ for which the Kuhn-Tucker conditions are
satisfied for A. w is the efficient portfolio for A.

The Kuhn-Tucker condition for i ∈ I is:

∂f

∂wi
= λ

Substituting equation (1) for ∂f
∂wi

gives:

αi −A
n∑

j=1

ρi,jwj = λ

or after rearranging slightly:

n∑
j=1

ρi,jwj + λ/A = αi/A

Thus the Kuhn-Tucker conditions imply that w must be a solution to the fol-
lowing set of linear equations:

For i ∈ D : wi = Li

For i ∈ I :
n∑

j=1

ρi,jwj + λ/A = αi/A

For i ∈ U : wi = Hi

n∑
i=1

wi = 1

(15)

Consider this problem in reverse. Suppose we are given the state vector s with
at least one in state and a value of A. We can easily solve the simultaneous
linear equations above to get the values of w and λ and check the Kuhn-Tucker
conditions to see if we have a solution (that is, to see if s is valid for A).

We use matrix algebra. The computations are similar to the ones for the un-
constrained problem in section 2.

We start by building an enhanced covariance matrix Ṽ . This is the same as
the V̂ matrix for unconstrained problems except for the rows corresponding to
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assets in the down and up states.

Ṽ =


ṽ1,1 · · · ṽ1,n ṽ1,n+1

...
...

...
ṽn,1 · · · ṽn,n ṽn,n+1

1 · · · 1 0


For assets i in the in state, we set row i to the covariances for asset i, plus a 1
in the last column, as in V̂ . For assets i in the down and up states, we set row
i to a vector with 1 in column i and 0 everywhere else:

ṽi,j =


ρi,j if i ∈ I and j ≤ n
1 if i ∈ I and j = n + 1
0 if i ∈ D ∪ U and i 6= j
1 if i ∈ D ∪ U and i = j

Now define the three column vectors w̃, x̃, and ỹ:

w̃ =


w1

...
wn

λ/A



x̃i =

 αi if i ∈ I, i ≤ n
0 if i ∈ D ∪ U, i ≤ n
0 if i = n + 1

ỹi =


0 if i ∈ I, i ≤ n
Li if i ∈ D, i ≤ n
Hi if i ∈ U, i ≤ n
1 if i = n + 1

The linear equations become:

Ṽ w̃ =
1
A

x̃ + ỹ (16)

with the solution:
wi =

1
A

c̃i + d̃i (17)

λ = c̃n+1 + Ad̃n+1 (18)

where:2

c̃ = Ṽ −1x̃ (19)

d̃ = Ṽ −1ỹ (20)

2We show in the next section that Ṽ is non-singular, so it has an inverse Ṽ −1.
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In order to be a solution to the problem we must have w ∈ F . That is, w must
satisfy all of the constraints. w satisfies the budget constraint because that is
one of the equations we solved. For a down or up asset, w also satisfies the low
and high bound constraints, because our equations pin the asset weight to the
low or high bound. For an in asset, we can inspect the solution vector w to see
if the asset weight is indeed between the low and high bounds.

To check the Kuhn-Tucker conditions on the first order partial derivatives we
start with equation (1):

∂f

∂wi
= αi −A

n∑
j=1

ρi,jwj (21)

Substitute equation (17) into equation (21) to get:

∂f

∂wi
= αi −A

n∑
j=1

ρi,j

(
1
A

c̃j + d̃j

)
(22)

= αi −
n∑

j=1

ρi,j c̃j −A
n∑

j−1

ρi,j d̃j (23)

Subtract λ from both sides and substitute equation (18) to get:

∂f

∂wi
− λ = αi −

n∑
j=1

ρi,j c̃j −A
n∑

j−1

ρi,j d̃j − λ (24)

=

αi −
n∑

j=1

ρi,j c̃j − c̃n+1

−A

 n∑
j−1

ρi,j d̃j + d̃n+1

 (25)

Compute new vectors ẽ and f̃ as follows:

ẽi = αi −
n∑

j=1

ρi,j c̃j − c̃n+1 (26)

f̃i =
n∑

j=1

ρi,j d̃j + d̃n+1 (27)

Then:
∂f

∂wi
− λ = ẽi −Af̃i (28)

and the Kuhn-Tucker conditions on the first-order partial derivatives become:

ẽi −Af̃i

 ≤ 0 for all i ∈ D
= 0 for all i ∈ I
≥ 0 for all i ∈ U

(29)
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Equations (19) and (20) can be written as:

Ṽ c̃ = x̃

Ṽ d̃ = ỹ

Multiplying out row i of these equations for i ≤ n shows that:

For i ∈ D : c̃i = 0 and d̃i = Li

For i ∈ I : ẽi = 0 and f̃i = 0

For i ∈ U : c̃i = 0 and d̃i = Hi

Note that for i ∈ I, the equations guarantee that ẽi −Af̃i = 0, so we only need
to check the conditions for i ∈ D ∪ U in equation (29).

The vectors ẽ and f̃ can be computed using matrix algebra using the uncon-
strained enhanced covariance matrix V̂ and the unconstrained enhanced ex-
pected return vector x̂ that we defined in section 2:

ẽ = x̂− V̂ c̃

f̃ = V̂ d̃

Using gradiant notation, we have:

∇f − λ1 = ẽ−Af̃

= x̂− V̂ c̃−AV̂ d̃

= x̂−AV̂

(
1
A

c̃ + d̃

)
= x̂−AV̂ w̃

The following theorem summarizes the results of this section.

Theorem 4.1 If (w, λ) is a solution to the simultaneous linear equations (15),
with the vectors c̃, d̃, ẽ, f̃ computed by the equations above, then w maximizes f
over F for A iff the following subset of the Kuhn-Tucker conditions are satisfied:

For i ∈ D : ẽi −Af̃i ≤ 0

For i ∈ I : Li ≤
1
A

c̃i + d̃i ≤ Hi

For i ∈ U : ẽi −Af̃ ≥ 0

Proof:

We showed above that the simultaneous linear equations force all of the other
Kuhn-Tucker conditions to be satisfied.
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4.2 Non-Singularity and Uniqueness

We always work with state vectors that have at least one in asset. This re-
striction is required to make the enhanced covariance matrix Ṽ non-singular.
It there are only down and up assets, the linear equations are all of the form
wi = Li or wi = Hi, plus the budget constraint equation. None of these equa-
tions involve λ, and there is either no solution to the equations (if the budget
constraint is not met), or there are an infinite number of solutions where λ can
be assigned any value at all (if the budget constraint is met).

Under the assumption that the full enhanced covariance matrix V̂ is non-singular
and that a state vector s contains at least one in asset, it is easy to show that
Ṽ must be non-singular, and hence that the equations have a unique solution.

Suppose Ṽ is singular. Then there is a vector w̃ 6= 0 with Ṽ w̃ = 0. By the way
we construct Ṽ , we must have w̃i = 0 for all i ∈ D ∪ U . But then it is easy to
see that we must also have V̂ w̃ = 0 for the same vector w̃ 6= 0. This violates
our assumption that V̂ is non-singular.

The economic meaning of this argument is clear. If Ṽ is singular, the in assets
of s are either linearly dependent or can be used to form a zero-budget arbitrage
portfolio. The same set of assets are obviously linearly dependent or can form
a zero-budget arbitrage portfolio for the full unconstrained problem.

Because Ṽ is non-singular, the simultaneous linear equations (15) always have
a unique solution.

4.3 Computing the Endpoints of a Segment

Given a value of A and a state vector s, we now know how to compute the
constrained solution for those values and check it for validity using the Kuhn-
Tucker conditions.

Suppose we have a valid solution that satisfies the Kuhn-Tucker conditions for
some A. For what other values of A is it valid? There is some range of values
around A which define the full segment over which the solution has the same
asset states. We need to be able to compute the endpoints of that segment.

Consider what happens as we let A decrease or increase in value and the asset
weights in the efficient portfolio solution vector w̃ change. One of two things
may happen (or neither of them may happen). First, the efficient portfolio may
contain some asset in the in state which reaches its lower or upper bound. If
this happens we have reached an endpoint, because the constraints prohibit us
from permitting an asset to go below its lower bound or above its upper bound.
Second, the Kuhn-Tucker conditions may become invalid for one of the assets in
the down or up state—that is, for some i ∈ D∪U , the equation (29) may change
sign. If this happens we have also reached an endpoint, because we cannot go
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past the point where the Kuhn-Tucker conditions are no longer satisfied.

It is laborious but not difficult to compute the values of the endpoints.

We restrict our attention to one asset at a time and compute two new vectors
p and q. For each i, pi and qi are the minimum and maximum values of A for
which the Kuhn-Tucker conditions are satisfied for asset i. Thus the interval
[pi, qi] gives the range of values for A over which all the conditions for asset i
remain satisfied.

We use our two equations (17) and (28) for this purpose:

wi =
1
A

c̃i + d̃i (30)

∂f

∂wi
− λ = ẽi −Af̃i (31)

First suppose that asset i is in the down state. It is pinned to its lower bound.
We need to determine the range over which the Kuhn-Tucker value in (31) is
≤ 0. There are four cases:

[pi, qi] =


[0,∞] if f̃i = 0 and ẽi ≤ 0
[0, ẽi/f̃i] if f̃i < 0
[ẽi/f̃i,∞] if f̃i > 0
[0,−1] otherwise

(32)

Note the last case above, which we have recorded as [0,−1]. This notation
indicates that there are no values of A for which the Kuhn-Tucker conditions
are satisfied for this asset. If this case holds, then the state vector s we are
considering is not valid.

Now suppose that asset i is in the up state. It is pinned to its upper bound. We
need to determine the range over which the Kuhn-Tucker value in (31) is ≥ 0.
Again there are four cases:

[pi, qi] =


[0,∞] if f̃i = 0 and ẽi ≥ 0
[0, ẽi/f̃i] if f̃i > 0
[ẽi/f̃i,∞] if f̃i < 0
[0,−1] otherwise

(33)

Finally, suppose that asset i is in the in state. It is between its upper and
lower bounds. We need to determine the range over which its value as given
by equation (30) remains within its bounds. That is, we need to determine the
range of A values over which the following inequality is true:

Li ≤
1
A

c̃i + d̃i ≤ Hi

There are two inequalities here which we will deal with separately:

A(Li − d̃i) ≤ c̃i (34)
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A(Hi − d̃i) ≥ c̃i (35)

For the first inequality (34) we have:

[pL
i , qL

i ] =


[0,∞] if Li = d̃i and c̃i ≥ 0
[c̃i/(Li − d̃i),∞] if Li < d̃i

[0, c̃i/(Li − d̃i)] if Li > d̃i

[0,−1] otherwise

(36)

For the second inequality (35) we have:

[pH
i , qH

i ] =


[0,∞] if Hi = d̃i and c̃i ≤ 0
[c̃i/(Hi − d̃i),∞] if Hi > d̃i

[0, c̃i/(Hi − d̃i)] if Hi < d̃i

[0,−1] otherwise

(37)

We then set:
pi = max(pL

i , pH
i ) (38)

qi = min(qL
i , qH

i ) (39)

[pi, qi] = [pL
i , qL

i ] ∩ [pH
i , qH

i ] (40)

The range of values of A for which this vector of asset states s is valid is given
by:

As
min = max(pi)

As
max = min(qi)

[As
min, As

max] =
⋂n

i=1 [pi, qi]

The state vector s is valid iff As
min ≤ As

max.

We can visualize these computations graphically, which sometimes helps. The
intervals [pi, qi] and [As

min, As
max] are computed based on the two equations (30)

and (31):

wi =
1
A

c̃i + d̃i (41)

∂f

∂wi
− λ = ẽi −Af̃i (42)

For a given state vector s, the solution vectors c̃, d̃, ẽ and f̃ are constants that
are independent of A. So the right hand sides of these two equations define
functions of A that are in a simple form.

Think of these equations graphically, where A is graphed on the x axis. Each
equation plots as a curve on the graph. For down and up assets, we care about
the second equation for the partial derivative minus λ, which graphs as a straight
line, and we are concerned about where that line crosses the x axis (where it
changes sign from ≤ 0 to ≥ 0 or vice-versa). For in assets, we care about the
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first equation for the asset weights, which graphs as a hyperbola, and we are
concerned about where that curve crosses the horizontal constraint lines wi = Li

and wi = Hi.

Consider a particular point A which is valid for s. Some of the curves intersect
their horizontal constraint lines to the left of A, some of them intersect to the
right of A, and some may not intersect at all. The intersection points to the left
of A are our values pi, pL

i , and pH
i . The intersection points to the right of A are

our values qi, qL
i , and qH

i . As we move left or right from A, the first intersection
point we encounter is the earliest point where one of our constraint equations
becomes invalid. These points are our values As

min and As
max.

Theorem 4.2 A state vector s is valid for A iff As
min ≤ A ≤ As

max.

Proof:

By the way we constructed (defined) the interval [As
min, As

max], the Kuhn-Tucker
conditions have a solution for A iff As

min ≤ A ≤ As
max.

4.4 Equality Constraints and Overlapping Segments

The Kuhn-Tucker conditions in Definition 3.2 impose two sets of conditions on
solutions to the problem of maximizing f over F . One set of conditions imposes
equality constraints on the down and up assets. The other set of conditions
imposes constraints on the first partial derivatives of f at the solution.

What happens if we only consider the first set of equality constraints without
the first partial derivative constraints? The problem certainly becomes simpler,
almost trivial, and it turns out that the answer is important.3

Definition 4.1 For a state vector s, the equality constraints for s are:

n∑
i=1

wi = 1

wi = Li for all i ∈ D

wi = Hi for all i ∈ U

E(s) is the set of all asset weight vectors that satisfy these constraints:

E(s) =

{
w |

n∑
i=1

wi = 1 and wi = Li for all i ∈ D and wi = Hi for all i ∈ U

}

3Lemma 4.4 in this section is a critical element of the proof we will give in section 5.3 that
the critical-line algorithm terminates.
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Lemma 4.1 For a state vector s, w ∈ E(s) maximizes f over E(s) for A iff
there exists a λ such that:

∂f

∂wi
(w) = λ for all i ∈ I

Proof:

w ∈ E(s) maximizes f over E(s) for A iff it minimizes −f subject to:

h(w) =
n∑

i=1

wi − 1 = 0

hi(w) = wi − Li = 0 for i ∈ D

hi(w) = wi −Hi = 0 for i ∈ U

By the Kuhn-Tucker Theorem 3.1,4 w ∈ E(s) maximizes f over E(s) for A iff
there exist Lagrange multipliers λ and λi for i ∈ D ∪ U which satisfy:

− ∂f

∂wi
(w) + λ

∂h

∂wi
(w) +

∑
j∈D∪U

λj
∂hj

∂wi
(w) = 0 for all i = 1 . . . n

Evaluate the partial derivatives of h and hj and rearrange and simplify to get:

∂f

∂wi
(w) =

{
λ if i ∈ I
λ + λi if i ∈ D ∪ U

(43)

The only if direction of the Lemma is now immediate. For the if direction,
suppose there exists a λ such that:

∂f

∂wi
(w) = λ for all i ∈ I

For i ∈ D ∪ U define:
λi =

∂f

∂wi
(w)− λ

Then equation (43) is satisfied, so w maximizes f over E(s) for A.

4This is a rather trivial application of the Kuhn-Tucker theorem, because we have no
inequality constraints. This is really just classical Lagrange multiplier theory.



4 SOLUTION SEGMENTS 24

Lemma 4.2 w maximizes f over E(s) for A iff there is a λ such that (w, λ)
satisfies the simultaneous linear equations (15) for s and A.

Proof:

Suppose w maximizes f over E(s) for A. By Definition 4.1 and Lemma 4.1,
there is a λ such that all of the following equations are satisfied:

For i ∈ D : wi = Li

For i ∈ I :
∂f

∂wi
(w) = αi −A

n∑
j=1

ρi,jwj = λ

For i ∈ U : wi = Hi

n∑
i=1

wi = 1

This is the same as the set of equations (15).

Conversely, if (w, λ) satisfies the equations (15), then we have w ∈ E(s), and
Lemma 4.1 says that w maximizes f over E(s) for A.

Lemma 4.3 If s is a valid state vector for A with solution w, then w uniquely
maximizes f over E(s) for A.

Proof:

Suppose s is valid for A with solution w. Then for some λ, (w, λ) is a solution
to the simultaneous linear equations (15). By Lemma 4.2, w maximizes f over
E(s). If any other asset weight vector w′ maximizes f over E(s), Lemma 4.2
tells us that (w′, λ′) must also be solution to equations (15) for some λ′. In
section 4.2, we showed that these equations always have a unique solution, so
w = w′ and w uniquely maximizes f over E(s) for A.

What happens when solution segments overlap? That is, suppose the solution
segments for two state vectors s and s′ are both valid for some coefficient of
relative risk aversion A. Each state vector provides a solution to the problem.
Are the solutions the same? In other words, are solutions unique?

Our suspicion, of course, is that the answer must be “yes.” This is not immedi-
ately obvious, however. We can prove that the solutions are indeed the same,
provided s and s′ satisfy some conditions that make them in a certain sense
“close” to each other.

We will need this result as a crucial element of our argument in section 5.3 that
the critical-line algorithm terminates.
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Lemma 4.4 Suppose s is a valid state vector for A with solution (w, λ), and s′

is another valid state vector for A with solution (w′, λ′), with:

D = {i | si = down}
I = {i | si = in}
U = {i | si = up}

D′ = {i | s′i = down}
I ′ = {i | s′i = in}
U ′ = {i | s′i = up}

If D ∪ U ⊂ D′ ∪ U ′ and I ∩ I ′ 6= {} then w = w′ and λ = λ′.

Proof:

Let E(s) be the set of equality constraints for s in Definition 4.1.

The following Venn diagram helps illustrate the proof:

Because w and w′ are both solutions, w ∈ F and w′ ∈ F .

w ∈ E(s) by the definition of E(s).

Because D ∪ U ⊂ D′ ∪ U ′, w′ ∈ E(s).

So both w and w′ ∈ F ∩ E(s).

Because w′ is a solution for A, it maximizes f over F for A. w′ therefore must
maximize f over F ∩ E(s) for A.

By Lemma 4.3, w uniquely maximizes f over E(s) for A. w therefore must
uniquely maximize f over F ∩ E(s) for A.

So we must have w = w′.

Because I ∩ I ′ 6= {}, w and w′ share some asset k with state in. By the Kuhn-
Tucker conditions for s and s′ for asset k, we have:

λ =
∂f

∂wk
(w) =

∂f

∂wk
(w′) = λ′
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4.5 A Brute Force Solution

We have now accumulated enough understanding of the problem to formulate
a complete solution. The solution uses brute force.

The number of possible state vectors s is finite, albeit potentially large for large
values of n. For n assets, the number of possible state vectors is at most 3n—
exactly 3n for a fully constrained problem, and less than 3n for a problem with
some of the low and high bounds unconstrained.

Iterate over all of the possible state vectors s with at least one in state. Use the
computations of sections 4.1 and 4.3 to determine the intervals [As

min, As
max]

and the solution vectors c̃ and d̃ for each s. Discard the invalid state vectors
with As

min > As
max. Sort the remaining valid state vectors in increasing order

by As
min. Theorem 3.3 tells us that the resulting set of solutions for each valid

s covers the entire domain A ∈ (0,∞).5 So we have a complete solution to the
problem. Given a value of A, we can quickly locate a valid state vector s for A
and use its solution vectors c̃ and d̃ to compute the efficient portfolio for A.

The problem with this approach, of course, is its inefficiency for all but a very
small number of assets. For most problems with larger numbers of assets, the
vast majority of the possible state vectors are invalid. We would much prefer
an approach that determined the valid state vectors directly. We develop such
an approach in the sections that follow.

5Provided there are any solutions at all, i.e., F 6= {}.
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5 The Critical-Line Algorithm

5.1 Introduction

Suppose we have a valid vector of asset states s. In the previous section we saw
how to compute the range of values of A for which the state vector is valid, and
how to compute the efficient portfolios for all the values of A in that range.

The range of A values over which s is valid is [As
min, As

max]. The solution we
computed in the previous section is valid over this range, but not outside the
range.

What happens as A decreases down to and across its endpoint As
min or up to

and across its endpoint As
max? We must enter a new solution segment with a

new state vector s′.

Given s, and the fact that s is valid, our intuition provides a reasonable conjec-
ture as to what the new state vector s′ must be. At As

min or As
max, there are

only three possibilities:

1. Some in asset k hits its low bound. In this case the asset changes state to
down.

2. Some in asset k hits its high bound. In this case the asset changes state
to up.

3. The Kuhn-Tucker value for some down or up asset k becomes zero. In
this case the asset changes state to in.

We can make this conjecture formal via the following definitions. For these
definitions, the vectors p, q, c̃ and d̃ are the ones we computed in the previous
section 4.

Definition 5.1 Let s be a valid state vector.

A minimum critical asset for s is a value of k for which As
min = pk > 0.

A maximum critical asset for s is a value of k for which As
max = qk < ∞.

Note that a valid state vector s with As
min = 0 has no minimum critical asset.

If As
min > 0 there is at least one minimum critical asset, and maybe more than

one. If As
max = ∞, s has no maximum critical asset. If As

max < ∞ there is at
least one maximum critical asset, and maybe more than one.
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Definition 5.2 The previous state vector for a valid state vector s and a min-
imum critical asset k for s is the state vector s′ = prev(s, k) defined as follows:

s′i =


si if i 6= k

down if i = k, sk = in, and pk(Lk − d̃k) = c̃k

up if i = k, sk = in, and pk(Lk − d̃k) 6= c̃k

in if i = k and sk = down or up

Definition 5.3 The next state vector for a valid state vector s and a maximum
critical asset k for s is the state vector s′ = next(s, k) defined as follows:

s′i =


si if i 6= k

down if i = k, sk = in, and qk(Lk − d̃k) = c̃k

up if i = k, sk = in, and qk(Lk − d̃k) 6= c̃k

in if i = k and sk = down or up

The critical-line algorithm starts with a valid state vector s and repeatedly
finds previous and next state vectors until the resulting set of solution segments
covers the entire domain from A = 0 to A = ∞.

Initialize the result set S to the single element s
t = s
while (At

min > 0) {
k = first minimum critical asset for t
t = prev(t,k)
add t to S

}
t = s
while (At

max < ∞) {
k = first maximum critical asset for t
t = next(t,k)
add t to S

}

Note that we could have said “any” instead of “first” in the first lines of each
of the two while loops, in which case the algorithm would be non-deterministic.
At each iteration, we could in theory select any minimum or maximum critical
asset for t. There may be more than one choice in the case of “ties.” Thus there
could be many paths through the algorithm. To make this deterministic, we
choose the first one in each case. That is, in the first while loop, we choose the
smallest value of k which is a minimum critical asset for t, and in the second
while loop we choose the smallest value of k which is a maximum critical asset
for t.

In order to convince ourselves that this algorithm actually works, we need to
prove the following:
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• The prev and next functions lead from valid state vectors to valid state
vectors.

• The prev and next functions go in the proper directions with no gaps. That
is, if s′ = prev(s, k), then the solution segment for s′ is to the left of the
solution segment for s, and if s′ = next(s, k), then the solution segment for
s′ is to the right of the solution segment for s, for some suitable definition
of “to the left of,” “to the right of” and “no gaps.”

• The algorithm terminates—neither of the two while loops goes on forever.

5.2 Validity

In this section we prove that the prev and next functions lead from valid state
vectors to valid state vectors, and that they go in the proper directions (to the
left and right respectively) with no gaps.

One of the requirements for a state vector to be valid is that it must contain at
least one in asset. So we must show that the prev and next functions lead from
valid state vectors to state vectors that always have at least one in asset. We
prove this using a sequence of lemmas.

Lemma 5.1 If k is the only in asset in a valid state vector s, then c̃k = 0.

Proof:

Equation (19) computes c̃ as:
c̃ = Ṽ −1x̃

So we have:
Ṽ c̃ = x̃

Because k is the only in asset, this equation has a particularly simple form:

1
. . .

ρk,1 . . . ρk,k . . . ρk,n 1
. . .

1
1 . . . 1 . . . 1





c̃1

...
c̃k

...
c̃n

c̃n+1


=



0
...

αk

...
0
0


where the elements we have left blank in the matrix Ṽ are all 0.

For i 6= k and i ≤ n, multiplying out row i shows that c̃i = 0.

Multiplying out the last row gives
∑n

i=1 c̃i = 0. Because c̃i = 0 for all i 6= k and
i ≤ n, we must have c̃k = 0.
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Lemma 5.2 If k is the only in asset in a valid state vector s, then [pk, qk] =
[0,∞].

Proof:

s is valid, so it is valid for some A with a solution w ∈ F .

By Lemma 5.1, c̃k = 0.

By equation (17) wk = 1
A c̃k + d̃k. So we must have wk = d̃k.

w ∈ F , so Lk ≤ wk ≤ Hk. Because wk = d̃k, Lk ≤ d̃k ≤ Hk.

Because c̃k = 0, Lk ≤ d̃k ≤ Hk, and because s is valid, inspecting equations
(36), (37), and (40) shows that we must have:

[pL
k , qL

k ] = [0,∞]
[pH

k , qH
k ] = [0,∞]

[pk, qk] = [0,∞]

Lemma 5.3 If k is the only in asset in a valid state vector s, then k cannot be
a minimum or maximum critical asset for s.

Proof: By Definition 5.1, if k is a minimum critical asset for s, we must have
As

min = pk > 0. But by Lemma 5.2, we know that pk = 0. So this is impossible.

Similarly, if k is a maximum critical asset for s, we must have As
max = qk < ∞.

But we know that qk = ∞, so this is impossible.

Lemma 5.4 The prev and next functions always lead from valid state vectors
to state vectors that have at least one in asset.

Proof:

Let s be a valid state vector, k a minimum critical asset for s, and s′ = prev(s, k).
Suppose s′ contains only down and up assets. The only way this can happen is
if s contains only one in asset, and that asset is the minimum critical asset k
that changes state to down or up. But Lemma 5.3 says this is impossible.

The proof for the next function is similar.

Lemma 5.5 If s is valid and s′ = prev(s, k) or s′ = next(s, k), then s and s′

share at least one in asset in common.

Proof:

The only way s and s′ could fail to share an in asset is if s contains only one in
asset and that asset is the one that changes state. But we showed above that
this is impossible.
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Theorem 5.1 If s is a valid state vector, k is a minimum critical asset for s,
and s′ = prev(s, k), then s′ is also valid. In particular, s′ is valid for A = As

min.

Similarly, if s is a valid state vector, k is a maximum critical asset for s, and
s′ = next(s, k), then s′ is also valid. In particular, s′ is valid for A = As

max.

Proof:

We will do the case where k is a minimum critical asset for s. The maximum
critical asset case is similar, and we leave the proof for that case as an exercise
for the reader.

Lemma 5.4 establishes that s′ has at least one in asset. So the only concern
remaining is the Kuhn-Tucker conditions for s′.

Let A = As
min. We have 0 < pk = A. Let w be the efficient portfolio for A.

We know that s is valid for A, and that (s, w, λ,A) satisfies the Kuhn-Tucker
conditions for some λ. We will show that (s′, w, λ,A) also satisfies the Kuhn-
Tucker conditions. This shows that s′ is valid for A, and hence s′ is valid.

The Kuhn-Tucker conditions for (s′, w, λ,A) are:

w ∈ F

wi =
{

Li if s′i = down
Hi is s′i = up

∂f

∂wi
(w)− λ

 ≤ 0 if s′i = down
= 0 if s′i = in
≥ 0 if s′i = up

We know that w ∈ F , and we have si = s′i for all i 6= k. So we only need to
demonstrate that the second two conditions hold for i = k.

First suppose that s′k = down. Then

pk(Lk − d̃k) = c̃k (by Definition 5.2)

Lk =
1
pk

c̃k + d̃k

Lk =
1
A

c̃k + d̃k (because pk = A)

= wk (by equation (17))

Now suppose that s′k = up. Then sk = in, and by Definition 5.2, pk(Lk− d̃k) 6=
c̃k. We also know that 0 < pk. By inspection of equations (36) and (37), we
must have:

pk = c̃k/(Hk − d̃k)

Hk =
1
pk

c̃k + d̃k
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Hk =
1
A

c̃k + d̃k (because pk = A)

= wk (by equation (17))

Our final task is to verify the Kuhn-Tucker condition on the first partial deriva-
tive. We will in fact show that no matter what kind of transition has taken
place, we have:

∂f

∂wk
− λ = 0

First suppose that the transition is from sk = in to s′k = down or up. Because
sk = in, the Kuhn-Tucker value is 0, and we are done. So suppose that the
transition is from sk = down or up to s′k = in. Because 0 < pk, inspecting
equations (32) and (33) shows that we must have:

pk = ẽk/f̃k

A = ẽk/f̃k (because pk = A)
∂f

∂wk
− λ = ẽk −Af̃k (by equation(31))

= 0

Theorem 5.2 The prev and next functions go in the proper directions with
no gaps. That is, if s is valid, k is a minimum critical asset for s, and s′ =
prev(s, k), then

As′

min ≤ As
min ≤ As′

max

Similarly, if s is valid, k is a maximum critical asset for s, and s′ = next(s, k),
then

As′

min ≤ As
max ≤ As′

max

Proof:

In the minimum critical asset case, Theorem 5.1 shows that s′ is valid for As
min.

So we must have:
As′

min ≤ As
min ≤ As′

max

Similarly, in the maximum critical asset case, s′ is valid for As
max, so we must

have:
As′

min ≤ As
max ≤ As′

max

Note that Theorem 5.2 does not prove that the new segment for s′ is strictly to
the left or right of the one for s. That is, it does not prove that As′

max = As
min

for the prev direction or that As′

min = As
max for the next direction. We will

not prove those properties until Theorem 5.3 in the next section, and then only
under certain assumptions. The properties we have proven here, however, are
enough to establish the absence of any “gaps” in the sequence of generated
segments (As′

max ≥ As
min for prev and As′

min ≤ As
max for next).



5 THE CRITICAL-LINE ALGORITHM 33

5.3 Termination

We now know that the critical-line algorithm always leads from valid state
vectors to valid state vectors, and it moves in the proper directions with no
gaps. It remains to show that the algorithm terminates.

We present the algorithm again here for convenience:

Initialize the result set S to the single element s
t = s
while (At

min > 0) {
k = the first minimum critical asset for t
t = prev(t,k)
add t to S

}
t = s
while (At

max < ∞) {
k = the first maximum critical asset for t
t = next(t,k)
add t to S

}

The first important point to note is that the number of valid state vectors is
finite, as we discussed in section 4.5. Our main theorem 3.3 tells us that this
finite set of all possible valid state vectors does indeed provide a full solution—
every possible value of A from 0 to ∞ is part of the solution segment for some
valid state vector.6

Given these observations, it is tempting to try to resolve the termination prob-
lem by showing that the values of At

min are strictly decreasing at each iteration
of the first while loop, and that the values of At

max are strictly increasing at
each iteration of the second while loop. If we could in fact demonstrate this, we
would be done. This is not immediate, however. Note that theorem 5.2 only
guarantees that these endpoints are nonincreasing and nondecreasing (respec-
tively). It may be possible for an iteration of the algorithm to produce a new
solution segment that is valid for only a single point (At

min = At
max), without

causing any decrease in the value of At
min in the first loop, or increase in the

value of At
max in the second loop.

Because the number of valid state vectors is finite, another approach would be to
try to show that the two loops never revisit a previously examined state vector.
This is called a cycle. It we could prove that cycles never happen, we would be
finished.

These turn out to be rather difficult problems, and it will take some effort to
work our way through the solutions.

6Provided we have any solutions at all, i.e., F 6= {}.
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We begin with some useful definitions and lemmas.

Definition 5.4 An asset k is strict for a state vector s if all the inequalities in
the Kuhn-Tucker conditions for asset k are strict in the interior of the solution
segment for s. That is, if As

min < A < As
max, and w is the efficient portfolio

for A, then:

if k ∈ D then
∂f

∂wk
(w) < λ

if k ∈ U then
∂f

∂wk
(w) > λ

if k ∈ I then Lk < wk < Hk

Definition 5.5 A state vector s is strict if As
min < As

max (the solution segment
contains more than a single point), and all assets k are strict for s.

Lemma 5.6 Suppose k is a minimum or maximum critical asset for a valid
state vector s. Then k is strict for s.

Proof:

We will do the case where k is a minimum critical asset for s. The maximum
critical asset case is similar.

k is a minimum critical asset for s, so 0 < pk = As
min. Suppose that As

min <
A < As

max. Let w be the efficient portfolio for A.

Suppose k ∈ D. By inspection of equation (32), we must have As
min = pk =

ẽk/f̃k and f̃k > 0. So we have:

∂f

∂wk
(w)− λ = ẽk −Af̃k

< ẽk −As
minf̃k

= 0

Suppose k ∈ U . By inspection of equation (33), we must have As
min = pk =

ẽk/f̃k and f̃k < 0. So we have:

∂f

∂wk
(w)− λ = ẽk −Af̃k

> ẽk −As
minf̃k

= 0

Suppose k ∈ I. Let v be the efficient portfolio for As
max. v must satisfy all the

constraints, so we have Lk ≤ vk ≤ Hk.
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Suppose k ∈ I and pk(Lk − d̃k) = c̃k. Then As
min = pk = c̃k/(Lk − d̃k). By

inspection of equation (36), we must have Lk < d̃k, which together with 0 < pk

implies that c̃k < 0. So we have:

Lk =
1

As
min

c̃k + d̃k

<
1
A

c̃k + d̃k

= wk

<
1

As
max

c̃k + d̃k

= vk

≤ Hk

Suppose k ∈ I and pk(Lk − d̃k) 6= c̃k. Then As
min = pk = c̃k/(Hk − d̃k). By

inspection of equation (37), we must have Hk > d̃k, which together with 0 < pk

implies that c̃k > 0. So we have:

Hk =
1

As
min

c̃k + d̃k

>
1
A

c̃k + d̃k

= wk

>
1

As
max

c̃k + d̃k

= vk

≥ Lk

Lemma 5.7 Suppose s is a valid state vector. If s′ = prev(s, k) for a minimum
critical asset k for s, or if s′ = next(s, k) for a maximum critical asset k for s,
then the solution segments for s and s′ intersect in at most a single point.

Proof:

Again we do only the minimum critical asset case. The proof is by contradiction.

If the solution segments for s and s′ intersect in more than a single point, then
they mut share an internal point A with:

As
min < A < As

max

By Lemma 5.5, s and s′ share at least one in asset in common. In addition,
the down and up assets on of one of the state vectors is always a subset of the



5 THE CRITICAL-LINE ALGORITHM 36

down and up assets of the other state vector. By Lemma 4.4, s and s′ have the
same solution (w, λ) for A.

Suppose sk = down and s′k = in. Then:

∂f

∂wk
(w) = λ (because s′k = in)

∂f

∂wk
(w) < λ (by Lemma 5.6 applied to s, k)

Suppose sk = up and s′k = in. Then:

∂f

∂wk
(w) = λ (because s′k = in)

∂f

∂wk
(w) > λ (by Lemma 5.6 applied to s, k)

Suppose sk = in and s′k = down. Then:

wk = Lk (because s′k = down)
wk > Lk (by Lemma 5.6 applied to s, k)

Suppose sk = in and s′k = up. Then:

wk = Hk (because s′k = up)
wk < Hk (by Lemma 5.6 applied to s, k)

So all four possible cases lead to a contradiction.

Lemma 5.8 Suppose s is strict.

If (w, λ) is the solution for As
min, then:

If i ∈ D ∪ U :
∂f

∂wi
(w) = λ iff i is minimum critical for s

If i ∈ I : wi = Li or wi = Hi iff i is minimum critical for s

Similarly, if (w, λ) is the solution for As
max, then:

If i ∈ D ∪ U :
∂f

∂wi
(w) = λ iff i is maximum critical for s

If i ∈ I : wi = Li or wi = Hi iff i is maximum critical for s

Proof:

As usual, we only do the minimum critical case. The maximum critical case is
similar.
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For i ∈ D, suppose ∂f
∂wi

is equal to λ at the left endpoint of the solution segment.
Because s is strict, it is less than λ at interior points of the segment. So we
must have f̃i > 0, and equation (32) shows that k is a minimum critical asset
for s. The other direction is equally trivial.

For i ∈ U , suppose ∂f
∂wi

is equal to λ at the left endpoint of the solution segment.
Because s is strict, it is greater than λ at interior points of the segment. So we
must have f̃i < 0, and equation (33) shows that k is a minimum critical asset
for s. The other direction is equally trivial.

For i ∈ I, suppose wi = Li at the left endpoint. Because s is strict, it is greater
that Li in the interior, so we must have c̃i < 0 with Li < di, and equation (36)
shows that k is a minimum critical asset. The case where wi = Hi and the other
direction are equally trivial.

We can now prove that under certain assumptions which eliminate the need to
deal with special cases and other issues, the critical-line algorithm does indeed
terminate. Our proof uses that same line of reasoning as Markowitz’ proof in
Appendix A of [7].

Theorem 5.3 Suppose s is strict and Li < Hi for all i.

If k is the only minimum critical asset for s (there are no ties), then s′ =
prev(s, k) is also strict.

Similarly, if k is the only maximum critical asset for s (there are no ties), then
s′ = next(s, k) is also strict.

Proof:

Again we do only the minimum critical asset case.

Let A = As
min. In Theorem 5.1 we showed that both s and s′ are valid for A,

and they share the same solution (w, λ) at A.

Let (c̃′, d̃′, ẽ′, f̃ ′) be the solution vectors we computed for s′ in section 4.1.

We first prove that As′

min < As′

max, that is, that the solution segment for s′

contains more than a single point.

Because there aren’t any ties, i is not minimum critical for s for all i 6= k. For
i 6= k we also have si = s′i (these assets keep the same state). By Lemma 5.8,
we have:

If i ∈ D, i 6= k :
∂f

∂wi
(w)− λ = ẽ′i −Af̃ ′i < 0

If i ∈ I, i 6= k : Li < wi =
1
A

c̃′i + d̃′i < Hi

If i ∈ U, i 6= k :
∂f

∂wi
(w)− λ = ẽ′i −Af̃ ′i > 0

Because all of the inequalities are strict, they remain true if we replace A by
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A± ε for all sufficiently small ε > 0.

Asset k is the one that changes state in the transition from s to s′. There are
four cases.

Suppose k changes from down to in. Then at the endpoint A:

wk =
1
A

c̃′k + d̃′k = Lk

Suppose for the purpose of contradiction that c̃′k ≤ 0. Then for all sufficiently
small ε > 0 we have:

1
A + ε

c̃′k + d̃′k ≥ Lk

In this case (using our assumption that Lk < Hk), for all sufficiently small ε > 0,
A+ε satisfies all of the conditions of Theorem 4.1 for s′, and therefore s′ is valid
for A + ε for all sufficiently small ε > 0. But then s and s′ overlap in more than
a single point, which contradicts Lemma 5.7.

So we must have c̃′k > 0. Then for all sufficiently small ε > 0 we have:

1
A− ε

c̃′k + d̃′k > Lk

Thus, for all sufficiently small ε > 0, A − ε satisfies all of the conditions of
Theorem 4.1 for s′, and therefore s′ is valid for A − ε for all sufficiently small
ε > 0. This proves that s′ contains more than a single point.

The other three kinds of transitions for k are similar, and we leave them as
exercises (up to in, in to down, and in to up).

Proving that all the assets are strict for s′ is easy but tedious. There are seven
cases, for i 6= k ∈ I, i 6= k ∈ D, i 6= k ∈ U , and the four kinds of transitions for
i = k. We will do just the first of the seven cases, the others being similar.

Suppose i 6= k ∈ I. Over the solution segment for s′, the asset weight wi is given
by the equation 1

B c̃′i + d̃′i. At the right endpoint A the value of this equation is
strictly between the bounds Li and Hi. At the left endpoint the value might be
at one of these bounds, but clearly it cannot be at either bound in the interior
of the segment. So i is strict for s′.

The key conclusion of theorem 5.3 is that under its assumptions, the prev and
next functions produce sequences of strict solution segments. Thus under the
assumptions, the sequences of At

min and At
max values produced by the while loop

iterations are strictly decreasing/increasing respectively. As we observed at the
beginning of this section, this is enough to prove that the algorithm terminates.

We aren’t finished yet, but we are getting closer. At this point, if we make a
few important assumptions, we know that the critical-line algorithm works, in
the sense that it terminates in a finite amount of time with a full and correct
solution.
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The assumptions are:

1. We can find a strict starting state vector for the algorithm.

2. Li < Hi for all i.

3. We never encounter any ties, where at an iteration there is more than one
candidate for the minimum critical asset or maximum critical asset.

We deal with these problems in the following sections.

5.4 Finding the First Segment

In this section we deal with the problem of finding a strict starting state vector
for the algorithm (the first solution segment).

Markowitz and Sharpe both start at the end of the efficient frontier for A = 0,
and solve a linear programming problem to find the efficient portfolio held by
an infinitely risk-tolerant investor—the portfolio that maximizes the expected
return. Unfortunately, this technique, while trivial in many common cases, only
works in the general case if there is an upper bound on the expected return.
This is true if all the assets are fully constrained, but it is not always true in
the general case we are considering, where some assets may be only partially
constrained or, for that matter, unconstrained.

Markowitz mentions this problem and suggests starting at the other end for an
infinitely risk-averse investor with A = ∞, by solving the quadratic program-
ming problem to find the minimum variance portfolio. This is the approach we
take.

For any value of A, maximizing our objective function:

f(w) = w′x− 1
2
Aw′V w

is equivalent to minimizing:

f∗(w) = − 2
A

w′x + w′V w

In the limit, as A →∞, we get the variance of w:

Var(w) = lim
A→∞

f∗(w) = w′V w

Thus as risk aversion increases towards A = ∞, we suspect that the optimal
portfolio approaches the minimum variance portfolio. If we can find a valid state
vector s that corresponds to the minimum variance portfolio, that state vector
should be valid for all sufficiently large values of A, with As

min < As
max = ∞.
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That is our goal and plan of attack. The first step towards the goal is to solve
the minimization problem to find the minimum variance portfolio v.

Minimizing the variance w′V w over the constraint set F is a convex quadratic
programming problem with linear constraints. These problems are well under-
stood and not difficult to solve numerically. One popular technique is to use
the Kuhn-Tucker conditions to reduce the problem to a linear complementar-
ity programming problem, then use the Lemke-Howson algorithm to solve that
problem. A good description of this algorithm may be found in Friedman [4].

Definition 5.6 A linear complementarity programming problem (LCPP) has
the following form:

Given a vector q and a matrix M , find vectors w and z so that the following
conditions are all satisfied:

w = q + Mz

w ≥ 0, z ≥ 0 and wz = 0

Before we can derive the LCPP that we are going to solve, we need to develop
some notation.

We face the problem that our lower and upper bound constraints are optional.
We have been using the convention that Li = −∞ means that asset i has no
lower bound, and Hi = +∞ means that asset i has no upper bound. We need
to specify these constraints in our problem in a different form. We must include
only the constraints that are present, and leave out the ones that are missing. To
accomplish this, we define two helper matrices Y and Z that “gather together”
the lower bound constraints and upper bound constraints that we need to include
respectively.

An example is the best way to illustrate how these helper matrices work. Sup-
pose we have a three asset problem. Assets 1 and 3 have lower bounds, but
asset 2 does not. The helper matrix Y is defined as the identity matrix with
row 2 removed:

Y =
(

1 0 0
0 0 1

)
Let L be the column vector of all the lower bounds:

L =

 L1

−∞
L3


Then multiplying Y times L gathers together just the bounds that are present
(the ones that are not −∞):

Y L =
(

L1

L3

)
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The helper matrix Z works the same way for the upper bound constraints. We
define H to be the full vector of upper bound constraints, and ZH gathers
together just the ones that are not +∞.

If w is a vector of asset weights, note that:

Y L ≤ Y w iff L ≤ w
Zw ≤ ZH iff w ≤ H

One of the results we will get by solving the LCPP is a pair of Lagrange multi-
plier vectors µL and µH for the low and high bound constraints. The solution
will only find these multipliers for assets which are actually constrained. We
establish in advance that we will define µL

i = 0 for assets i without low bounds,
and µH

i = 0 for assets i without high bounds. We use the notation µL and µH

for the full vectors. Y µL and ZµH gather together just the multiplier variables
for which we actually need to find values.

Note that:
Y ′Y µL = µL and Z ′ZµH = µH

We use our new notation to express the problem in the following form:

Minimize Var(v) = v′V v subject to:

1− v1 = 0
Y L− Y v ≤ 0
−ZH + Zv ≤ 0

By the Kuhn-Tucker theorem, v minimizes Var(v) over F iff there exist Lagrange
multipliers λ, µL ≥ 0, and µH ≥ 0 with:

v ∈ F
∇Var(v)− λ1− µL + µH = 0

Li < vi ⇒ µL
i = 0

vi < Hi ⇒ µH
i = 0

(44)

∇Var(v) = 2V v, so we have:

2V v − λ1− µL + µH = 0 (45)

LCP problems require that all variables must be non-negative. To this end, we
use the standard technique of splitting our variables v and λ into the difference
of two variables each of which is non-negative:

v = v1 − v2 where v1 ≥ 0 and v2 ≥ 0
λ = λ1 − λ2 where λ1 ≥ 0 and λ2 ≥ 0

After making these substitutions, we get:

2V v1 − 2V v2 − λ11 + λ21− µL + µH = 0
Y L− Y v1 + Y v2 ≤ 0
−ZH + Zv1 − Zv2 ≤ 0

1− v11 + v21 = 0
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LCP problems also require that we use ≥ inequalities. So we express each of
the two equalities above as a pair of ≥ inequalities, and we negate the two ≤
inequalities:

2V v1 − 2V v2 − λ11 + λ21− µL + µH ≥ 0
−2V v1 + 2V v2 + λ11− λ21 + µL − µH ≥ 0

−Y L + Y v1 − Y v2 ≥ 0
ZH − Zv1 + Zv2 ≥ 0

1− v11 + v21 ≥ 0
−1 + v11− v21 ≥ 0

We are now ready to state our LCPP. It is simply the equations above expressed
using vectors and a matrix:

w = q + Mz =
0
0

−Y L
ZH
1
−1

+


2V −2V −Y ′ Z ′ 1c −1c

−2V 2V Y ′ −Z ′ −1c 1c

Y −Y 0 0 0 0
−Z Z 0 0 0 0
−1r 1r 0 0 0 0
1r −1r 0 0 0 0




v1

v2

Y µL

ZµH

λ2

λ1


w ≥ 0, z ≥ 0 and wz = 0

(46)

Note that the matrix M has the following form:

M =
(

A B′

−B 0

)
where A =

(
2V −2V
−2V 2V

)
and B =


−Y Y
Z −Z
1r −1r

−1r 1r


Because V is positive semidefinite, it is easy to show that both A and M are also
positive semidefinite. Friedman shows in [4] that when M is positive semidefi-
nite, the Lemke-Howson algorithm can be used to solve the LCPP.

We supply the constant vector q and the constant matrix M . We use the Lemke-
Howson algorithm to solve the problem to find the vectors w and z.7 The vector
z is the one that contains the solution we need for v1, v2, Y µL, ZµH , λ1 and
λ2.8 We recombine that vectors v1 and v2 into v = v1−v2 and the multipliers λ1

and λ2 into λ = λ1−λ2. The resulting vector of asset weights v and multipliers
(λ, µL, µH) satisfy all the Kuhn-Tucker conditions in (44), so v minimizes Var
over F and we have our minimum variance portfolio.

7It is possible that there is no solution, if the feasible set is empty (F = {}). In this case
the Lemke-Howson algorithm tells us that the LCPP is infeasible and has no solution.

8We don’t care about the contents of the solution vector w, although it is easy enough to
see what its contents must be by multiplying all the rows of equation (46). We only care that
it is non-negative, so our inequalities are all true, which is guaranteed by the Lemke-Howson
algorithm.
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Define the state vector s as follows:

si =

 down if vi = Li

in if Li < vi < Hi

up if vi = Hi > Li

In order to serve as a starting state vector for the critical-line algorithm, s must
be strict with As

max = ∞. We can prove that this is true if we make a few
important assumptions.

Theorem 5.4 The starting state vector s as defined above is strict with As
max =

∞ if all the following conditions are satisfied:

• s contains at least one in asset.

• Li < Hi for all i.

• vi = Li ⇒ µL
i > 0 and vi = Hi ⇒ µH

i > 0.

Proof:

Let v be the minimum variance portfolio computed above along with its La-
grange multipliers λ, µL and µH . Let Ṽ , x̃, ỹ, c̃, d̃, ẽ and f̃ be the various
solution vectors for s computed by the equations in section 4.1 (we know these
solutions exist because s contains at least one in asset).

Define:

ṽ =
(

v
−λ/2

)
We first show that:

Ṽ ṽ = ỹ

To see this, multiply out each row i. For i ∈ D, row i of Ṽ is all 0 except for a
1 in column i, and element i of ỹ is vi = Li. Similarly, for i ∈ U , row i of Ṽ is
the same, and element i of ỹ is vi = Hi. For i ∈ I, first note that Li < vi < Hi,
so µL

i = µH
i = 0. Then note that row i of Ṽ ṽ is one half of row i of equation

(45), which is 0, which is element i of ỹ. The last row n + 1 is v1 = 1.

We also have by the definition of d̃:

Ṽ d̃ = ỹ

Ṽ is non-singular, so Ṽ ṽ = ỹ and Ṽ d̃ = ỹ together imply that:

d̃ = ṽ
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We compute the solution vector f̃ as follows:

f̃ = V̂ d̃

= V̂ ṽ

=
(

V 1c

1r 0

)(
v

−λ/2

)

=

(
V v − λ

2
1

v1

)

=
(

1
2 (µL − µH)

1

)
We now examine the three cases i ∈ D, i ∈ I, and i ∈ U .

For i ∈ D, because vi = Li < Hi, µH
i = 0. By assumption, µL

i > 0. So
f̃i = 1

2 (µL
i − µH

i ) > 0. Then:

ẽi −Af̃i < 0 for all sufficiently large A

[pi, qi] = [ẽi/f̃i,∞]

For i ∈ I, we have Li < d̃i = vi < Hi. Then:

Li <
1
A

c̃i + d̃i < Hi for all sufficiently large A

[pi, qi] = [max(c̃i/(Hi − d̃i), c̃i/(Li − d̃i)),∞]

For i ∈ U , because Li < Hi = vi, µL
i = 0. By assumption, µH

i > 0. So
f̃i = 1

2 (µL
i − µH

i ) < 0. Then:

ẽi −Af̃i > 0 for all sufficiently large A

[pi, qi] = [ẽi/f̃i,∞]

So we have As
min = max(pi) < As

max = ∞, and each asset i is clearly strict for
s, so the proof is complete.

We can now verify the conjecture we made at the beginning of this section that
as risk aversion increases towards A = ∞, the optimal portfolio approaches the
minimum variance portfolio. Let w(A) be the optimal portfolio for A. Within
the solution segment for our starting state vector s we have:

w̃(A) =
1
A

c̃ + d̃ =
1
A

c̃ + ṽ

Thus:
lim

A→∞
w(A) = v
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At the end of section 5.3, we concluded that if we made the following assump-
tions, we could solve the full problem:

1. We can find a strict starting state vector for the algorithm.

2. Li < Hi for all i.

3. We never encounter any ties, where at an iteration there is more than one
candidate for the minimum critical asset or maximum critical asset.

The first assumption has been transformed into two new assumptions:

1. The solution to the LCPP used to find the minimum variance portfolio v
satisfies vi = Li ⇒ µL

i > 0 and vi = Hi ⇒ µH
i > 0.

2. The solution v to the LCPP has at least one asset with Li < vi < Hi.

3. Li < Hi for all i.

4. We never encounter any ties, where at an iteration there is more than one
candidate for the minimum critical asset or maximum critical asset.

We deal with all of these remaining issues in the next section.

5.5 Degeneracy and Cycles

The assumptions listed at the end of the previous section are all instances of a
general problem called degeneracy. Is there some kind of pattern that is common
to these cases of degeneracy that we can exploit to modify the algorithm to deal
properly with all of them?

There is indeed a pattern, and it is a simple one to see. In all of these cases, the
problem is “bumping up against a wall” or “lack of wiggle room.” In each of the
degeneracy situations, we could get around the problem if we were permitted
to “move the wall just a little bit” or “make just a little bit more wiggle room.”
To make this vague insight more explicit, we’ll examine the different kinds of
degeneracy in more detail to see how we could make them go away if we had
this kind of power.

Let ε > 0 be a small number. For example, ε might be 10−6.

We start with the easiest problem, which is Li = Hi for some asset i. If we
replace Li by Li − ε or replace Hi by Hi + ε, the problems go away both in
Theorem 5.4 where we need Li < Hi to prove that the starting state vector is
strict, and in Theorem 5.3 where we need Li < Hi to prove our main termination
theorem. In both theorems, the problem is the exact equality of Li and Hi. If
they are not exactly equal, even if the difference between them is only our tiny
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amount ε, we no longer have any problem. The problem is lack of wiggle room,
and any amount of wiggle room, no matter how small, solves the problem.

Next consider the assumption that the solution to the LCPP satisfies vi = Li ⇒
µL

i > 0 and vi = Hi ⇒ µH
i > 0.

Suppose we have a degenerate situation where vi = Li with µL
i = 0 for some

asset i. If we “move the wall” and replace Li by L′i = Li−ε, asset i becomes an in
asset which is strictly between its lower and upper bounds. Because µL

i = 0, it is
also easy to see that asset i still satisfies the Kuhn-Tucker conditions (44) after
this change to the problem, so v still minimizes Var over the slightly enlarged
feasible set F ′.

Similarly, if we have a degeneracy where vi = Hi and µH
i = 0 for some asset i,

we can simply “move the wall” and replace Hi by H ′
i = Hi + ε.

Assume that we have gone ahead and made the adjustments described so far.
We now have Li < Hi for all i, and we have vi = Li ⇒ µL

i > 0 and vi = Hi ⇒
µH

i > 0 for all i. Suppose we still do not have any in assets with Li < vi < Hi.
We need to move a wall to make at least one asset in. We proceed along much
the same lines as the proof of Theorem 3.3. There are two cases.

If there is at least one down asset, let a be the smallest value of µL
i for all the

down assets. For each down asset i with µL
i = a, replace Li by L′i = Li − ε and

change the state of asset i to in.

If there aren’t any down assets, we use the up assets instead. Let a be the
smallest value of µH

i for all the up assets. For each up asset i with µH
i = a,

replace Hi by H ′
i = Hi + ε and change the state of asset i to in.

We need to show that the Kuhn-Tucker conditions are still satisfied, so that v
still minimizes Var over our enlarged feasible set F ′. We verify this for the case
where there is at least one down asset and leave the other case as an exercise.
Define a new set of Lagrange multipliers as follows:

λ′ = λ + a

µL′

i = µL
i − a if vi = Li

µL′

i = 0 if vi 6= Li

µH′

i = µH
i + a if vi = Hi

µH′

i = 0 if vi 6= Hi

The portfolio v together with the new feasible set F ′ and the new set of mul-
tipliers (λ′, µL′

, µH′
) satisfies the Kuhn-Tucker conditions (44), so v minimizes

Var over F ′.

At this point, we have used our powers to modify the problem slightly in such
a way that all the conditions of Theorem 5.4 are satisfied for the modified
problem. Thus the starting state vector s for the modified problem is strict
with As

max = ∞, and we have a good starting state vector for the critical-line
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algorithm.

The only remaining problem is ties. We have seen that ties are a theoretical
problem in the critical-line algorithm. A tie happens at an iteration when there
is more than one minimum or maximum critical asset, and hence more than one
choice for the asset that will change state. Theorem 5.3 is only valid if there
are no ties, and there is no way to rescue the proof and repair it if there are
ties. The key conclusion of Theorem 5.3 is that the previous and next segments
contain more than a single point. It is this conclusion that permits us to claim
that the algorithm must terminate. In the case of ties, we cannot use this idea
to prove termination.

If there is a tie at an iteration, it is possible for the previous or next segment
to contain only a single point. If this happens, it opens up the possibility that
as we continue with the iterations in the algorithm, we may eventually come
back to revisit the same state vector and its solution segment. This is called a
cycle. Cycles are obviously bad—if we encounter one, the algorithm goes into
an infinite loop.

We can use our wall-moving powers to deal with ties too. As an example,
suppose that we are at some iteration in the critical-line algorithm moving in
the prev direction and assets 1, 2 and 3 are all minimum critical, with p1 = p2 =
p3 = At

min. The trick in this case is to pick asset 1 as the one that will change
state, and move walls to push away assets 2 and 3 just a little bit. For example,
suppose asset 2 is an in asset that has hit its lower bound and wants to change
state to down. Replace L2 by L2 − ε, so that asset 2 is no longer critical—
it’s almost critical, but not exactly critical, and that’s all we need. Similarly,
suppose asset 3 is an up asset that wants to change to in. If we replace H3 by
H3 + ε, we make asset 3 already in, and no longer critical. It is easy to verify
that the Kuhn-Tucker conditions are still satisfied after these small changes.
After we have “pushed away” assets 2 and 3 in this way, asset 1 becomes the
only critical asset, and we can go ahead and change its state and move on to
the next segment, which is guaranteed to be strict, although it might be very
small.

The key insight that we have now developed in detail is that all of the degeneracy
problems are caused by exact equality conditions. We can make all of them
disappear by moving one of the things that’s equal away in an appropriate
direction by our tiny amount ε.

There are two ways to implement this basic idea, one practical and one theo-
retical.

The practical approach simply makes these adjustments directly whenever they
are needed. At the start of the problem, for any assets with Li = Hi, we add our
small number ε to Hi. This transforms the problem into one which has none of
this kind of degeneracy. After we have found the minimum variance portfolio,
we fix any degeneracies involving the Lagrange multipliers µL and µH , and we
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make sure we have an in asset, as described above. During an iteration, if we
encounter any ties, we pick the first critical asset to change state, and we push
away the other ones by ε as described above.

This direct implementation works well in practice. The answers produced by
the modified algorithm are indistinguishable from the “true” answers for the
unmodified problem when displayed with the typical few decimal places of ac-
curacy.

A variant of this practical approach is to use the first three techniques at the
beginning of the algorithm to guarantee the strictness and correctness of the
starting segment, but ignore the problem of ties altogether in the middle of the
algorithm during the iterations. While ties are common, and cycles are possible
in theory, in practice cycles never seem to happen even with ties.

This practical approach is quite unsatisfying in theory, of course, because we
are changing the original problem as stated, even if only by a little bit.

There is a theoretical solution which satisfies the purists. It turns out that the
problems we have been discussing are another manifestation of similar issues
that appear in the theory of mathematical programming, where the simplex
algorithm used to solve linear programming problems and the variations of the
simplex algorithm used to solve non-linear programming problems also suffer
from degeneracies, ties, and cycling problems.

In mathematical programming, the standard theoretical technique for solving
these problems is based on the same basic idea we presented above, but in a
formal way. Instead of adding and subtracting actual small values ε whenever
there is a problem, we effectively add a whole new set of variables ε, ε2, ε3, and so
on to the problem. It is possible to prove using arguments involving polynomials
and their roots that with this technique ties and cycles are impossible, and
the computed result for the modified problem is also exactly the same as the
solution to the original problem. It is possible to implement this theoretical
solution algorithmically, at the cost of increased space and time requirements
to perform all the computations for the additional variables.

In [6], Markowitz adapts this technique to his critical-line algorithm and works
through the proof that it does indeed resolve the degeneracy, tie and cycling
issues. He says that these “techniques are available if needed.” We do not
pursue the details of this formal theoretical solution further here.
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5.6 Corner Portfolios, Critical Lines and C-Fund Separa-
tion

For a valid state vector s, the two efficient portfolios at the segment endpoints
As

min and As
max are called corner portfolios. The interior efficient portfolios in

the segment are linear combinations of the two corner portfolios. Markowitz [7]
calls this a critical line.

Suppose there is a set of C−1 valid state vectors with C corner portfolios whose
solution segments completely cover all possible values of A over its domain
(0,∞). Every possible efficient portfolio is a linear combination of two of the C
corner portfolios. Sharpe [9] calls this the C-fund separation theorem. This is
the constrained version of the two-fund separation theorem for unconstrained
problems.

5.7 A Performance Optimization

Markowitz [7] mentions the following useful optimization which avoids having to
do an expensive matrix inversion operation at each iteration of the critical-line
algorithm.

When moving from a segment s to the next or previous segment s′, we can
compute the new Ṽ −1

s′ matrix from the old Ṽ −1
s matrix directly, using one

vector/matrix multiplication operation and one matrix/matrix multiplication
operation.

Define the row vector r to be row k of Ṽs′ . This is the only row where Ṽs′ and
Ṽs differ.

If asset k is switching to state down or up:

rj =
{

0 if j 6= k
1 if j = k

If asset k is switching to state in:

rj =
{

ρk,j if j ≤ n
1 if j = n + 1

Compute:
z = rṼ −1

s

Define E to be the identity matrix with row k replaced by z:

E =



1
. . .

z1 · · · zk · · · zn+1

. . .
1


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Then:
Ṽs′ = EṼs

Ṽ −1
s′ = Ṽ −1

s E−1

where it is easily verified that E−1 is:

E−1 =



1
. . .

−z1/zk · · · 1/zk · · · −zn+1/zk

. . .
1


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6 Generalizations and Other Approaches

The version of the critical-line algorithm we have presented here is a special
case of the more general solution developed by Markowitz.

Markowitz’ general version of the problem permits an arbitrary number of ex-
tra equality constraints in addition to the budget constraint, and he permits
arbitrary linear inequality constraints, not just low and high bound constraints.

The theorems and proofs are much the same for the general problem, although
the intuitions behind them become a bit more opaque, at least for beginners,
which is why we chose to develop the solution for the simpler problem in this
paper.

In some ways, however, the mathematics becomes more elegant and somewhat
easier, which is often the case with generalizations. For example, we no longer
have to deal with three in, up and down states. We instead have only two states,
which Markowitz calls in and out. This reduces the number of separate cases
which need to be considered in the proofs. There are now only two kinds of
state transitions, from in to out and from out to in, rather than the four kinds
we used in this paper.

Markowitz’ treatment, which centers around the computational details of matrix
manipulations, also reveals how similar the critical-line algorithm is to standard
linear and non-linear programming algorithms. Indeed, these kinds of “tableau”
algorithms were all being actively discovered and developed by researchers dur-
ing the same time period, after World War II and during the 1950’s. In [7] he
addresses this similarity in more detail, and discusses in an appendix how his
algorithm can be implemented as yet another variation of the simplex method,
quite similar to the Lemke-Howson variation of the simplex method that is often
used to solve non-parametric convex quadratic programming problems.

Our presentation is more theoretical and formal and less computational than
Markowitz’. It uses more calculus, and the Kuhn-Tucker conditions play a more
central role. In this sense our approach is closer to that outlined briefly by
Sharpe in [10]. We feel that Sharpe’s approach is more intuitive and better
reveals the underlying economic meaning of the equations, but this is almost
certainly a matter of personal taste.
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7 The Limitations of Portfolio Optimization

Markowitz’ theory of portfolio optimization, especially the unconstrained theory,
is at the heart of modern finance.9 Together with Sharpe’s Capital Asset Pricing
Model, which is a direct extension of the theory, the models provide a flawed
but not unreasonable first-order approximation to how financial markets work.
They are the departure point for further extensions and modifications such as
modern intertemporal and multi-factor models and asset pricing theories. Their
theories teach us many important practical lessons, especially the importance of
diversification and the central role that is played by the capitalization-weighted
total market portfolio, two lessons which also remain central in the modern
theories.

There are, however, severe problems with trying to use portfolio optimization
theory to actively manage real-life portfolios.

One problem is the difficulty of estimating the input parameters and the sensitiv-
ity of the algorithm to relatively small variations in those parameters, especially
the important expected return parameters.

Estimating expected returns is notoriously difficult and controversial. Given the
large amount of noise in the prices of risky assets like stocks, it is statistically
impossible to accurately estimate expected returns from even long historical
time series data with more accuracy than a percent or two. Trying to estimate
expected returns based on fundamental considerations is even more difficult,
and it is impossible to trust any such estimate with an accuracy of more than
a percent or two.10 The optimization algorithm is simply too sensitive to this
kind of inaccuracy to be useful.

The algorithm is also sensitive to the other parameters. As an example, consider
a simple two asset problem where the assets are domestic and foreign stocks. If
we make the not totally unreasonable simplifying assumption that the expected
returns and standard deviations of the two assets are the same, say 10% and
20% respectively, with a correlation of 0.7, we get the solution where a 50/50
asset allocation is optimal for all levels of risk aversion. If we take currency
risk into account, however, which increases the volatility of foreign stocks when
denominated in domestic currency, and we assume a correlation of 0 between
currency and stocks, the optimal asset allocation changes dramatically. For
example, a seemingly small increase in the standard deviation of foreign stocks
from 20% to 22% changes the optimal asset allocation to roughly 1/3 foreign

9The constrained theory and the critical-line algorithm do not appear to be anywhere near
as central as is the unconstrained theory to the subsequent development of the discipline of
financial economics. Thus, in the unlikely event that the patient reader has actually read this
far, he has probably wasted his time, unless he finds the mathematics interesting in its own
right, as does the author.

10Consider the wide range of such return forecasts provided by academic and other “experts”
on an almost daily basis. Which experts do you trust? Which numbers do you use? How
accurate are they?
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and 2/3 domestic!11

Another problem is the complex interplay between all the different assets which
makes it problematic to attempt to consider asset subsets in isolation.12 For
example, suppose there are only three assets A, B and C. An optimization
analysis of A and B in isolation may reveal some optimal asset allocation, say
50/50. When C is added to the analysis, however, the result can change dra-
matically. For the same level of risk aversion, the new analysis may have a
completely different suballocation to the portion of the portfolio that contains
A and B. The allocation might change to 10/90 for A/B, or 90/10, when we
add C to our considerations. This makes the portfolio optimization problem
something of an “all or nothing” proposition, a difficult task indeed.

A third problem is that the theory rests on the assumption of a single fac-
tor risk model. This makes the theory inappropriate for use with multi-factor
risk models. For example, the Fama-French model has three risk factors, with
a multi-dimensional efficient frontier. Most of the efficient portfolios in that
model, including the market portfolio, are not mean-variance efficient in the
Markowitz model. See Cochrane [2, 3] for interesting discussions of these is-
sues.13

While these problems should not be understated, there is an even more funda-
mental problem involving market equilibrium and competition.

Modern financial institutions match buyers with sellers almost instantaneously.
Thus market prices for securities adjust quickly to reflect wealth and information-
weighted aggregated beliefs as to the underlying value of the securities. Markets
are nearly always in supply/demand equilibrium.

Markets are also extremely competitive. Analysts use all the tools available to
them to investigate opportunities to buy and sell securities and asset classes,
including the theories and tools described in this paper.

Thus, the output of an optimizer can have an asset or asset class weighted with
non-market proportions for the representative investor only if the inputs used
to the optimization problem do not reflect the wealth and information-weighted
aggregated beliefs of other analysts.

In other words, an analyst who uses an optimizer to make asset allocation
11A good deal of “home bias” is almost certainly irrational. But at least over short horizons

where the theory of purchasing power parity is not a consideration, and for investors for
whom it is not possible to hedge currency risk (or it is costly to hedge), it appears that some
significant degree of home bias is justified.

12This is admittedly a sin we just committed in the previous example.
13It is interesting to speculate, however, about what might happen if we add human cap-

ital as another major asset that must be considered. It might be possible to reconcile the
Fama-French model with CAPM if, as some current research suggests, value stocks have a
higher correlation with labor income for the representative investor than do growth stocks. A
complete reconciliation along these lines is probably too much to hope for, however. In any
case, this conjecture about value stocks and labor income is only a conjecture, not a proven
fact, and it might just be wishful thinking.
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decisions can succeed in beating the market only if his estimates of the inputs
to the optimizer are significantly more accurate than those used by competing
analysts. Such an analyst has to be consistently smarter than his competitors
to make an abnormal profit by a large enough margin to overcome his expenses.

The high level of talent in the financial analysis world combined with the extraor-
dinary high level of competition in that world must cause us to be suspicious of
the possibility of earning any consistent abnormal profits by using optimizers.
Indeed, the long and detailed historical record does not reveal any serious in-
stances of such success. If it were possible, one would think that over the last 50
years since Markowitz made his discoveries, we would be able to identify at least
one person who has been a consistent winner based on his use of Markowitz’
theories. If that person exists, it is a well-kept secret.

The proper way to think of these theories is that the models they build are a
good way to at least start to think about how markets work, but they do not
give us any kind of edge in trying to beat those markets.

Put yet another way, portfolio optimizer programs by themselves do not help
one become smarter than other investors. It is impossible for such a program
by itself to give an investor an advantage, because everyone has access to these
programs.

Eugene Fama has been reported to have said that if one feels like wasting some
time, it’s OK to play around with optimization programs, but it is indeed a
waste of time. We largely concur with this sentiment, except that playing
around with such programs can often help students visualize the mathematics
and underlying economic ideas when they are first becoming exposed to the
theories. For practical applications, however, they are useless.

For all of these reasons, we strongly advise individual investors to resist the
temptation to try to use optimization analysis to make asset allocation decisions
about their personal portfolios. Doing so is extremely dangerous, and usually
leads to disastrous results. Individual investors are much better advised to
simply hold inexpensive total market index funds, and forget about trying to
beat the market.
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8 Examples and an Implementation

For examples of constrained optimization problems and the critical-line algo-
rithm used to solve them, see the “PortOpt” program. PortOpt is a free cross-
platform Java program which is a companion to this paper. The program is
available at the author’s web site at the address given on the title page of this
paper.

PortOpt has an “Examples” menu which contains commands to generate a num-
ber of sample problems, included both unconstrained and constrained versions of
all five examples from [8], various end-cases, and randomly generated problems.
Users may also enter their own problems using a parameter entry panel.

While PortOpt is a full implementation of the critical-line algorithm as described
in this paper, with no limit on the number of assets, its purpose is educational,
not practical. It should be useful for students learning the theory (constrained
or unconstrained), and it is occasionally useful for doing experiments as part of
some kinds of research projects. It is not, however, useful for trying to build
market-beating monstrosities in real life, for all of the reasons given in the
previous section.

PortOpt displays solutions both numerically and graphically. Both displays are
interactive.

For the numeric solution, a calculator is provided that can be used to enter
any of the relevant parameters and calculate all of the other ones (e.g., find the
efficient portfolio and its expected return given the standard deviation.)

The graph shows the efficient frontier curve with markers at the corners, along
with a slider control at the bottom that can be used to move up and down the
curve. As the slider is moved, the efficient portfolios at the corresponding points
on the curve are displayed in bar chart and numeric format. This visualization
aid makes it easy to see how the solution changes and how the various assets
change state at the corners.

We also display the coefficient of relative risk aversion A, the parabolic iso-
elastic indifference curve that is tangent to the efficient frontier curve at the
solution, the certainty equivalent, and other information that may be relevant
and educational depending on the context.

For unconstrained problems which contain a risk-free asset and have at least
three assets, we display the efficient frontier for the risky asset subset and the
optimal risky portfolio M which is at the tangency point of the two efficient
frontiers. This helps illustrate the two-fund separation theorem.

For constrained problems we also compute and graph the unconstrained efficient
frontier. This helps see how much effect the constraints have on the solution.

Problem sets can be saved to disk in XML format and read back in later.
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We do careful error checking of parameters entered by the user. We check
for inconsistent constraints (empty feasible sets), inconsistent correlations (non-
positive semidefinite correlation matrices), linearly dependent assets, and arbi-
trage opportunities. In each of these cases we issue a detailed error message
explaining the problem.

For dealing with degeneracies, PortOpt uses the variant of the practical ap-
proach described in section 5.5. The techniques described in that section are
used to guarantee the strictness and correctness of the starting state vector, but
the problem of ties and cycles is ignored. Cycles are detected, however, and
in the extremely unlikely event that one occurs, an “internal error” message is
displayed.

While PortOpt’s implementation of the critical-line algorithm does not impose
any limit on the number of assets other than enough available memory to hold
the vectors and matrices used by the algorithm, with a large number of assets
the human interface of the program begins to perform poorly due to the large
number of Java Swing human interface components. For example, with 20
assets, the correlation matrix display and parameter entry area requires 202 =
400 text components. 20 assets seems to be about the upper limit on the size
of the problems that the human interface can accommodate gracefully.

While we have made no attempt to optimize performance other than using
the optimization described in section 5.7, the program is reasonably fast. The
following tests were done an a 1 GHz Apple Macintosh PowerBook G4 computer:

20 assets or fewer: Under 1 second.
100 random assets: 8 seconds.
200 random assets: 1 minute 26 seconds.

For the linear algebra computations, we use CERN’s Colt Distribution [1]. For
generating random asset problems, we use the algorithm described in Lin and
Bendel [5].

This paper is the user manual for the program. There is no other documentation.

PortOpt is released with the following copyright notices and license statements.
Do not use the software if you do not accept the terms of the licenses described
below.

Copyright c© 2005, Northwestern University.

Permission to use, copy, modify, distribute and sell this software and its doc-
umentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation. Northwestern
University makes no representations about the suitability of this software for
any purpose. It is provided “as is” without expressed or implied warranty.
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The program uses the Colt Distribution [1], which has the following copyright
notice and license: Copyright c© 1999 CERN - European Organization for Nu-
clear Research. Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee, provided
that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation. CERN
makes no representations about the suitability of this software for any purpose.
It is provided “as is” without expressed or implied warranty.
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