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Abstract

We recapitulate the single-period results of Markowitz [2] and Sharpe [10]1 in the
context of the lognormal random walk model, iso-elastic utility, and continuous
portfolio rebalancing. We formally derive the solution to the unconstrained
optimization problem and examine the mathematical properties of the resulting
efficient frontier and efficient portfolios. We derive the two-fund separation
theorem both in the presence of a risk-free asset and in its more general form.
We derive and briefly discuss the Capital Asset Pricing Model (CAPM). We
present several examples parameterized using market return data for US stocks,
bonds, cash, and inflation.

We assume that the reader is familiar with the material presented in references
[4, 5, 6, 7, 8, 9].

1Our exposition closely follows Sharpe’s mathematical supplement in [10]. Indeed, this
homework paper is little more than an attempt to fill in the details in Sharpe’s presentation,
make them rigorous, rework them in the lognormal model, and provide some examples.
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1 Introduction

The portfolio optimization problem is the following: Given a finite set of assets,
find the portfolio that combines the assets using an optimal fixed percentage
asset allocation given the risk preferences of an individual investor.

We make the following strong assumptions:

• The prices of the assets follow jointly distributed lognormal random walks.

• We invest for a single period of time.

• We decide on our asset allocation at the beginning of the time period and
do not change it during the time period, except for continuous rebalancing
to keep the asset allocation constant throughout the time period.

• Our goal is to maximize the expected utility of our end-of-period wealth.

• We have a risk-averse iso-elastic (CRRA) utility function.

• Asset allocation is unconstrained. In particular, both shorting (negative
allocations) and leverage (allocations greater than 100%) are permitted.

The assets can be individual securities or groups of securities such as sectors,
styles, or even entire markets.

We use two main results from random walk theory and basic portfolio theory.

1.1 The Random Walk Theorem

The first result is from random walk theory. It is Theorem 4.1 in reference [9].
We restate it here as our Theorem 1.1:

Theorem 1.1 For a random variable s,

ds

s
= αdt + σdX iff

ds

s
= eµdt+σdX − 1

where dX is N [0, dt] and α = µ + 1
2σ2.

In this case, s follows a lognormal random walk. The logarithm of s(1)/s(0)
is normally distributed with mean µ and standard deviation σ. α is the yearly
instantaneous expected return, µ is the yearly continuously compounded expected
return and σ is the standard deviation of those returns. Over any time horizon
t, s(t) is lognormally distributed with:

s(t) = s(0)eµt+σX where X is N [0, t]
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As we discussed in section 5 of [9], when we talk about rates of return on
investments, it is very important to distinguish between the different ways to
measure the returns.

α = instantaneous return
µ = continuously compounded return
r1 = simply compounded arithmetic mean (average) return
r2 = simply compounded geometric mean (annualized or median) return

These ways to measure returns are related by the following equations:

α = µ +
1
2
σ2 (1)

r1 = eα − 1 (2)
r2 = eµ − 1 (3)

In this paper we use instantaneous returns.

1.2 The Portfolio Choice Theorem

The second result is from basic portfolio theory. It is Theorem 4.1 in reference
[4]. We restate it here as our Theorem 1.2:

Theorem 1.2 For time horizon t, a utility-maximizing investor with initial
wealth w0 and an iso-elastic utility function with coefficient of relative risk aver-
sion A, when faced with a decision among a set of competing feasible investment
alternatives F all of whose elements have lognormally distributed returns under
the random walk model, acts to select an investment I ∈ F which maximizes

αI −
1
2
Aσ2

I

where αI and σI are the expected instantaneous yearly return and standard de-
viation for investment I respectively.

Note that the optimal investment is independent of both the time horizon t and
the investor’s initial wealth w0. This is because we are using iso-elastic utility,
which has the property of constant relative risk aversion with respect to both
wealth and time. See references [4] and [5] for details.
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2 Linear Combinations of Assets

We have a finite number of assets in which we can invest. We wish to consider
fixed linear combinations of these assets, with the goal being to compute optimal
asset allocations.

Markowitz, Sharpe, and other theorists often use simply compounded yearly
returns for the assets and assume they are normally distributed. Linear combi-
nations of normally distributed random variables are also normally distributed.2

This greatly simplifies the reasoning.

There are several problems with the assumption that asset returns are normally
distributed.

1. The assumption of normal returns violates the principle of limited liability.
The most an investor stands to lose with an investment in normal risky as-
sets like stocks is 100%. With normally distributed returns the maximum
loss is unlimited. With lognormally distributed returns the maximum loss
is 100% (e−∞ − 1 = 0− 1 = −1 = −100%).

2. The assumption also violates the Central Limit Theorem, which says that
the sum of independent and identically distributed random variables with
finite variance approaches a normal distribution in the limit as the number
of summands goes to infinity. But with returns on investments, over time
the returns are compounded, which means that they are multiplied instead
of being added. It is the logarithms of the returns that are added. So the
Central Limit Theorem implies that returns are lognormally distributed,
not normally distributed.

3. Normally distributed returns do not match the historical data, especially
over long time horizons. Lognormally distributed returns are a much closer
match.

These are the reasons we use the lognormal model in this paper. Our goal is
to reproduce the classical results in this model. We assume that all the asset
returns are lognormally distributed.

Thus our portfolios are linear combinations of lognormal assets. Unfortunately,
linear combinations of lognormally distributed random variables are not log-
normally distributed! (Their products are, but not their sums.) So we have a
problem that must be addressed before we can proceed further.

2For a proof, see reference [6].
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Consider a collection of n assets each of which follows a lognormal random walk
and a portfolio P formed by combining the assets in fixed proportions. Let:

wi = proportion of portfolio P invested in asset i, 1 ≤ i ≤ n.
w = column vector of proportions wi.
αi = expected instantaneous return of asset i, 1 ≤ i ≤ n.
x = column vector of expected returns αi.
ρi,j = covariance of asset i with asset j, 1 ≤ i ≤ n and 1 ≤ j ≤ n.
V = n× n matrix of covariances ρi,j .
σi = instantaneous standard deviation of asset i = √

ρi,i.
αP = expected instantaneous return of portfolio P .
σP = instantaneous standard deviation of portfolio P .

For each asset, the price of the asset si follows the Ito process:

dsi

si
= αidt + σidXi where dXi is N [0, dt]

Note that over the short time period dt the random variable dXi is normally
distributed, not lognormally distributed. Thus over the short time period the
percent change in the asset value, dsi/si, is normally distributed with mean
αidt and variance σ2

i dt.

This is the key observation. In an Ito process, asset returns are normally dis-
tributed over short time periods. (Actually, this is strictly speaking true only in
the limit, over infinitesimal time periods, but we will ignore this mystery here.3)

Over the same short time period dt, therefore, the percent change in the value of
our portfolio, which is a linear combination of normally distributed component
assets, is also normally distributed, with expected return αP dt and variance
σ2

P dt where:

αP = w′x =
n∑

i=1

wiαi (4)

σ2
P = w′V w =

n∑
i=1

n∑
j=1

wiwjρi,j (5)

(Equation (5) is Proposition 8 in reference [8].)

Consider our portfolio at the end of the short time period dt. The component
asset prices have gone up and down randomly over the period, so our portfolio
is no longer in balance. We now make the critical assumption that we rebalance
the portfolio by buying and selling the proper small amounts of the component
assets to restore the asset allocation specified by the proportions wi.

3For a full and rigorous treatment of the continuous-time issues discussed in this section,
see Merton’s exquisitely difficult book [3].
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Assuming we do this rebalancing, over the next short time period dt our portfolio
starts over with the original asset proportions, and we have the same equations
as above for the expected return and standard deviation of the portfolio over
the new time period.

Thus, if we rebalance at the end of each short time period dt, over time our
portfolio’s value p follows the Ito process:

dp

p
= αP dt + σpdX where dX is N [0, dt]

By The Random Walk Theorem 1.1, p follows a lognormal random walk.

In the limit as dt → 0, this implies that if we do continuous rebalancing of
our portfolio, our linear combination of lognormal random walk assets also fol-
lows a lognormal random walk, with the instantaneous expected return αP and
instantaneous standard deviation σP given by equations (4) and (5).

This notion of continuous rebalancing is of course unrealistic, indeed impossible.
So our model and our results have no hope of exactly matching what happens
with real investors and their real portfolios. It is close enough so that it is
still quite a good approximation, however, provided the investor rebalances
reasonably often (e.g., at least yearly over a long time horizon). This assumption
of continuous rebalancing is certainly much less onerous than those we are forced
to make if we use the normally distributed returns model.4

4In one simulation we ran of investing over a 40 year time horizon with a 50/50 stock/bond
portfolio, the difference between the mean and median ending values with yearly rebalancing
and continuous rebalancing was less that 2% in each case. This is a close enough approximation
for practical use. The yearly rebalancing case has a bit higher expected return and is a bit
riskier because of the tendency for the asset allocation to drift towards a heavier weighting in
stocks in between the yearly rebalancings.
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3 Linear Combinations of Two Assets

We now know how to compute the instantaneous expected return and standard
deviation of a portfolio which is formed from a continuously rebalanced linear
combination of jointly distributed lognormal random walk assets. The equations
(4) and (5) from the previous section are:

αP = w′x =
n∑

i=1

wiαi

σ2
P = w′V w =

n∑
i=1

n∑
j=1

wiwjρi,j

In this section we look at linear combinations of two assets to illustrate the
risk reduction benefits of diversification that are a consequence of the second
formula above.

With two assets let w1 = w, w2 = 1− w, and c = the correlation coefficient of
the two assets.

Note that ρ1,1 = σ2
1 , ρ2,2 = σ2

2 , and ρ1,2 = ρ2,1 = cσ1σ2. Our equations above
become:

αP = wα1 + (1− w)α2 (6)
σ2

P = w2σ2
1 + 2w(1− w)cσ1σ2 + (1− w)2σ2

2 (7)

σP =
√

w2σ2
1 + 2w(1− w)cσ1σ2 + (1− w)2σ2

2 (8)

The equation (6) for the expected return of the portfolio is simply a linear inter-
polation of the expected returns of the two assets. E.g., if w = 0.5, the portfolio
expected return is half way between the expected returns of the two assets. The
equations for the variance and standard deviation are more complicated, and
those are the ones we will investigate.

As an example, consider the following pair of assets:

Asset 1: α1 = 5% and σ1 = 8%
Asset 2: α2 = 11% and σ2 = 19%

In this example we constrain w to the range 0 ≤ w ≤ 1.

In Figure 1, we graph our equations to show the risk and return characteristics
of the linear combinations of these two assets for various values of the correlation
coefficient c. The graph shows how combining assets with imperfect correlation
significantly reduces risk, with lower correlations providing greater benefits.
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Figure 1: The Benefits of Diversification

When c = 1.0 we have perfectly correlated assets and the risk/return graph of
the linear combinations of the two assets is a straight line joining the two assets.
It’s not difficult to see why this happens. Equation (7) for σ2

P becomes:

σ2
P = w2σ2

1 + 2w(1− w)cσ1σ2 + (1− w)2σ2
2

= w2σ2
1 + 2w(1− w)σ1σ2 + (1− w)2σ2

2

= [wσ1 + (1− w)σ2]2

σP = wσ1 + (1− w)σ2

When c < 1.0 we have assets that are not perfectly correlated. In equation (7)
above for σ2

P , notice that if we keep w fixed, as c decreases the value of σ2
P also

decreases. So as c decreases the risk/return curves move further to the left. We
can see this in the graph, where the curve for c = 0.5 is to the left of the one
for c = 1.0, the curve for c = 0.0 is to the left of the one for c = 0.5, and so on.
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When c = −1.0 we have perfectly negatively correlated assets. In Figure 1 the
risk/return curve is a pair of straight lines. The first line starts at asset 2 and
goes left all the way to the Y axis (σ = 0), then jogs back to asset 1. It’s easy
to see why this happens. Our equation becomes:

σ2
P = w2σ2

1 + 2w(1− w)cσ1σ2 + (1− w)2σ2
2

= w2σ2
1 − 2w(1− w)σ1σ2 + (1− w)2σ2

2

= [wσ1 − (1− w)σ2]2

The expression inside the square brackets has the value zero when w =
σ2

σ1 + σ2
(about w = 0.7 in our example). For smaller values of w the value is negative,
and for larger values of w it is positive. Thus:

For w <
σ2

σ1 + σ2
: σP = −[wσ1 − (1− w)σ2] = σ2 − w(σ1 + σ2)

For w =
σ2

σ1 + σ2
: σP = 0

For w >
σ2

σ1 + σ2
: σP = +[wσ1 − (1− w)σ2] = σ1 − (1− w)(σ1 + σ2)

The first equation is the straight line from asset 2 to the Y axis. The last
equation is the straight line from the Y axis to asset 1.
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4 Parameter Estimation for the Examples

We give several examples later based on historical market return data for US
stocks, bonds, cash, and inflation.5 We have the following time series of data
for 1926 through 1994, as simply compounded yearly rates of return:6

C = cash (30 day US Treasury bills)
B = bonds (20 year US Treasury bonds)7

S = stocks (S&P 500 large US stocks)
I = inflation (CPI = consumer price index)

We used Microsoft Excel to compute parameters for the lognormal random walk
model based on this raw data.8

First, we convert each return to continuous compounding by taking the natural
logarithm of 1 plus the simply compounded return. This gives four new time
series for the continuously compounded returns:

Ĉ = log(1 + C)
B̂ = log(1 + B)
Ŝ = log(1 + S)
Î = log(1 + I)

These series are used to compute the instantaneous returns, variances, standard
deviations, and covariances as follows, where X and Y ∈ {Ĉ, B̂, Ŝ, Î}:

ρX,Y = instantaneous covariance = Cov(X, Y )
σX = instantaneous standard deviation = √

ρX,X

µX = continuously compounded expected return = E(X)
αX = instantaneous expected return = µX + 1

2σ2
X

r1X = arithmetic mean (average) simply compounded expected re-
turn = eαX − 1
r2X = geometric mean (annualized) simply compounded expected
return = eµX − 1

Table 1 presents the results of these estimates.
5Using historical data to estimate parameters is common but not required. Analysts can

and do form their own estimates for all of the parameters.
6The data is from Table 2.4 in reference [1].
7Note that the bonds are of long maturity (20 years).
8The Excel spreadsheet used to do the parameter estimation and all the other calculations,

examples, and graphs is available at the author’s web site.
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Nominal Summary Statistics

cash bonds stocks cpi
σ 3.11% 7.87% 19.33% 4.44%
µ 3.62% 4.71% 9.71% 3.08%
α 3.67% 5.02% 11.58% 3.17%

r1 3.74% 5.15% 12.27% 3.22%
r2 3.69% 4.82% 10.19% 3.12%

Nominal Covariances

cash bonds stocks cpi
cash 0.00096 0.00054 -0.00012 0.00057

bonds 0.00054 0.00620 0.00246 -0.00052
stocks -0.00012 0.00246 0.03738 0.00037

cpi 0.00057 -0.00052 0.00037 0.00197

Nominal Correlation Coefficients

cash bonds stocks cpi
cash 1.00 0.22 -0.02 0.42

bonds 0.22 1.00 0.16 -0.15
stocks -0.02 0.16 1.00 0.04

cpi 0.42 -0.15 0.04 1.00

Table 1: Nominal Historical Return Data

The example in Section 7.4 is inflation-adjusted and uses real returns instead
of nominal returns. To estimate the parameters for this example, we convert
the nominal simply compounded returns into real simply compounded returns,
then convert those returns to continuous compounding:

Creal = (C − I)/(1 + I) Ĉreal = log(1 + Creal)
Breal = (B − I)/(1 + I) B̂real = log(1 + Breal)
Sreal = (S − I)/(1 + I) Ŝreal = log(1 + Sreal)

Finally, we compute the covariances, correlation coefficients, and summary
statistics as before. Table 2 presents the results.
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Real Summary Statistics

cash bonds stocks
σ 4.22% 9.60% 19.65%
µ 0.54% 1.64% 6.63%
α 0.63% 2.10% 8.56%

r1 0.63% 2.12% 8.94%
r2 0.54% 1.65% 6.86%

Real Covariances

cash bonds stocks
cash 0.00178 0.00245 0.00091

bonds 0.00245 0.00922 0.00459
stocks 0.00091 0.00459 0.03862

Real Correlation Coefficients

cash bonds stocks
cash 1.00 0.60 0.11

bonds 0.60 1.00 0.24
stocks 0.11 0.24 1.00

Table 2: Real Historical Return Data

Note how the three assets are significantly more correlated when we adjust for
inflation. Compare the correlation coefficients here with those in Table 1 for
nominal returns.

Note that the returns decrease significantly when we adjust for inflation, but
the standard deviations do not. In fact, the standard deviations go up a bit.
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5 The Simplest Case – A Single Risky Asset

In this section we solve the simple problem of optimizing portfolio asset allo-
cation when the only choices available are a single risky asset and a risk-free
asset. In this paper we only consider the unconstrained problem. That is, we
permit asset allocation proportions outside the range [0, 1]. Asset allocation
proportions greater than one represent leverage. Asset allocation proportions
less than zero represent short selling or borrowing.9

Let:

w = proportion of portfolio invested in risky asset.
α = expected instantaneous return of risky asset.
σ = instantaneous standard deviation of risky asset.
r = instantaneous risk-free rate of return.
αP = expected instantaneous return of portfolio.
σP = instantaneous standard deviation of portfolio.
A = iso-elastic coefficient of relative risk aversion.

With continuous rebalancing, our portfolio follows a lognormal random walk
with:

αP = wα + (1− w)r (9)

σP = wσ (10)

By The Portfolio Choice Theorem 1.2, the problem is to maximize f(w) where:

f(w) = αP −
1
2
Aσ2

p

= wα + (1− w)r − 1
2
Aw2σ2

Take the derivative of this quadratic equation, set it equal to 0, and solve for w:

f ′(w) = α− r −Aσ2w = 0

w =
α− r

Aσ2
(11)

The numerator in this equation is the difference between the expected return
of the risky asset and the risk-free rate. This is called the asset’s risk premium.
When the risky asset is stocks it is called the equity risk premium. Notice that
as the premium increases, so does the proportion w allocated to the risky asset,
as long as the denominator stays the same.

9We assume that it is possible to both borrow and lend at the same risk-free interest rate.
The literature deals with the problem when borrowing and lending rates are different, but we
do not address that problem here.
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The denominator is the product of two factors, the coefficient of risk aversion
and the variance of the risky asset. It either of these factors increases, the
proportion w allocated to the risky asset decreases, as long as the other factors
remain the same.

Thus, as expected, risk-averse investors prefer large risk premia and small vari-
ances (volatility), and more risk-averse investors with larger values of A have
smaller allocations to the risky asset.
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5.1 Example 1 – US Stocks Plus a Risk-Free Asset

In our first example we consider portfolios constructed from mixtures of large
US stocks and a risk-free asset. We use the following parameters for stocks from
Table 1.

α = 11.58% = expected instantaneous return for large US stocks.
σ = 19.33% = instantaneous standard deviation of large US stocks.

For the risk-free rate we use:

r = 4.0% = instantaneous risk-free interest rate.

Given an iso-elastic coefficient of relative risk aversion A, our equation (11) for
the optimal allocation to stocks becomes:

w =
α− r

Aσ2
=

0.1158− 0.04
A× 0.19332

=
2.03
A

Figure 2 graphs the efficient frontier for this set of feasible investments (all linear
combinations of large US stocks and the risk-free asset). The values for the risk
and return for each portfolio are calculated from our equations (9) and (10) and
from equations (2) and (3) on page 4.

The graph also shows the iso-utility curve tangent to the efficient frontier for an
investor with A = 3.4. This investor has an optimal moderate 60/40 stock/risk-
free portfolio.10

Notice that an aggressive 100% stock portfolio is held by an investor with A =
2.03. More risk-tolerant investors with A < 2.03 actually have optimal portfolios
with more than 100% stocks! These investors borrow money at the risk-free rate
to leverage their stock holdings.

At the other end of the spectrum, an investor with infinite risk aversion (A = ∞)
has no stocks in his portfolio, only the risk-free asset.

Note that the efficient frontier is a straight line. As we will see, this is always
the case when one of the available assets is risk-free.

10We will use our “moderate” or “average” investor with A = 3.4 as a running example
throughout the rest of this paper.
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A w 1− w σ α r1 r2
∞ 0% 100% 0.00% 4.00% 4.08% 4.08%

20.27 10% 90% 1.93% 4.76% 4.87% 4.85%
10.13 20% 80% 3.87% 5.52% 5.67% 5.59%
6.76 30% 70% 5.80% 6.27% 6.47% 6.29%
5.07 40% 60% 7.73% 7.03% 7.28% 6.96%
4.05 50% 50% 9.67% 7.79% 8.10% 7.60%
3.38 60% 40% 11.60% 8.55% 8.92% 8.19%
2.90 70% 30% 13.53% 9.30% 9.75% 8.75%
2.53 80% 20% 15.47% 10.06% 10.58% 9.27%
2.25 90% 10% 17.40% 10.82% 11.43% 9.75%
2.03 100% 0% 19.33% 11.58% 12.27% 10.19%
1.84 110% −10% 21.27% 12.33% 13.13% 10.60%
1.69 120% −20% 23.20% 13.09% 13.99% 10.96%

A = iso-elastic coefficient of relative risk aversion.
w = portfolio stock percentage.
1− w = portfolio risk-free percentage.
σ = instantaneous standard deviation of portfolio.
α = expected instantaneous return of portfolio.
r1 = arithmetic mean (average) simply compounded expected return.
r2 = geometric mean (annualized) simply compounded expected return.

Figure 2: Example 1 – US Stocks Plus a Risk-Free Asset
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6 Lagrange Multipliers

In the next section we will derive the general solution to the unconstrained op-
timization problem. Our solution will involve maximizing a quadratic objective
function of the portfolio weight variables subject to the budget constraint which
says that the sum of the weights must equal 1. We use a standard technique
called a Lagrange multiplier to deal with the budget constraint. In this section
we introduce and discuss this technique.

We give a simple example to illustrate the technique. Suppose we have the fol-
lowing quadratic function f of two variables x and y which we wish to maximize:

f(x, y) = 50x + 116y − 12x2 − 10xy − 76y2

We solve this problem by taking the two partial derivatives, setting them equal
to 0, and solving the resulting pair of simultaneous linear equations:

∂f

∂x
= 50− 24x− 10y = 0

∂f

∂y
= 116− 10x− 152y = 0

24x + 10y = 50
10x + 152y = 116

These equations are easy to solve. We can do it by hand, with a calculator, or
using a computer program like Excel or Matlab. The approximate (rounded)
solution is:

x = 1.8
y = 0.64

This problem is just simple calculus of multiple variables up to this point. It
extends easily to situations involving more than two variables, although solving
the linear equations becomes more tedious and using a computer program that
can do matrix algebra is a big help with more variables.

Note that in our example we have x + y = 2.44. What happens if we modify
the problem to insist that x + y have some other value? For example, consider
the following constrained version of our example:

Maximize:
f(x, y) = 50x + 116y − 12x2 − 10xy − 76y2

subject to the budget constraint:

x + y = 1
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In this problem we are finding the apex of the intersection of the surface defined
by f and the vertical plane defined by the budget constraint, which is a parabola.

We introduce a new third variable λ called the Lagrange multiplier and we
define the following modified objective function of three variables which has no
constraints:

f̂(x, y, λ) = f(x, y) + λ(1− x− y)
= 50x + 116y − 12x2 − 10xy − 76y2 + λ(1− x− y)

We now take the three partial derivatives of our modified objective function and
set them equal to 0:

∂f̂

∂x
= 50− 24x− 10y − λ = 0

∂f̂

∂y
= 116− 10x− 152y − λ = 0

∂f̂

∂λ
= 1− x− y = 0

24x + 10y + λ = 50
10x + 152y + λ = 116

x + y = 1

Note that the last equation is our budget constraint.

In matrix algebra notation this set of three simultaneous linear equations in
three unknowns can be expressed as:

V̂ x̂ = ĉ

where:

V̂ =

 24 10 1
10 152 1
1 1 0

 x̂ =

 x
y
λ

 ĉ =

 50
116
1


The solution is:  x

y
λ

 = x̂ = V̂ −1ĉ =

 0.487
0.513
33.2


Notice that we have x + y = 1 as required.
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We claim that these values of x and y are also a solution to the original problem
with the constraint.

It’s easy to see why the modified solution must satisfy the constraint condition.
This is because any solution to the modified problem satisfies ∂f̂

∂λ = 0, which by
design is the constraint condition.

Let λ0 = 33.2 = the solution we derived for λ above, and define g(x, y) =
f̂(x, y, λ0). Note that the rest of our solution x0 = 0.487 and y0 = 0.513
maximizes the function g(x, y).11 Note also that along the line x + y = 1,
g(x, y) = f(x, y). So because (x0, y0) maximizes g along the line, it also maxi-
mizes f along the line.

What role does the Lagrange multiplier λ play in our solution? To answer this
question, notice that:

f̂(x, y, λ) = f(x, y) + λ(1− x− y)

∂f̂

∂x
=

∂f

∂x
− λ

∂f̂

∂y
=

∂f

∂y
− λ

In our solution we set the partial derivatives of f̂ equal to 0 and solve the
resulting equations for x, y and λ. Thus at the solution we have:

∂f

∂x
=

∂f

∂y
= λ

This says that at the solution the rate of change of our objective function f
with respect to x is the same as with respect to y, and λ is the rate of change.

It’s not difficult to see why ∂f
∂x and ∂f

∂y must be equal at the solution. Suppose
for example that ∂f

∂x > ∂f
∂y . Then for some small value δ we could replace x by

x′ = x+δ and replace y by y′ = y−δ and we would have f(x′, y′) > f(x, y) with
x′ + y′ = 1. But this would imply that f does not in fact attain its maximum
value at (x, y) under the budget constraint.

Another way to say this is that because of our budget constraint x + y = 1, the
two partial derivatives of our original objective function f may not be 0 at the
solution, but they still must have the same value, and the multiplier λ is that
value.12

11This part of the argument is a bit tricky. Our full solution (x0, y0, λ0) does not in fact

maximize f̂(x, y, λ). It turns out to be a saddle point, and the f̂ function has no global or local

maxima or minima. But the function g(x, y) which sets λ = λ0 in f̂ does have a maximum

value at the point (x0, y0). The “slice” of f̂ defined by λ = λ0 is a quadratic surface with its
apex at (x0, y0).

12Note that the fact that our two partial derivatives are equal is a consequence of the fact
that the coefficients of x and y in our linear constraint equation are equal. In a more general
kind of problem with a different constraint equation this might not be the case.
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Our function f is in “equilibrium” at the solution in the sense that its rate of
change with respect to x and y is the same at the solution.

This property of the Lagrange multiplier will play a critical role in our derivation
of the CAPM equations in chapters 11 and 12, where we will discuss the issue
again in that context.
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7 General Solution to the Unconstrained Prob-
lem

We now solve the general unconstrained problem of optimizing portfolio as-
set allocation when the choices available are all linear combinations of a finite
number of assets.

We only treat the unconstrained problem in this paper. All values for the asset
proportions are permitted, even those outside the range [0, 1], which represent
short-selling and leverage.

The solution for the simplest case of a single risky asset plus a risk-free asset
was trivial. The solution for the general problem is a bit more complicated
but we follow the same general idea. First, we derive the equations for the
risk and return of the portfolio as functions of the asset proportions in the
portfolio, the expected returns of the assets, and the pairwise covariances of the
assets. We then state the problem in terms of maximizing a function of the asset
proportions parameterized by the coefficient of relative risk aversion. We use
a Lagrange multiplier to deal with the budget constraint which says that the
sum of the asset proportions must equal 1. We solve the resulting transformed
maximization problem by taking partial derivatives, setting them equal to zero,
and solving the resulting set of simultaneous linear equations.

Let:

n = number of assets.
wi = proportion of portfolio invested in asset i, 1 ≤ i ≤ n.
w = column vector of proportions wi.
αi = expected instantaneous return of asset i, 1 ≤ i ≤ n.
x = column vector of expected returns αi.
ρi,j = covariance of asset i with asset j, 1 ≤ i ≤ n and 1 ≤ j ≤ n.
V = n× n matrix of covariances ρi,j .
αP = expected instantaneous return of portfolio.
σP = instantaneous standard deviation of portfolio.
A = iso-elastic coefficient of relative risk aversion.

Assuming continuous rebalancing, by equations (4) and (5) on page 6, our port-
folio follows a lognormal random walk with:

αP = w′x

σ2
P = w′V w
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By The Portfolio Choice Theorem 1.2, the problem is to maximize f(w) where:

f(w) = αP −
1
2
Aσ2

P

= w′x− 1
2
Aw′V w

=
n∑

i=1

wiαi −
1
2
A

n∑
i=1

n∑
j=1

wiwjρi,j

subject to the budget constraint:

n∑
i=1

wi = 1

To deal with the budget constraint, we introduce a Lagrange multiplier λ and
a new objective function f̂ with no constraints:

f̂(w, λ) = f(w) + λ

(
1−

n∑
i=1

wi

)
(12)

= w′x− 1
2
Aw′V w + λ

(
1−

n∑
i=1

wi

)
(13)

=
n∑

i=1

wiαi −
1
2
A

n∑
i=1

n∑
j=1

wiwjρi,j + λ

(
1−

n∑
i=1

wi

)
(14)

To solve the problem, we want to take the n + 1 partial derivatives of f̂ and set
them equal to 0.

Taking the partial derivative with respect to wi is a bit tricky because of the
double summation in the middle of the expression above. It’s easiest to see how
to do this by writing out the summation in full:

n∑
i=1

n∑
j=1

wiwjρi,j =

w1w1ρ1,1 + · · · + w1wiρ1,i + · · · + w1wnρ1,n +
w2w1ρ2,1 + · · · + w2wiρ2,i + · · · + w2wnρ2,n +

· · ·
wiw1ρi,1 + · · · + wiwiρi,i + · · · + wiwnρi,n +

· · ·
wnw1ρn,1 + · · · + wnwiρn,i + · · · + wnwnρn,n

The only terms involving wi are those in column i and row i, so the partial
derivatives of all the other terms are 0. The term at the intersection of column
i and row i involves w2

i while all the others are linear in wi. Also note that
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ρi,j = ρj,i by Proposition 7 in reference [8]. These observations reveal that the
partial derivative of the double summation with respect to wi is:

2ρi,iwi +
n∑

j=1
j 6=i

ρi,jwj +
n∑

j=1
j 6=i

ρj,iwj = 2
n∑

j=1

ρi,jwj

We can now take the n + 1 partial derivatives of f̂ and set them equal to 0:

∂f̂

∂wi
= αi −A

n∑
j=1

ρi,jwj − λ = 0 (for 1 ≤ i ≤ n) (15)

∂f̂

∂λ
= 1−

n∑
i=1

wi = 0 (16)

Rewrite these equations as:

n∑
j=1

ρi,jwj +
λ

A
=

αi

A
(for 1 ≤ i ≤ n) (17)

n∑
i=1

wi = 1 (note that this is the budget constraint) (18)

This is a set of n + 1 linear equations in n + 1 unknowns which we can solve
using linear algebra. Define vectors and matrices as follows:

V̂ =


ρ1,1 · · · ρ1,n 1
...

...
...

ρn,1 · · · ρn,n 1
1 · · · 1 0



ŵ =


w1

...
wn

λ/A

 x̂ =


α1

...
αn

0

 ŷ =


0
...
0
1


Then equations (17) and (18) become:

V̂ ŵ =
1
A

x̂ + ŷ (19)

Notice that the matrix V̂ is the covariance matrix V for the asset returns en-
hanced by adding an extra row and column to accommodate the Lagrange mul-
tiplier. V̂ is called the enhanced covariance matrix.
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We assume for the moment that the matrix V̂ is non-singular and hence has an
inverse.13

Let:

ĉ = V̂ −1x̂ (20)

d̂ = V̂ −1ŷ (21)

Our solution is:

ŵ =
1
A

ĉ + d̂ (22)

Note that the column vectors ĉ and d̂ depend only on the expected returns
and covariances of the assets and are independent of the coefficient of relative
risk-aversion A. Each optimal asset proportion is:

wi =
1
A

ci + di (23)

For an infinitely risk-averse investor with A = ∞, the solution becomes simply
wi = di, and the resulting portfolio has minimum variance.

The sign of ci determines whether other investors (with A < ∞) have more or
less than di invested in asset i, and whether as investors become more risk-averse
the proportion of asset i increases (ci < 0) or decreases (ci > 0).

The computation of the solution vectors ĉ and d̂ is easily done using Microsoft
Excel, Matlab, or any other computer program which can do basic matrix alge-
bra.

13We will return to address the issue of singularity in section 8.
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7.1 Math Details

For the sake of exposition, we deliberately omitted some of the mathematical
details in our derivation of the solution above. In this section we supply those
missing details.

The solution vector ŵ we derived in equation (22) is a critical point of the
enhanced objective function f̂ (all of the partial derivatives of f̂ are 0 at the
solution). We claim that the first n elements of this vector w1 . . . wn are also a
solution to the original problem, which was to maximize the function f subject
to the budget constraint. We now formally prove this claim.

Let w = the first n elements of the solution vector ŵ in equation (22):

wi = ŵi =
1
A

ci + di

The last element of the solution vector ŵ in equation (22) gives the solution for
the Lagrange multiplier λ:

wn+1 =
λ

A
=

1
A

cn+1 + dn+1

λ = cn+1 + Adn+1

For any vector of asset weights v, define the function g(v) as follows:

g(v) = f̂(v, λ) = f(v) + λ

(
1−

n∑
i=1

vi

)
(24)

Note that g is a function of the n variables v1 . . . vn, and λ is a constant. By
holding λ constant we have reduced the dimension of the vector space in which
we are working from n + 1 back down to n.

Our first goal is to prove that w globally maximizes g.

We begin by computing the first derivatives of g. By equation (15):

∂g

∂vi
=

∂f̂

∂vi
= αi −A

n∑
j=1

ρi,jvj − λ (25)

Our solution vector w is a critical point of g where all the first partial derivatives
are 0:

∂g

∂vi
(w) = 0 for all i

The problem we face is that the critical point w is not necessarily a global
maximum. It might be a local maximum, or a minimum, or a saddle point. We
need to prove that we have found a global maximum and not one of these other
possibilities.
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We begin by using equation (25) to compute the second partial derivatives of g:

∂2g

∂vi∂vj
= −Aρi,j (26)

The Hessian matrix of g is defined to be H(g) = the n × n matrix of all the
second partial derivatives of g. Equation (26) shows that:

H(g) = −AV (27)

where V is the covariance matrix.

It is interesting to note that H(g) is a constant matrix. It is independent of
the vector v. This is a consequence of the fact that the objective function is
quadratic in the decision variables.

The key observation we need at this point is that the covariance matrix V is
positive semidefinite. This means that for any vector v 6= 0 we have:

v′V v ≥ 0

Covariance matrices are always positive semidefinite. We give the simple proof
later in Lemma 10.2, and we will not reproduce that proof here.

Because V is positive semidefinite, and because the coefficient of relative risk
aversion A > 0, by equation (27), the Hessian matrix H(g) must be negative
semidefinite, which means that for any vector v 6= 0 we have:

v′H(g)v ≤ 0

We are now ready to prove that the solution vector w maximizes the function g.
Let v 6= w be any other vector of asset weights. We must show that g(v) ≤ g(w).

Let p(t) be the straight line path connecting the two points w and v defined
parametrically by the following equation:

p(t) = w + t(v − w)

Note that p(0) = w and p(1) = v.

We want to examine the behavior of the function g along this path from w to
v. Our goal is to show that g is non-increasing along this path. To this end we
define the following function h(t) for the value of g along the path:

h(t) = g(p(t))

We have h(0) = g(w) and h(1) = g(v), so the goal is to prove that h(1) ≤ h(0).

By the chain rule, the first derivative of h is:

h′(t) =
n∑

j=1

∂g

∂vj
(p(t))(vj − wj)

Note that because p(0) = w and w is a critical point of g, we have h′(0) = 0.
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A second application of the chain rule computes the second derivative of h:

h′′(t) =
n∑

i=1

n∑
j=1

∂2g

∂vi∂vj
(p(t))(vi − wi)(vj − wj)

= (v − w)′H(g)(v − w)
≤ 0 because H(g) is negative semidefinite and v 6= w

h′(0) = 0 and h′′(t) ≤ 0 for all t, so we must have h′(t) ≤ 0 for all t ≥ 0.
This in turn implies that h(t) ≤ h(0) for all t ≥ 0. In particular, g(v) = h(1) ≤
h(0) = g(w), and we have our result – the solution vector w does indeed globally
maximize the function g.

We are now (finally) ready to prove the main result, that the solution vector
w is a solution to the original problem – it maximizes the objective function f
subject to the budget constraint.

Recall the equation (24) we used to define the function g above:

g(v) = f(v) + λ

(
1−

n∑
i=1

vi

)
(28)

Consider the line L defined by the budget constraint:

n∑
i=1

vi = 1

Our solution vector w is on this line: w ∈ L. We have shown that w globally
maximizes the function g. Along the line L defined by the budget constraint,
equation (28) shows that f and g are equal:

f(v) = g(v) for all v ∈ L

g(w) is the maximum value attained by the function g along the line L, so
f(w) = g(w) must be the maximum value attained by the function f along the
line L. In other words, w maximizes f subject to the budget constraint.

It is interesting to note that it was necessary to project f̂ onto g by holding λ
constant in our argument. The full solution vector ŵ is a saddle point of f̂ , not
a global maximum, and in fact f̂ is unbounded over its entire domain, with no
maxima or minima of any kind (global or local). It turns out that the Hessian
matrix of f̂ is not negative semidefinite, but rather indefinite. This is a typical
complexity that arises in problems using Lagrange multipliers.

For the purposes of computation, note how important it is that the covariance
matrix V is positive semidefinite. We cannot feed in any random old symmetric
matrix for the covariances and get back a meaningful result from the equations.
The matrix must represent a valid collection of covariances. It must be positive
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semidefinite. This is an important consideration in any computer program that
uses the equations to optimize portfolios. Any such program must verify the
asset correlations and/or covariances entered by the user to check that they are
consistent by verifying that the covariance matrix is positive semidefinite.14

There is another proof that w maximizes f subject to the budget constraint
that is simpler because it avoids calculus and uses only matrix algebra. It is
not, however, as intuitive as the first proof we gave above. We give the second
proof here for the sake of completeness. We begin with a lemma.

Lemma 7.1 For any square matrix V of dimension n with elements ρi,j:

(v − w)′V (v − w) = v′V v − w′V w − 2
n∑

i=1

n∑
j=1

wj(vi − wi)ρi,j

Proof :

(v − w)′V (v − w) =
n∑

i=1

n∑
j=1

(vi − wi)(vj − wj)ρi,j

=
n∑

i=1

n∑
j=1

vivjρi,j +
n∑

i=1

n∑
j=1

wiwjρi,j − 2
n∑

i=1

n∑
j=1

wjviρi,j

=
n∑

i=1

n∑
j=1

vivjρi,j −
n∑

i=1

n∑
j=1

wiwjρi,j +

2
n∑

i=1

n∑
j=1

wiwjρi,j − 2
n∑

i=1

n∑
j=1

wjviρi,j

= v′V v − w′V w − 2
n∑

i=1

n∑
j=1

wj(vi − wi)ρi,j

We can now prove that w maximizes f subject to the budget constraint. Let v
be any other vector of asset weights which also satisfies the budget constraint,
and let (w, λ) be the solution we derived above. First note that:

λ
n∑

i=1

(vi − wi) = λ

(
n∑

i=1

vi −
n∑

i=1

wi

)
= λ(1− 1) = λ× 0 = 0

14This can be done by using the theorem that a symmetric real matrix is positive semidefinite
if and only if all of its eigenvalues are non-negative, using any of the many available matrix
algebra libraries that can compute eigenvalues.
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Then we have:

f(v)− f(w) = (v − w)′x− 1
2
A(v′V v − w′V w)

= (by the Lemma above)

(v − w)′x− 1
2
A

(v − w)′V (v − w) + 2
n∑

i=1

n∑
j=1

wj(vi − wi)ρi,j


=

n∑
i−1

(vi − wi)αi −A
n∑

i=1

n∑
j=1

wj(vi − wi)ρi,j −
1
2
A(v − w)′V (v − w)

=
n∑

i−1

(vi − wi)αi −A
n∑

i=1

n∑
j=1

wj(vi − wi)ρi,j −

λ

n∑
i=1

(vi − wi)−
1
2
A(v − w)′V (v − w)

=
n∑

i=1

αi −A
n∑

j=1

wjρi,j − λ

 (vi − wi)−
1
2
A(v − w)′V (v − w)

=
n∑

i=1

(0) (vi − wi)−
1
2
A(v − w)′V (v − w)

= −1
2
A(v − w)′V (v − w)

≤ 0 (because V is positive semidefinite and A > 0)

We have shown that f(v) <= f(w) for all v which satisfy the budget constraint.
Thus w maximizes f subject to the budget constraint, and our second proof is
complete.
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7.2 Example 2 – Bonds and Stocks

In this example the feasible set is all unconstrained linear combinations of long
US bonds (asset 1) and large US stocks (asset 2). Both assets are risky, and we
do not include a risk-free asset in this example. The parameters from Table 1
are:

V =
(

0.00620 0.00246
0.00246 0.03738

)
= covariance matrix

x =
(

5.02%
11.58%

)
= expected instantaneous returns

The solution vectors are:

ĉ =

 −1.6958
1.6958
0.0565

 d̂ =

 0.9033
0.0967

−0.0058


The bond and stock proportions are:

w1 = 0.9033− 1.6958/A (bonds)
w2 = 0.0967 + 1.6958/A (stocks)

Figure 3 shows the efficient frontier.

The minimum variance portfolio for A = ∞ contains 90.33% bonds and 9.67%
stocks. Thus even very risk-averse investors allocate nearly 10% of their port-
folios to stocks!

Our average investor with A = 3.4 has a moderate 60/40 stock/bond portfolio.

The 100% stock portfolio is held by an aggressive investor with A = 1.88.

More aggressive investors with A < 1.88 have negative bond allocations and
stock allocations greater than 100%. These investors short bonds and use the
proceeds to buy extra stocks.

Notice that as A increases (the investor becomes more risk-averse), the propor-
tion of bonds increases and the proportion of stocks decreases, because of the
signs (negative and positive respectively) of the first two values in the solution
vector ĉ.
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A w1 w2 σ α r1 r2
∞ 90% 10% 7.64% 5.65% 5.82% 5.51%

16.41 80% 20% 7.91% 6.33% 6.54% 6.20%
8.34 70% 30% 8.62% 6.99% 7.24% 6.84%
5.59 60% 40% 9.69% 7.64% 7.94% 7.44%
4.20 50% 50% 11.01% 8.30% 8.65% 8.00%
3.37 40% 60% 12.50% 8.95% 9.37% 8.52%
2.81 30% 70% 14.11% 9.61% 10.09% 9.00%
2.41 20% 80% 15.80% 10.27% 10.81% 9.44%
2.11 10% 90% 17.55% 10.92% 11.54% 9.84%
1.88 0% 100% 19.33% 11.58% 12.27% 10.19%
1.69 −10% 110% 21.15% 12.23% 13.01% 10.51%
1.54 −20% 120% 23.00% 12.89% 13.75% 10.79%

A = iso-elastic coefficient of relative risk aversion.
w1 = portfolio bond percentage.
w2 = portfolio stock percentage.
σ = instantaneous standard deviation of portfolio.
α = expected instantaneous return of portfolio.
r1 = arithmetic mean (average) simply compounded expected return.
r2 = geometric mean (annualized) simply compounded expected return.

Figure 3: Example 2 – Bonds and Stocks
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7.3 Example 3 – Cash, Bonds and Stocks

In this example the feasible set is all unconstrained linear combinations of cash
(30 day US T-Bills) (asset 1), long US bonds (asset 2), and large US stocks
(asset 3). All three assets are risky. This example extends Example 2 by adding
the new “cash” asset. The parameters from Table 1 are:

V =

 0.00096 0.00054 −0.00012
0.00054 0.00620 0.00246

−0.00012 0.00246 0.03738

 = covariance matrix

x =

 3.67%
5.02%

11.58%

 = expected instantaneous returns

The solution vectors are:

ĉ =


−3.2088

1.2573
1.9515
0.0393

 d̂ =


0.9177
0.0587
0.0235

−0.0009


The optimal asset proportions are:

w1 = 0.9177− 3.2088/A (cash)
w2 = 0.0587 + 1.2573/A (bonds)
w3 = 0.0235 + 1.9515/A (stocks)

Figure 4 shows the efficient frontier.

The minimum variance portfolio for A = ∞ contains 91.77% cash, 5.87% bonds
and 2.35% stocks.

Our average investor with A = 3.4 has a 60/43/-3 stock/bond/cash portfolio.
This is almost the same 60/40 stock/bond portfolio we saw in example 2, except
in this case a small 3% of the portfolio is used to short cash and buy extra bonds.

The 100% stock portfolio is held by an aggressive investor with A = 2.

Notice that as A increases (the investor becomes more risk-averse), the propor-
tions of bonds and stocks decrease and the proportion of cash increases.

The graph also shows the bond/stock efficient frontier from Example 2. The
addition of the cash asset significantly improves the frontier by moving it to
the northwest (in the direction of greater return and less risk), especially at
the southwest (less risky) end of the curve. With the extra cash asset, more
conservative investors use mixtures of cash and bonds instead of just bonds to
reduce their risk, with the ratio of cash to bonds increasing as risk aversion
increases.
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A w1 w2 w3 σ α r1 r2
∞ 92% 6% 2% 3.02% 3.93% 4.01% 3.96%

25.52 79% 11% 10% 3.43% 4.60% 4.71% 4.65%
11.06 63% 17% 20% 4.81% 5.48% 5.64% 5.51%
7.06 46% 24% 30% 6.60% 6.36% 6.57% 6.34%
5.18 30% 30% 40% 8.54% 7.24% 7.51% 7.12%
4.10 13% 37% 50% 10.55% 8.12% 8.46% 7.85%
3.39 −3% 43% 60% 12.60% 8.99% 9.41% 8.55%
2.88 −19% 49% 70% 14.66% 9.87% 10.38% 9.20%
2.51 −36% 56% 80% 16.75% 10.75% 11.35% 9.80%
2.23 −52% 62% 90% 18.84% 11.63% 12.33% 10.36%
2.00 −69% 69% 100% 20.93% 12.51% 13.32% 10.87%
1.81 −85% 75% 110% 23.03% 13.39% 14.32% 11.33%
1.66 −102% 82% 120% 25.14% 14.26% 15.33% 11.74%

A = iso-elastic coefficient of relative risk aversion.
w1 = portfolio cash percentage.
w2 = portfolio bond percentage.
w3 = portfolio stock percentage.
σ = instantaneous standard deviation of portfolio.
α = expected instantaneous return of portfolio.
r1 = arithmetic mean (average) simply compounded expected return.
r2 = geometric mean (annualized) simply compounded expected return.

Figure 4: Example 3 – Cash, Bonds and Stocks
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7.4 Example 4 – Cash, Bonds and Stocks (Real)

If the purpose of investing is to finance future consumption (and it usually is),
then inflation is important. Indeed, it is critical over long time horizons (e.g.,
when investing for retirement.)

The easiest way to deal with inflation is to use inflation-adjusted returns and
other parameters.

In this section we redo Example 3 above only this time we use real returns
(inflation-adjusted returns) instead of nominal returns. We use the real param-
eters from Table 2.

V =

 0.00178 0.00245 0.00091
0.00245 0.00922 0.00459
0.00091 0.00459 0.03862

 = covariance matrix

x =

 0.63%
2.10%
8.56%

 = expected instantaneous returns

The solution vectors are:

ĉ =


−3.3843

1.4419
1.9425
0.0071

 d̂ =


1.0933

−0.1258
0.0325

−0.0017


The optimal asset proportions are:

w1 = 1.0933− 3.3843/A (cash)
w2 = −0.1258 + 1.4419/A (bonds)
w3 = 0.0325 + 1.9425/A (stocks)

Figure 5 shows the efficient frontier.

Our average investor with A = 3.4 holds 10% cash, 30% bonds, and 60% stocks.

When comparing this example to the nominal Example 3, the most interesting
thing to note is that cash plays a more important role in this real example.
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A w1 w2 w3 σ α r1 r2
∞ 109% −13% 3% 4.09% 0.71% 0.71% 0.62%

28.80 98% −8% 10% 4.34% 1.31% 1.32% 1.23%
11.60 80% 0% 20% 5.45% 2.22% 2.24% 2.09%
7.26 63% 7% 30% 7.07% 3.12% 3.17% 2.91%
5.29 45% 15% 40% 8.91% 4.02% 4.10% 3.69%
4.16 28% 22% 50% 10.87% 4.92% 5.04% 4.43%
3.42 10% 30% 60% 12.89% 5.82% 6.00% 5.12%
2.91 −7% 37% 70% 14.95% 6.72% 6.96% 5.77%
2.53 −24% 44% 80% 17.03% 7.63% 7.92% 6.37%
2.24 −42% 52% 90% 19.13% 8.53% 8.90% 6.93%
2.01 −59% 59% 100% 21.24% 9.43% 9.89% 7.44%
1.82 −77% 67% 110% 23.36% 10.33% 10.88% 7.90%
1.66 −94% 74% 120% 25.48% 11.23% 11.89% 8.31%

A = iso-elastic coefficient of relative risk aversion.
w1 = portfolio cash percentage.
w2 = portfolio bond percentage.
w3 = portfolio stock percentage.
σ = instantaneous standard deviation of portfolio.
α = expected instantaneous return of portfolio.
r1 = arithmetic mean (average) simply compounded expected return.
r2 = geometric mean (annualized) simply compounded expected return.

Figure 5: Example 4 – Cash, Bonds and Stocks (Real)
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8 Singularities in the Unconstrained Problem

In our general solution to the unconstrained problem we made the assumption
that the enhanced matrix V̂ was non-singular and hence had an inverse. We
now fulfill our promise to return to consider the situation where V̂ is singular.

Suppose V̂ is singular. By Definition 1 in reference [7]:

V̂ ŵ = 0 for some ŵ 6= 0
ρ1,1 · · · ρ1,n 1
...

...
...

ρn,1 · · · ρn,n 1
1 · · · 1 0




w1

...
wn

wn+1

 =


0
...
0
0


Multiplying out each row gives:

n∑
j=1

ρi,jwj + wn+1 = 0 for 1 ≤ i ≤ n

n∑
j=1

wj = 0

We first notice that we must have wi 6= 0 for some i ≤ n. If this were not the
case, the equation for the first row would imply that wn+1 = 0, which in turn
would imply that ŵ = 0.

Multiply each of the first equations above by wi and sum them to get:

0 =
n∑

i=1

wi

 n∑
j=1

ρi,jwj + wn+1


=

n∑
i=1

n∑
j=1

wiwjρi,j +
n∑

i=1

wiwn+1

=
n∑

i=1

n∑
j=1

wiwjρi,j + wn+1

n∑
i=1

wi

=
n∑

i=1

n∑
j=1

wiwjρi,j + wn+1 × 0

=
n∑

i=1

n∑
j=1

wiwjρi,j

Consider the portfolio P which is a continuously rebalanced linear combination
of amount wi in asset Xi for each i = 1 . . . n. Then:

P =
n∑

j=1

wjXj
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σ2
P =

n∑
i=1

n∑
j=1

wiwjρi,j = 0

αP =
n∑

i=1

wiαi

P has variance 0 and is therefore risk-free with a constant instantaneous rate of
return αP :

P =
n∑

j=1

wjXj = αP

We consider the three cases αP < 0, αP > 0, and αP = 0.

First suppose αP < 0. Reverse the signs of all the wi. The variance of the
portfolio remains 0 and the sign of αP reverses, so we get the case αP > 0.

Now suppose αP > 0. Our portfolio is risk-free with a positive rate of return.
Recall that the sum of the proportions wi is 0. This is called a “zero-budget”
portfolio. We can invest in this portfolio without putting up any money of our
own as follows: For each wi for which wi < 0, we sell amount wi of asset i
short. We use the proceeds to invest amount wi in all of the assets i for which
wi > 0. The resulting portfolio earns a positive rate of return αP with no risk!
This is called an “arbitrage opportunity.” By multiplying the values wi by an
arbitrarily large constant we can make an arbitrarily large risk-free profit.

Arbitrage opportunities are difficult to find in the real world. In our optimization
problem, if an arbitrage opportunity exists, there is no efficient frontier because
the rates of returns of the feasible portfolios are unbounded.

Now consider the last case where we have αP = 0. We know that wa 6= 0 for
some a ≤ n.

P =
n∑

j=1

wjXj = 0

Xa =
n∑

j=1
j 6=a

wj

wa
Xj

In this case the assets are not linearly independent, and asset Xa is a linear
combination of the other assets.

Clearly the set of all feasible portfolios which is formed from continuously re-
balanced linear combinations of the full set of assets is the same feasible set as
the one formed from continuously rebalanced linear combinations of the assets
minus asset Xa. Thus we can simply remove Xa from the set of assets and solve
the problem for the remaining set of assets.

In general, if the assets are not linearly independent, and if there are no ar-
bitrage opportunities, we can remove dependent ones until we get a set that



8 SINGULARITIES IN THE UNCONSTRAINED PROBLEM 39

is independent. The matrix V̂ for the subset is non-singular and we can solve
the optimization problem for the smaller set of assets. The feasible set and the
efficient frontier for the smaller problem are the same as those for the original
problem.

Suppose the enhanced covariance matrix V̂ is singular. Then one of the eigenval-
ues of the matrix must be 0, and the corresponding eigenvector x is a non-zero
solution to V̂ x = 0. The first n elements of this eigenvector are the asset weights
of a zero-budget portfolio with variance zero. This can be useful in computer
programs for finding the linear dependency or arbitrage opportunity, assuming
the availability of a linear algebra library that can do eigen decompositions.
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9 The Two-Fund Separation Theorem

We now turn our attention to the general unconstrained problem when one of
the assets is risk-free. Without loss of generality, we’ll assume that the first
asset is the risk-free one. We’ll also assume that the enhanced matrix V̂ is
non-singular so that we have a solution.

By definition, a risk-free asset has a standard deviation of 0, a variance of 0,
and a covariance of 0 with all other assets. Thus:

ρi,1 = ρ1,i = 0 for all 1 ≤ i ≤ n

Recall our solution (22) to the general unconstrained problem on page 25:

ŵ =
1
A

ĉ + d̂

We will focus on the solution vector d̂. Recall that Equation (21) on page 25
defines this vector as follows:

d̂ = V̂ −1ŷ

So:
V̂ d̂ = ŷ

Writing out the matrix and vectors and substituting ρi,1 = ρ1,i = 0 gives:

V̂ d̂ =



0 0 · · · 0 1

0
...
0

ρ2,2 · · · ρ2,n

...
...

ρn,2 · · · ρn,n

1
...
1

1 1 · · · 1 0





d1

d2

...
dn

dn+1

 =



0

0
...
0

1

 = ŷ

The first row of V̂ times the vector d̂ is dn+1, which must equal the first element
of ŷ, which is 0. So:

dn+1 = 0

Now consider the outlined submatrix and subvectors above. Call them Ṽ , d̃,
and ỹ. Because dn+1 = 0, we have Ṽ d̃ = ỹ.

We first show that Ṽ must be non-singular. Suppose it is singular. Then for
some w̃ 6= 0 we have Ṽ w̃ = 0:

 ρ2,2 · · · ρ2,n

...
...

ρn,2 · · · ρn,n


 w2

...
wn

 =

 0
...
0


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Let w1 = −
n∑

i=2

wi and wn+1 = 0. Then:

V̂ ŵ =


0 0 · · · 0 1
0 ρ2,2 · · · ρ2,n 1
...

...
...

...
0 ρn,2 · · · ρn,n 1
1 1 · · · 1 0




w1

w2

...
wn

wn+1

 =


0
0
...
0
0

 = 0

Thus V̂ is singular, a contradiction.

Ṽ is non-singular, and we have Ṽ d̃ = ỹ = 0, so we must have d̃ = 0. Thus we
have now shown that di = 0 for all 2 ≤ i ≤ n + 1.

Because all but the first element of the vector d̂ are 0, the last row of V̂ times
the vector d̂ is d1, which must equal the last element of ŷ, which is 1. So d1 = 1.
We have now shown that when the first asset is risk-free, we have:

d̂ =


1
0
...
0


Note the intuition behind this result. The vector d̂ represents the asset propor-
tions held by an infinitely risk-averse investor. Such an investor allocates all of
his portfolio to the first asset, the risk-free one.

The solutions for the optimal asset proportions wi become:

w1 =
1
A

c1 + 1 (the risk-free asset)

wi =
1
A

ci (2 ≤ i ≤ n, the risky assets)

Now consider the part of the optimal portfolio which contains just the risky
assets. We call this the optimal risky portfolio. For 2 ≤ i ≤ n, the proportion
of risky asset i in the optimal risky portfolio is:

wi∑n
j=2 wj

=
1
Aci∑n

j=2
1
Acj

=
1
Aci

1
A

∑n
j=2 cj

=
ci∑n

j=2 cj

Note that these proportions are all independent of the coefficient of relative
risk aversion A, which canceled out in the equation above. In other words, the
optimal risky portfolio is the same for all investors. The total optimal portfolio is
always a linear combination of the risk-free asset and the optimal risky portfolio.
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In other words, we have reduced the general case to the simple case where the
available assets are a risk-free asset and a single risky asset. The efficient frontier
is a straight line that contains the risk-free asset and the optimal risky portfolio.
This is the two-fund separation theorem for the case where one of the assets is
risk-free.15

There is a good way to visualize this separation theorem. First, draw a graph
of the efficient frontier for just the risky assets. Mark the point on the Y axis of
this graph where the return is equal to the risk-free rate. The efficient frontier
for the full set of assets including all the risky assets and the risk-free asset is the
straight line starting at the risk-free point on the Y axis that is tangent to the
curved frontier for just the risky assets. The portfolio located at the tangency
point is the optimal risky portfolio. See Example 5 below for an example of
such a graph.

It is important to think about the meaning of a “risk-free asset” in this context.
We are solving the portfolio optimization problem for a single period investment
over some time horizon. For this purpose, the risk-free asset must be an invest-
ment which pays off all of its guaranteed interest at the exact end of the time
horizon in question – e.g., a zero-coupon US treasury bill, note, or bond (de-
pending on the horizon). This notion of a “risk-free” asset specifically does not
include money market funds, savings accounts, bonds with coupon payments
before the end of the time horizon, or bonds with a maturity different from the
time horizon.

15We will derive a more general version of this theorem in section 13.
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9.1 Example 5 – Bonds, Stocks and a Risk-Free Asset

In this example the feasible set is all unconstrained linear combinations of a
risk-free asset (asset 1), long US bonds (asset 2), and large US stocks (asset
3). We use 3.7% for the instantaneous risk-free rate, corresponding to a simply-
compounded interest rate of 3.77%. The parameters from Table 1 are:

V =

 0 0 0
0 0.00620 0.00246
0 0.00246 0.03738

 = covariance matrix

x =

 3.7%
5.02%

11.58%

 = expected instantaneous returns

The solution vectors are:

ĉ =


−3.3481

1.3287
2.0194
0.0370

 d̂ =


1
0
0
0


The optimal risky portfolio proportions are:

Bonds =
c2

c2 + c3
=

1.3287
1.3287 + 2.0194

= 40%

Stocks =
c3

c2 + c3
=

2.0194
1.3287 + 2.0194

= 60%

The optimal asset proportions are:

w1 = 1− 3.3481/A (risk-free)
w2 = 1.3287/A (bonds)
w3 = 2.0194/A (stocks)

Or, stated another way:

w1 = 1− 3.3481/A (risk-free)
1− w1 = 3.3481/A (60/40 stocks/bonds)

Figure 6 shows the efficient frontier.
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A w1 w2 w3 σ α r1 r2
∞ 100% 0% 0% 0.00% 3.70% 3.77% 3.77%

20.19 83% 7% 10% 2.08% 4.57% 4.68% 4.66%
10.10 67% 13% 20% 4.16% 5.45% 5.60% 5.51%
6.73 50% 20% 30% 6.24% 6.32% 6.53% 6.32%
5.05 34% 26% 40% 8.32% 7.20% 7.46% 7.09%
4.04 17% 33% 50% 10.41% 8.07% 8.41% 7.82%
3.37 1% 39% 60% 12.49% 8.95% 9.36% 8.51%
2.88 −16% 46% 70% 14.57% 9.82% 10.32% 9.16%
2.52 −33% 53% 80% 16.65% 10.70% 11.29% 9.76%
2.24 −49% 59% 90% 18.73% 11.57% 12.27% 10.31%
2.02 −66% 66% 100% 20.81% 12.45% 13.25% 10.83%
1.84 −82% 72% 110% 22.89% 13.32% 14.25% 11.29%
1.68 −99% 79% 120% 24.97% 14.19% 15.25% 11.71%

A = iso-elastic coefficient of relative risk aversion.
w1 = portfolio risk-free percentage.
w2 = portfolio bond percentage.
w3 = portfolio stock percentage.
σ = instantaneous standard deviation of portfolio.
α = expected instantaneous return of portfolio.
r1 = arithmetic mean (average) simply compounded expected return.
r2 = geometric mean (annualized) simply compounded expected return.

Figure 6: Example 5 – Bonds, Stocks and a Risk-Free Asset
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10 The Unconstrained Efficient Frontier

We have learned how to find the optimal unconstrained asset allocation for a
give iso-elastic coefficient of relative risk aversion A. The solution to the problem
is a set of portfolio weights wi. Given the portfolio weights we can compute the
risk σP and expected return αP of the optimal portfolio.

As we let A range over its domain (0,∞], the resulting pairs of values (σP , αp)
trace out the efficient frontier curve, which is conventionally graphed with σP on
the X axis and αP on the Y axis.16 Our general solution to the unconstrained
optimization problem defines this curve parametrically as functions of A.

In this section we investigate the mathematical properties of the efficient frontier
curve. We begin with a sequence of four lemmas.

Lemma 10.1
n∑

i=1

ci = 0 and
n∑

i=1

di = 1.

Proof:

Recall from Equation 23 on page 25 that:

wi =
1
A

ci + di

Then:

1 =
n∑

i=1

wi (by the budget constraint)

=
1
A

n∑
i=1

ci +
n∑

i=1

di

This equation holds for all A, so it holds for A = ∞, which proves that∑n
i=1 di = 1, which in turn implies that we must have

∑n
i=1 ci = 0.

16Even though Markowitz originally did it the other way around.
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Lemma 10.2 Suppose V is an n × n matrix of covariances ρi,j for a set of
random variables X1 . . . Xn. Then V is positive semidefinite. That is, for any
any column vector z of values z1 . . . zn, we have:

n∑
i=1

n∑
j=1

zizjρi,j = z′V z ≥ 0

Proof:

By Proposition 8 and Definition 2 in reference [8]:

z′V z = Var

(
n∑

i=1

ziXi

)
≥ 0

Lemma 10.3
n∑

i=1

ciαi =
n∑

i=1

n∑
j=1

cicjρi,j ≥ 0.

Proof:

n∑
i=1

ciαi =
(

c1 · · · cn cn+1

)


α1

...
αn

0


= ĉ′x̂

= ĉ′V̂ ĉ (because ĉ = V̂ −1x̂, so V̂ ĉ = x̂)

=
(

c1 · · · cn cn+1

)


ρ1,1 · · · ρ1,n 1
...

...
...

ρn,1 · · · ρn,n 1
1 . . . 1 0




c1

...
cn

cn+1



=

(
n∑

i=1

ciρi,1 + cn+1 · · ·
n∑

i=1

ciρi,n + cn+1

n∑
i=1

ci

)
c1

...
cn

cn+1


=

n∑
j=1

cj

(
n∑

i=1

ciρi,j + cn+1

)
+ cn+1

n∑
i=1

ci

=
n∑

j=1

cj

n∑
i=1

ciρi,j + cn+1

n∑
j=1

cj + cn+1

n∑
i=1

ci

=
n∑

j=1

cj

n∑
i=1

ciρi,j (by Lemma 10.1)
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=
n∑

i=1

n∑
j=1

cicjρi,j

≥ 0 (by Lemma 10.2)

Lemma 10.4
n∑

i=1

n∑
j=1

cidjρi,j = 0.

Proof:

First, we have:

ĉ′V̂ d̂ = ĉ′V̂
(
V̂ −1ŷ

)
(because d̂ = V̂ −1ŷ)

= ĉ′ŷ

=
(

c1 · · · cn cn+1

)


0
...
0
1


= cn+1

Second, we have:

ĉ′V̂ d̂ =
(

c1 · · · cn cn+1

)


ρ1,1 · · · ρ1,n 1
...

...
...

ρn,1 · · · ρn,n 1
1 · · · 1 0




d1

...
dn

dn+1



=

(
n∑

i=1

ciρi,1 + cn+1 · · ·
n∑

i=1

ciρi,n + cn+1

n∑
i=1

ci

)
d1

...
dn

dn+1


=

n∑
j=1

dj

(
n∑

i=1

ciρi,j + cn+1

)
+ dn+1

n∑
i=1

ci

=
n∑

j=1

dj

n∑
i=1

ciρi,j + cn+1

n∑
j=1

dj + dn+1

n∑
i=1

ci

=
n∑

i=1

n∑
j=1

cidjρi,j + cn+1 (by Lemma 10.1)

Setting these two equations equal yields the result.

This concludes the Lemmas. Our next goal is to calculate some equations and
derivatives so that we can draw conclusions about the shape and properties of
the efficient frontier.
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First recall equation 23 on page 25:

wi =
1
A

ci + di

As a notational convenience, define:

B =
1
A

A is the coefficient of relative risk aversion, so we can think of B as a coefficient
of relative risk tolerance. Our equation now becomes:

wi = Bci + di

We first derive equations for αP and σP as functions of B:

αP =
n∑

i=1

wiαi

=
n∑

i=1

(Bci + di)ai

= B

n∑
i=1

ciαi +
n∑

i=1

diαi

σ2
P =

n∑
i=1

n∑
j=1

wiwjρi,j

=
n∑

i=1

n∑
j=1

(Bci + di)(Bcj + dj)ρi,j

= B2
n∑

i=1

n∑
j=1

cicjρi,j + B
n∑

i=1

n∑
j=1

cidjρi,j + B
n∑

i=1

n∑
j=1

cjdiρi,j +
n∑

i=1

n∑
j=1

didjρi,j

= B2
n∑

i=1

n∑
j=1

cicjρi,j +
n∑

i=1

n∑
j=1

didjρi,j (by Lemma 10.4)

Let:

k =
n∑

i=1

ciαi =
n∑

i=1

n∑
j=1

cicjρi,j (by Lemma 10.3)

αmin =
n∑

i=1

diαi

σ2
min =

n∑
i=1

n∑
j=1

didjρi,j ≥ 0 (by Lemma 10.2)
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σmin =
√

σ2
min =

√√√√ n∑
i=1

n∑
j=1

didjρi,j

Then our equations become:

αP = kB + αmin

σ2
P = kB2 + σ2

min

σp =
√

kB2 + σ2
min = (kB2 + σ2

min)
1
2

Note the interesting property that the rate of change of σ2
P with respect to B2

is the same as the rate of change of αP with respect to B. This is our constant
k. Also note that if k = 0 we have a degenerate solution where the efficient
frontier is the single point (σmin, αmin). This can only happen if all the asset
expected returns αi are the same.

If σmin = 0 we have σP =
√

kB, both αP and σP are linear in B, and the
efficient frontier is a straight line. The minimum variance portfolio for B = 0 is
risk-free.

The first derivatives are:

dαP

dB
= k ≥ 0

dσP

dB
= kB(kB2 + σ2

min)−
1
2 ≥ 0

Assume we do not have the degenerate case of a single point, so k > 0, and the
efficient frontier is a curve defined for all σP ≥ σmin. We can now compute the
first derivative of αP with respect to σP :

dαP

dσP
=

dαP

dB
dσP

dB

=
k

kB(kB2 + σ2
min)−

1
2

=
1
B

(kB2 + σ2
min)

1
2

= (k + σ2
minB−2)

1
2

= (k + σ2
minA2)

1
2 > 0

This equation says that αP is an increasing function of σP . As the risk of
the optimal portfolio increases, so does its return. The is the “no free lunch”
principle of investing. Once a portfolio has been optimally diversified, the only
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way to get a higher expected return is to undertake greater risk, and the only
way to lower risk is to sacrifice expected return.17

Note that at the minimum variance portfolio corresponding to A = ∞ the
derivative is ∞ and the line tangent to the efficient frontier at this point is
vertical.

For large values of A near the minimum variance portfolio the slope is large.
This means that conservative investors get relatively large increases in expected
return for undertaking small amounts of extra risk. The most “bang for the
buck” in becoming more aggressive is at the conservative end of the frontier.

On the other hand, for smaller values of A farther up the efficient frontier, the
slope is smaller. The most “bang for the buck” in becoming more conservative
is in the more aggressive ranges of the frontier. This effect is not unlimited or
as pronounced as its partner at the conservative end of the frontier, however,
since the slope is bounded below by

√
k.

Again assume non-degeneracy with k > 0. We now compute the second deriva-
tive of αP with respect to σP :

d

dB

dαP

dσP
= −σ2

minB−3(k + σ2
minB−2)−

1
2

d2αP

dσ2
P

=

d

dB

dαP

dσP

dσP

dB

=
−σ2

minB−3(k + σ2
minB−2)−

1
2

kB(kB2 + σ2
min)−

1
2

= −σ2
minB−3(kB2 + σ2

min)
1
2

kB(k + σ2
minB−2)

1
2

= −σ2
minB−3(kB2 + σ2

min)
1
2

k(kB2 + σ2
min)

1
2

= −σ2
min

k

1
B3

= −σ2
min

k
A3 ≤ 0

The second derivative is 0 if and only σmin = 0, in which case there is a risk-free
portfolio with variance 0 and the efficient frontier is a straight line.

In all other cases the second derivative is negative, and the efficient frontier is
concave.

17This principle is of course also an immediate consequence of the definition of an “efficient
portfolio.” But verifying that our first derivative is positive is a good sanity check on the
math if nothing else.
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For large values of A near the minimum variance portfolio the second derivative
has a large negative magnitude, which means the slope is rapidly decreasing.
This is the typical sharp curve at the southwest end of the frontier.

As A → 0 the slope decreases much more slowly, and the rate of change of the
slope approaches 0. From the equation for the first derivative we see that the
slope approaches

√
k in the limit.

For a given point (σP , αP ) on the efficient frontier corresponding to a coefficient
of risk tolerance B, let yP = the Y intercept of the straight line that goes
through the point and has slope

√
k. Then:

yP = αP −
√

kσP

= kB + αmin −
√

k
√

kB2 + σ2
min

= αmin +
(

kB −
√

k2B2 + kσ2
min

)

Define y as follows:

y = lim
B→∞

yP

= αmin + lim
B→∞

(
kB −

√
k2B2 + kσ2

min

)
= αmin + lim

B→∞

(
−kσ2

min

kB +
√

k2B2 + kσ2
min

)
= αmin + 0
= αmin

Thus as A → 0 and B → ∞ the efficient frontier asymptotically approaches
from below the straight line with slope

√
k and Y intercept αmin.

Consider our general solution to the unconstrained optimization problem. We’re
given the vector of expected returns x and the covariance matrix V as constants.
Given a value for the coefficient of relative risk aversion A, we know how to
compute the optimal asset allocation w and the risk σP and return αP for the
resulting optimal portfolio P .

It is also easy to work the equations in other directions. Given any of the
variables we can compute the others.

If one of the asset proportions wi is known, solve the following equation for A
and then calculate all the other variables:

wi =
1
A

ci + di

A =
ci

wi − di
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If the expected return αP is known, solve the following equation for A and then
calculate all the other variables:

αP =
1
A

k + αmin

A =
k

αP − αmin

If the risk σP is known, solve the following equation for A and then calculate
all the other variables:

σ2
P =

1
A2

k + σ2
min

A =

√
k

σ2
P − σ2

min

Note that we can also express αP directly as a function of σP (and vice-versa)
in case a non-parametric equation is desired:

αP =
1
A

k + αmin = k

√
σ2

P − σ2
min

k
+ αmin =

√
k(σ2

P − σ2
min) + αmin

σP = =

√
(αP − αmin)2

k
+ σ2

min

Rearranging these equations slightly gives:

σ2
P

σ2
min

− (αP − αmin)2

kσ2
min

= 1

This equation is the standard form for a hyperbola centered at (0, αmin).

The efficient frontier curve is one quarter section of the full hyperbola defined
by this equation – the quarter which satisfies σP ≥ σmin and αP ≥ αmin.

We have derived the efficient frontier by considering investors with iso-elastic
utility. What about other kinds of utility functions? Is it possible that a risk-
averse investor with non-iso-elastic utility has an optimal portfolio that is not
on the efficient frontier we have derived? The answer is no. In other words,
restricting our attention to iso-elastic utility functions is sufficient to derive the
entire efficient frontier.

This is not difficult to see. First, recall that σ2
min is our minimum variance, and

our solution includes one and only one efficient portfolio for each variance σ2
P ≥

σ2
min. Each such solution maximizes the expected return αP and is therefore

the unique efficient portfolio for that level of risk. So the only possibility is that
an investor with non-iso-elastic utility might have an efficient portfolio with
variance less than σ2

min.

Thus we need to show that σ2
min is the true minimum variance for all of the

portfolios in the feasible set consisting of all unconstrained linear combinations
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of the given assets. Recall the our solution maximizes the following function for
a given iso-elastic coefficient of relative risk aversion A:

f(w) = αP −
1
2
Aσ2

P

= αP −
1

2B
σ2

P (where B = 1/A)

If we multiply by −2B this maximization problem turns into a minimization
problem. Our solution minimizes:

g(w) = −2BαP + σ2
P

When B = 0 our solution minimizes σ2
P over the entire feasible set, and its

solution is the portfolio with σ2
P = σ2

min.

Figure 7 summarizes and illustrates some of the material covered in this section.
Note that the entire efficient frontier curve is completely defined by the three
parameters σmin, αmin, and k.
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k =
n∑

i=1

ciαi = rate of change of αP with respect to B

=
n∑

i=1

n∑
j=1

cicjρi,j = rate of change of σ2
P with respect to B2

αmin =
n∑

i=1

diαi = expected return of minimum variance portfolio

σ2
min =

n∑
i=1

n∑
j=1

didjρi,j = variance of minimum variance portfolio

αP = kB + αmin = k
1
A

+ αmin

σ2
P = kB2 + σ2

min = k
1

A2
+ σ2

min

Figure 7: The Unconstrained Efficient Frontier
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11 Unconstrained Efficient Portfolios

In this section we examine the mathematical properties of unconstrained efficient
portfolios and their relationships to both the underlying assets and to other
feasible portfolios.

We begin with some new notational conventions.

Let X1 . . . Xn be the underlying individual assets in our optimization problem
and let Q be a feasible portfolio Q =

∑n
i=1 wiXi with

∑n
i=1 wi = 1. (Note that

Q may or may not be efficient.)

Define:

ρQ,i = Cov(Q,Xi)

= Cov

 n∑
j=1

wjXj , Xi


=

n∑
j=1

wjCov(Xj , Xi) (by Proposition 9 in reference [8])

=
n∑

j=1

wjρi,j

For any two feasible portfolios Q and R (efficient or not) we use the notation:

ρQ,R = Cov(Q,R)

Recall that the general solution to the unconstrained optimization problem max-
imizes the expected utility of end-of-period wealth. The expected utility func-
tion maximized is:18

f(w) = αP −
1
2
Aσ2

P

=
n∑

i=1

wiαi −
1
2
A

n∑
i=1

n∑
j=1

wiwjρi,j

The partial derivatives of this function are:

∂f

∂wi
= αi −A

n∑
j=1

wjρi,j = αi −AρP,i

18f(w) is not the actual iso-elastic expected utility function. See reference [4] for details.
But maximizing f(w) is equivalent to maximizing the actual expected utility function, and
that’s all we need for our purposes here. So we will continue to loosely refer to f as an
“expected utility” function. We will also take the liberty of just saying “utility” instead of
“expected utility.”
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We introduced a Lagrange multiplier λ and an enhanced objective function f̂ .
Our solution satisfied:

∂f̂

∂wi
= αi −A

n∑
j=1

wjρi,j − λ =
∂f

∂wi
− λ = 0

Thus for any efficient portfolio P for coefficient of relative risk aversion AP and
corresponding Lagrange multiplier λP we have:

∂f

∂wi
= αi −AP ρP,i = λP

This is an important property of efficient portfolios. It says that an efficient
portfolio is in equilibrium in the sense that its marginal utility with respect to
each individual asset is the same. This is also the economic meaning of our
multiplier λ.19

We now have the following equation for the expected return of asset i which
holds for any efficient portfolio P :

αi = λP + AP ρP,i (29)

A similar equation for expected return holds for any feasible portfolio Q (efficient
or not), as we will now demonstrate. Suppose:

Q =
n∑

i=1

wiXi with
n∑

i=1

wi = 1

Then for any efficient portfolio P :

αQ =
n∑

i=1

wiαi

=
n∑

i=1

wi(λP + AP ρP,i)

= λP

n∑
i=1

wi + AP

n∑
i=1

wiρP,i

= λP + AP

n∑
i−1

wiCov(P,Xi)

= λP + AP Cov

(
P,

n∑
i=1

wiXi

)
(by Proposition 9 in reference [8])

= λP + AP Cov(P,Q)
αQ = λP + AP ρP,Q (30)

19See section 6 where we discussed this property of Lagrange multipliers in more detail.
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12 The Capital Asset Pricing Model

We now revisit the case where one of the assets is risk-free. Again, without loss
of generality, we assume that the first asset X1 is the risk-free one. Let:

r = α1 = the instantaneous risk-free rate of return

In the previous section we derived the following equation (29) which holds for
any efficient portfolio P :

αi = λP + AP ρP,i

In particular, for i = 1 we get:

α1 = λP + AP ρP,1

Asset 1 is risk-free, so its covariance with all the other assets is 0. Substituting
ρP,1 = 0 and α1 = r gives:

r = λP

This equation holds for all efficient portfolios P . It says that the marginal utility
with respect to each asset is the risk-free rate.

For each asset i we now have:

αi = r + AP ρP,i

As we showed in equation (30), we have the same result for any feasible portfolio
Q (efficient or not):

αQ = r + AP ρP,Q

The risk-free version of the two-fund separation theorem we derived in section
9 tells us that there is a unique efficient portfolio M for some coefficient of risk
aversion AM which is the optimal risky portfolio combining the risky assets.
Substitute P = M in our equation above and rearrange to get:

αQ − r = AMρM,Q

This equation holds for any feasible portfolio Q, so in particular it holds for
Q = M which gives:

αM − r = AMρM,M = AMσ2
M

Dividing these two equations gives:

αQ − r

αM − r
=

AMρM,Q

AMσ2
M

=
ρM,Q

σ2
M

= βQ

αQ − r = βQ(αM − r)

Our new term βQ is called the beta of the portfolio Q: its covariance with M
divided by the variance of M . This number is a measure of how much the
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portfolio varies relative to M . Our equation says that the risk premium of
any feasible portfolio is its beta times the risk premium of the optimal risky
portfolio.

To illustrate the meaning of beta, let:

cM,Q = the correlation coefficient of M and Q

=
ρM,Q

σMσQ

= βQ
σM

σQ

βQ = cM,Q
σQ

σM

αQ − r = cM,Q
σQ

σM
(αM − r)

Consider the case where M and Q are perfectly correlated (cM,Q = +1):

αQ − r =
σQ

σM
(αM − r)

In this case the risk premium of Q is its volatility relative to M times the risk
premium of M . For example, consider the portfolio Q which is a 50/50 mixture
of M and the risk-free asset. σQ is σM/2 and the risk premium of Q is one half
the risk premium of M .

Now consider the case where M and Q are uncorrelated (cM,Q = 0). In this
case βQ = 0 and the expected return of Q is the risk-free rate r. An investor
who holds portfolio Q suffers a risk of σQ but receives no risk premium as
compensation. This is quite inefficient.

Finally consider the case where M and Q are perfectly negatively correlated
(cM,Q = −1):

αQ − r = − σQ

σM
(αM − r)

In this case an investor holding portfolio Q actually receives a negative risk
premium or a risk “penalty” for undertaking the risk σQ! This is terribly ineffi-
cient. As an example, consider the portfolio Q that sells M short. In this case
we have σQ = σM and αQ − r = −(αM − r). The risk penalty of Q is equal to
the risk premium of M .

In general, if cM,Q > 0, the risk premium of Q is positive, with higher risk
premia for larger values of cM,Q. If cM,Q < 0, there is a risk penalty (a negative
risk premium), with higher risk penalties for smaller values of cM,Q. If cM,Q = 0,
there is neither a risk premium nor a risk penalty.

The Sharpe ratio of a portfolio Q is defined to be:

SQ =
αQ − r

σQ
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This number is the risk premium of the portfolio divided by its risk. It is another
way to measure how well a portfolio is diversified.

In risk/return graphs, SQ is the slope of the line joining the risk-free asset and
portfolio Q, and SM is the slope of the efficient frontier (which is also our value√

k). Note that we always have SQ ≤ SM .

We derived the following equation above:

αQ − r = cM,Q
σQ

σM
(αM − r)

Restated in terms of Sharpe ratios we get:

SQ = cM,QSM

Once again we see that portfolios which are highly correlated with M offer the
best diversification, this time as measured by their Sharpe ratio.

What is the composition of the optimal risky portfolio M? We can easily divine
the answer to this question if we assume that all investors agree on the expected
returns and covariances of the assets and they all act rationally to select efficient
portfolios.

Under these assumptions, all investors hold some combination of the risk-free
asset and the same optimal risky portfolio M . When we aggregate the risky
holdings over all investors we must get the total market portfolio which consists
of all of the assets in their capitalization-weighted proportions. Thus M is the
cap-weighted market portfolio.

Note that the CAPM equations which we have derived in this section are all
valid whether or not M is the market portfolio. The equations do not depend
on the assumptions that investors agree on expected returns and covariances
or that they all act rationally to select efficient portfolios. The equations are
normative in the sense that they describe the necessary relationships among
assets and portfolios that must hold if estimates of the asset expected returns
and covariances are given. The assumptions which lead to the conclusion that
M is the market portfolio and/or the conclusion itself are positive in the sense
that they are statements about how investors and/or markets actually behave.

In the context of the US stock market, CAPM is often used to model individual
stocks, sectors, and asset classes such as style and size subsets. The betas of
these securities and market subsets are usually estimated by performing linear
regressions of the asset risk premia against the risk premia of a proxy for the
total market portfolio, typically the S&P 500 index or a total market index like
the Russell 3000 or the Wilshire 5000.

On the typical risk/return graph, the straight line efficient frontier is called the
“capital market line.” It has slope SM =

√
k and Y-intercept the risk-free rate

r.
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For a given portfolio or asset we can also graph the market risk premium on
the X axis vs. the portfolio risk premium on the Y axis. This straight line is
called the “security characteristic line.” It has slope β and Y-intercept 0. It
is often graphed along with observed data points for the realized market and
portfolio premia, in which case the security characteristic line is the regression
“best fit” line to the data points and may have a non-zero Y-intercept called
the portfolio’s “alpha.”

We can also graph beta on the X axis vs. the portfolio expected return on the
Y axis. This straight line is called the “security market line.” Its slope is the
market risk premium and its Y-intercept is the risk-free rate r.

A full treatment of CAPM would require a long paper or book of its own, and
many such papers and books have been written. Our treatment here is just a
cursory introduction. See reference [10] for the classic discussion by William
Sharpe, who is the creator of this theory.
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13 The General Two-Fund Separation Theorem

In this section we derive the general form of the two-fund separation theorem
which does not rely on the assumption of a risk-free asset. We use the notation
and terminology of section 10.

Suppose that P is the efficient portfolio for A = AP and Q is the efficient
portfolio for A = AQ. Let BP = 1/AP and BQ = 1/AQ. We can compute the
covariance of P and Q:

ρP,Q = Cov

 n∑
i=1

[BP ci + di]Xi,
n∑

j=1

[BQcj + dj ]Xj


= (by Proposition 9 in reference [8])

n∑
i=1

n∑
j=1

(BP BQcicj + BP cidj + BQcjdi + didj)ρi,j

= BP BQ

n∑
i=1

n∑
j=1

cicjρi,j + BP

n∑
i=1

n∑
j=1

cidjρi,j +

BQ

n∑
i=1

n∑
j=1

cjdiρi,j +
n∑

i=1

n∑
j=1

didjρi,j

= BP BQk + 0 + 0 + σ2
min (by Lemma 10.4)

= BP BQk + σ2
min

We now consider linear combinations of efficient portfolios. Let P and Q be as
above and consider the portfolio R with is the linear combination of proportion
w in P and 1− w in Q. The expected return and variance of R are:

αR = wαP + (1− w)αQ

= w(BP k + αmin) + (1− w)(BQk + αmin)
= (BP w + BQ(1− w))k + αmin

σ2
R = w2σ2

P + 2w(1− w)ρP,Q + (1− w)2σ2
Q

= w2(B2
P k + σ2

min) + 2w(1− w)(BP BQk + σ2
min) +

(1− w)2(B2
Qk + σ2

min)

= (w2B2
P + 2w(1− w)BP BQ + (1− w)2B2

Q)k +

(w2 + 2w(1− w) + (1− w)2)σ2
min

= (BP w + BQ(1− w))2k + σ2
min

Define C as:
C = BP w + BQ(1− w)
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Then we have:

αR = Ck + αmin

σ2
R = C2k + σ2

min

Our portfolio R is the efficient portfolio for B = 1/A = C.

We have shown that all linear combinations of efficient portfolios are efficient. If
we take any two distinct efficient portfolios P and Q, we can therefore generate
all of the other efficient portfolios as unconstrained linear combinations of P
and Q. This is the general form of the two-fund separation theorem.

In particular, this is true if one of the portfolios is the minimum variance port-
folio and the other one is any other efficient portfolio. For example, let P be the
efficient portfolio for A = AP = 1 (BP = 1/AP = 1) and let Q be the minimum
variance portfolio for A = AQ = ∞ (BQ = 1/AQ = 0). Our equations become:

C = w

αR = wk + αmin

σ2
R = w2k + σ2

min
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