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1–6 EULER FOR SYSTEMS AND 
SECOND-ORDER ODEs

Solve by the Euler’s method. Graph the solution in the
-plane. Calculate the errors.

1.

2. Spiral. 

3.

4.

5.

6.

7–10 RK FOR SYSTEMS
Solve by the classical RK.

7. The ODE in Prob. 5. By what factor did the error
decrease?

8. The system in Prob. 2

9. The system in Prob. 1

10. The system in Prob. 4

11. Pendulum equation 
steps. How

does your result fit into Fig. 93 in Sec. 4.5?

12. Bessel Function 
5 steps.

(This gives the standard solution in Fig. 110 in
Sec. 5.4.)

J0 (x)
h � 0.5,0.765198, yr(1) � �0.440051,

y(1) �xys � yr � xy � 0,J0 .

h � 0.2, 20as a system,yr(p) � 1,
ys � sin y � 0, y(p) � 0,

h � 0.1, 10 steps
y1r � y1, y2r � �y2, y1(0) � 2, y2(0) � 2,

5 steps
ys � y � x, y(0) � 1, yr(0) � �2, h � 0.1,

0, h � 0.1, 5 stepsy2 (0) �
y1r � �3y1 � y2, y2r � y1 � 3y2, y1(0) � 2,

5 steps
ys � 1

4 y � 0, y(0) � 1, yr(0) � 0, h � 0.2,

y2(0) � 4, h � 0.2, 5 steps
y1(0) � 0,y2r � �y1 � y2,y1r � �y1 � y2,

h � 0.1, 10 stepsy2(0) � 0,
y1(0) � 3,y1r � 2y1 � 4y2, y2r � y1 � 3y2,

y1y2

13. Verify the formulas and calculations for the Airy
equation in Example 2 of the text.

14. RKN. The classical RK for a first-order ODE extends
to second-order ODEs (E. J. Nyström, Acta fenn.
No 13, 1925). If the ODE is not
containing then

Apply this RKN (Runge–Kutta–Nyström) method to
the Airy ODE in Example 2 with as before, to
obtain approximate values of 

15. CAS EXPERIMENT. Backward Euler and
Stiffness. Extend Example 3 as follows.

(a) Verify the values in Table 21.13 and show them
graphically as in Fig. 452.

(b) Compute and graph Euler values for h near the
“critical” to determine more exactly when
instability starts.

(c) Compute and graph RK values for values of h
between 0.2 and 0.3 to find h for which the RK
approximation begins to increase away from the exact
solution.

(d) Compute and graph backward Euler values for
large h; confirm stability and investigate the error
increase for growing h. 

h � 0.18

Ai(x).
h � 0.2

 yn�1r � ynr � 1
8 

(k1 � 4k2 � k4).

 yn�1 � yn � h( ynr � 1
3 

(k1 � 2k2))

 k4 � 1
2 

hf (xn � h, yn � h( ynr � k2))

 k2 � 1
2 hf (xn � 1

2 h, yn � 1
2 h( ynr � 1

2 k1)) � k3

 k1 � 1
2 hf (xn, yn)

yr,
ys � f (x, y),

P R O B L E M  S E T  2 1 . 3

21.4 Methods for Elliptic PDEs
We have arrived at the second half of this chapter, which is devoted to numerics for
partial differential equations (PDEs). As we have seen in Chap.12, there are many
applications to PDEs, such as in dynamics, elasticity, heat transfer, electromagnetic
theory, quantum mechanics, and others. Selected because of their importance in
applications, the PDEs covered here include the Laplace equation, the Poisson equation,
the heat equation, and the wave equation. By covering these equations based on their
importance in applications we also selected equations that are important for theoretical
considerations. Indeed, these equations serve as models for elliptic, parabolic, and
hyperbolic PDEs. For example, the Laplace equation is a representative example of an
elliptic type of PDE, and so forth.
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Recall, from Sec. 12.4, that a PDE is called quasilinear if it is linear in the highest
derivatives. Hence a second-order quasilinear PDE in two independent variables x, y is of the
form

(1)

u is an unknown function of x and y (a solution sought). F is a given function of the
indicated variables.

Depending on the discriminant the PDE (1) is said to be of

elliptic type if (example: Laplace equation)

parabolic type if (example: heat equation)

hyperbolic type if (example: wave equation).

Here, in the heat and wave equations, y is time t. The coefficients a, b, c may be functions
of x, y, so that the type of (1) may be different in different regions of the xy-plane. This
classification is not merely a formal matter but is of great practical importance because
the general behavior of solutions differs from type to type and so do the additional
conditions (boundary and initial conditions) that must be taken into account.

Applications involving elliptic equations usually lead to boundary value problems in a
region R, called a first boundary value problem or Dirichlet problem if u is prescribed
on the boundary curve C of R, a second boundary value problem or Neumann problem
if (normal derivative of u) is prescribed on C, and a third or mixed problem
if u is prescribed on a part of C and on the remaining part. C usually is a closed curve
(or sometimes consists of two or more such curves).

Difference Equations 
for the Laplace and Poisson Equations
In this section we develop numeric methods for the two most important elliptic PDEs that
appear in applications. The two PDEs are the Laplace equation

(2)

and the Poisson equation

(3)

The starting point for developing our numeric methods is the idea that we can replace
the partial derivatives of these PDEs by corresponding difference quotients. Details are
as follows:

To develop this idea, we start with the Taylor formula and obtain

(4)
(a)

(b) u(x � h, y) � u(x, y) � hux(x, y) � 1
2 h2uxx(x, y) � 1

6 h3uxxx(x, y) � Á .

u(x � h, y) � u(x, y) � hux(x, y) � 1
2 h2uxx(x, y) � 1

6 h3uxxx(x, y) � Á

�2u � uxx � uyy � f (x, y).

�2u � uxx � uyy � 0

un

un � 0u>0n

ac � b2 � 0

ac � b2 � 0

ac � b2 � 0

ac � b2,

auxx � 2buxy � cuyy � F(x, y, u, ux, uy).



We subtract (4b) from (4a), neglect terms in and solve for Then

(5a)

Similarly,

and

By subtracting, neglecting terms in and solving for we obtain

(5b)

We now turn to second derivatives. Adding (4a) and (4b) and neglecting terms in
we obtain Solving for 

we have

(6a)

Similarly,

(6b)

We shall not need (see Prob. 1)

(6c)

Figure 453a shows the points in (5) and (6).
We now substitute (6a) and (6b) into the Poisson equation (3), choosing to obtain

a simple formula:

(7)

This is a difference equation corresponding to (3). Hence for the Laplace equation (2)
the corresponding difference equation is

(8)

h is called the mesh size. Equation (8) relates u at to u at the four neighboring points
shown in Fig. 453b. It has a remarkable interpretation: u at equals the mean of the(x, y)

(x, y)

u(x � h, y) � u(x, y � h) � u(x � h, y) � u(x, y � h) � 4u(x, y) � 0.

u(x � h, y) � u(x, y � h) � u(x � h, y) � u(x, y � h) � 4u(x, y) � h2f (x, y).

k � h
(x � h, y), (x � h, y), Á

� u(x � h, y � k) � u(x � h, y � k)4.

uxy(x, y) �
1

4hk
  3u(x � h, y � k) � u(x � h, y � k)

uyy(x, y) �
1

k2
  3u(x, y � k) � 2u(x, y) � u(x, y � k)4.

uxx(x, y) �
1

h2
  3u(x � h, y) � 2u(x, y) � u(x � h, y)4.

uxxu(x � h, y) � u(x � h, y) � 2u(x, y) � h2uxx(x, y).h4, h5, Á ,

uy(x, y) �
1
2k

  3u(x, y � k) � u(x, y � k)4 .

uyk3, k4, Á ,

u(x, y � k) � u(x, y) � kuy(x, y) � 1
2 k2uyy(x, y) � Á .

u(x, y � k) � u(x, y) � kuy(x, y) � 1
2 k2uyy(x, y) � Á

ux(x, y) �
1

2h
 3u(x � h, y) � u(x � h, y)4.

ux.h3, h4, Á ,

924 CHAP. 21 Numerics for ODEs and PDEs
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values of u at the four neighboring points. This is an analog of the mean value property
of harmonic functions (Sec. 18.6).

Those neighbors are often called E (East), N (North), W (West), S (South). Then Fig. 453b
becomes Fig. 453c and (7) is

(7*) u(E) � u(N) � u(W) � u(S) � 4u(x, y) � h2f (x, y).

k

k

h h
(x + h, y)

(x, y + k)

(x, y – k)

(x – h, y)
(x, y)

(a)  Points in (5) and (6)

h

h

h h
(x + h, y)

(x, y + h)

(x, y – h)

(x – h, y)
(x, y)

(b)  Points in (7) and (8)

h

h

h h
E

N

S

W
(x, y)

(c)  Notation in (7*)

Fig. 453. Points and notation in (5)–(8) and (7*)

Our approximation of in (7) and (8) is a 5-point approximation with the
coefficient scheme or stencil (also called pattern, molecule, or star)

(9) We may now write (7) as

Dirichlet Problem
In numerics for the Dirichlet problem in a region R we choose an h and introduce a square
grid of horizontal and vertical straight lines of distance h. Their intersections are called
mesh points (or lattice points or nodes). See Fig. 454.

Then we approximate the given PDE by a difference equation [(8) for the Laplace
equation], which relates the unknown values of u at the mesh points in R to each other
and to the given boundary values (details in Example 1). This gives a linear system of
algebraic equations. By solving it we get approximations of the unknown values of u at
the mesh points in R.

We shall see that the number of equations equals the number of unknowns. Now comes
an important point. If the number of internal mesh points, call it p, is small, say, 
then a direct solution method may be applied to that linear system of equations
in p unknowns. However, if p is large, a storage problem will arise. Now since each
unknown u is related to only 4 of its neighbors, the coefficient matrix of the system is a
sparse matrix, that is, a matrix with relatively few nonzero entries (for instance, 500 of
10,000 when ). Hence for large p we may avoid storage difficulties by using an
iteration method, notably the Gauss–Seidel method (Sec. 20.3), which in PDEs is also

p � 100

p � 100
p � 100,

u � h2f (x, y).d 1

1 �4 1

1

td 1

1 �4 1

1

t .
h2�2u



called Liebmann’s method (note the strict diagonal dominance). Remember that in this
method we have the storage convenience that we can overwrite any solution component
(value of u) as soon as a “new” value is available.

Both cases, large p and small p, are of interest to the engineer, large p if a fine grid is
used to achieve high accuracy, and small p if the boundary values are known only rather
inaccurately, so that a coarse grid will do it because in this case it would be meaningless
to try for great accuracy in the interior of the region R.

We illustrate this approach with an example, keeping the number of equations small,
for simplicity. As convenient notations for mesh points and corresponding values of the
solution (and of approximate solutions) we use (see also Fig. 454)

(10) uij � u(ih, jh).Pij � (ih, jh),
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y

x5h0

P
12

P
22

Pij

P
11

P
21

P
31

Fig. 454. Region in the xy-plane covered by a grid of mesh h, 
also showing mesh points P11 � (h, h), Á , Pij � (ih, jh), Á

With this notation we can write (8) for any mesh point in the form

(11)

Remark. Our current discussion and the example that follows illustrate what we may
call the reuseability of mathematical ideas and methods. Recall that we applied the
Gauss–Seidel method to a system of ODEs in Sec. 20.3 and that we can now apply it
again to elliptic PDEs. This shows that engineering mathematics has a structure and
important mathematical ideas and methods will appear again and again in different
situations. The student should find this attractive in that previous knowledge can be
reapplied.

E X A M P L E  1 Laplace Equation. Liebmann’s Method

The four sides of a square plate of side 12 cm, made of homogeneous material, are kept at constant temperature
and as shown in Fig. 455a. Using a (very wide) grid of mesh 4 cm and applying Liebmann’s method

(that is, Gauss–Seidel iteration), find the (steady-state) temperature at the mesh points.

Solution. In the case of independence of time, the heat equation (see Sec. 10.8)

reduces to the Laplace equation. Hence our problem is a Dirichlet problem for the latter. We choose the grid
shown in Fig. 455b and consider the mesh points in the order We use (11) and, in each equation,
take to the right all the terms resulting from the given boundary values. Then we obtain the system

P11, P21, P12, P22.

ut � c2(uxx � uyy)

100°C0°C

ui�1, j � ui, j�1 � ui�1, j � ui, j�1 � 4uij � 0.

Pij



SEC. 21.4 Methods for Elliptic PDEs 927

(12)

In practice, one would solve such a small system by the Gauss elimination, finding 

More exact values (exact to 3S) of the solution of the actual problem [as opposed to its model (12)] are 88.1
and 61.9, respectively. (These were obtained by using Fourier series.) Hence the error is about which is
surprisingly accurate for a grid of such a large mesh size h. If the system of equations were large, one would
solve it by an indirect method, such as Liebmann’s method. For (12) this is as follows. We write (12) in the
form (divide by and take terms to the right)

These equations are now used for the Gauss–Seidel iteration. They are identical with (2) in Sec. 20.3, where
and the iteration is explained there, with 100, 100, 100, 100 chosen as

starting values. Some work can be saved by better starting values, usually by taking the average of the boundary
values that enter into the linear system. The exact solution of the system is 
as you may verify.

u12 � u22 � 62.5,u11 � u21 � 87.5,

u11 � x1, u21 � x2, u12 � x3, u22 � x4,

 u22 � 0.25u21 � 0.25u12 � 25.

 u12 � 0.25u11 � 0.25u22 � 25

 u21 � 0.25u11 � 0.25u22 � 50

 u11 � 0.25u21 � 0.25u12 � 50

�4

1%,

u12 � u22 � 62.5.
u11 � u21 � 87.5,

 u21 �  u12 �  4u22 � �100.

 u11 � 4u12 �  u22 � �100

 �u11 �  4u21  � u22 � �200

 �4u11 �  u21 �  u12  � �200

0 12

R

12

y

x0

u = 100

u = 0

u = 100 u = 100

u = 100

P
02

P
12

P
22

P
01

P
11

P
21

P
10

P
20

(a)  Given problem (b)  Grid and mesh points

u = 100

u = 0

Fig. 455. Example 1

Remark. It is interesting to note that, if we choose mesh and consider the 
internal mesh points (i.e., mesh points not on the boundary) row by row in the order

then the system of equations has the coefficient matrix

(13) A � S T . Here B � S T
1

�4

�4

1

•

1

•

1

•

1

�4

�4

1

I

B

B

I

•

I

•

I

•

I

B

B

I

(n � 1)2 � (n � 1)2

P11, P21, Á , Pn�1,1, P12, P22, Á , Pn�2,2, Á ,

(n � 1)2h � L>n (L � side of R)



is an matrix. (In (12) we have internal mesh points, two submatrices
B, and two submatrices I.) The matrix A is nonsingular. This follows by noting that the off-diagonal entries in
each row of A have the sum 3 (or 2), whereas each diagonal entry of A equals so that nonsingularity is
implied by Gerschgorin’s theorem in Sec. 20.7 because no Gerschgorin disk can include 0.

A matrix is called a band matrix if it has all its nonzero entries on the main diagonal
and on sloping lines parallel to it (separated by sloping lines of zeros or not). For example,
A in (13) is a band matrix. Although the Gauss elimination does not preserve zeros between
bands, it does not introduce nonzero entries outside the limits defined by the original
bands. Hence a band structure is advantageous. In (13) it has been achieved by carefully
ordering the mesh points.

ADI Method
A matrix is called a tridiagonal matrix if it has all its nonzero entries on the main
diagonal and on the two sloping parallels immediately above or below the diagonal. (See
also Sec. 20.9.) In this case the Gauss elimination is particularly simple.

This raises the question of whether, in the solution of the Dirichlet problem for the
Laplace or Poisson equations, one could obtain a system of equations whose coefficient
matrix is tridiagonal. The answer is yes, and a popular method of that kind, called the
ADI method (alternating direction implicit method ) was developed by Peaceman and
Rachford. The idea is as follows. The stencil in (9) shows that we could obtain a tridiagonal
matrix if there were only the three points in a row (or only the three points in a column).
This suggests that we write (11) in the form

(14a)

so that the left side belongs to y-Row j only and the right side to x-Column i. Of course,
we can also write (11) in the form

(14b)

so that the left side belongs to Column i and the right side to Row j. In the ADI method
we proceed by iteration. At every mesh point we choose an arbitrary starting value 
In each step we compute new values at all mesh points. In one step we use an iteration
formula resulting from (14a) and in the next step an iteration formula resulting from (14b),
and so on in alternating order.

In detail: suppose approximations have been computed. Then, to obtain the next
approximations we substitute the on the right side of (14a) and solve for the

on the left side; that is, we use

(15a)

We use (15a) for a fixed j, that is, for a fixed row j, and for all internal mesh points in
this row. This gives a linear system of N algebraic equations ( number of internal
mesh points per row) in N unknowns, the new approximations of u at these mesh points.
Note that (15a) involves not only approximations computed in the previous step but also
given boundary values. We solve the system (15a) ( j fixed!) by Gauss elimination. Then
we go to the next row, obtain another system of N equations and solve it by Gauss, and
so on, until all rows are done. In the next step we alternate direction, that is, we compute

N �

ui�1, j
(m�1) � 4uij

(m�1) � ui�1, j
(m�1) � �ui, j�1

(m) � ui, j�1
(m) .

uij
(m�1)

uij
(m)uij

(m�1),
uij

(m)

uij
(0).

ui, j�1 � 4uij � ui, j�1 � �ui�1, j � ui�1, j

ui�1, j � 4uij � ui�1, j � �ui, j�1 � ui, j�1

�
�4,

n � 3, (n � 1)2 � 4(n � 1) � (n � 1)

928 CHAP. 21 Numerics for ODEs and PDEs
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the next approximations column by column from the and the given boundary
values, using a formula obtained from (14b) by substituting the on the right:

(15b)

For each fixed i, that is, for each column, this is a system of M equations (M number
of internal mesh points per column) in M unknowns, which we solve by Gauss elimination.
Then we go to the next column, and so on, until all columns are done.

Let us consider an example that merely serves to explain the entire method.

E X A M P L E  2 Dirichlet Problem. ADI Method

Explain the procedure and formulas of the ADI method in terms of the problem in Example 1, using the same
grid and starting values 100, 100, 100, 100.

Solution. While working, we keep an eye on Fig. 455b and the given boundary values. We obtain first
approximations from (15a) with We write boundary values contained in (15a) without
an upper index, for better identification and to indicate that these given values remain the same during the
iteration. From (15a) with we have for (first row) the system

The solution is For (second row) we obtain from (15a) the system

The solution is 

Second approximations are now obtained from (15b) with by using the first
approximations just computed and the boundary values. For (first column) we obtain from (15b) the system

 u11
(2) �  4u12

(2) �  u13 � �u02 � u22
(1).( j � 2)

 u10 �  4u11
(2) �  u12

(2)  � �u01 � u21
(1)( j � 1)

i � 1
m � 1u11

(2), u21
(2), u12

(2), u22
(2)

u12
(1) � u22

(1) � 66.667.

 u12
(1) �  4u22

(1) �  u32 � �u21
(0) � u23.(i � 2)

 u02 �  4u12
(1) �  u22

(1)  � �u11
(0) � u13(i � 1)

j � 2u11
(1) � u21

(1) � 100.

 u11
(1) �  4u21

(1) �  u31 � �u20 � u22
(0).(i � 2)

 u01 �  4u11
(1) �  u21

(1)  � �u10 � u12
(0)(i � 1)

j � 1m � 0

m � 0.u11
(1), u21

(1), u12
(1), u22

(1)

�

ui, j�1
(m�2) � 4uij

(m�2) � ui, j�1
(m�2) � �ui�1, j

(m�1) � ui�1, j
(m�1).

uij
(m�1)

uij
(m�1)uij

(m�2)

The solution is For (second column) we obtain from (15b) the system

The solution is 
In this example, which merely serves to explain the practical procedure in the ADI method, the accuracy of

the second approximations is about the same as that of two Gauss–Seidel steps in Sec. 20.3 (where
as the following table shows.

Method u11 u21 u12 u22

ADI, 2nd approximations 91.11 91.11 64.44 64.44
Gauss–Seidel, 2nd approximations 93.75 90.62 65.62 64.06
Exact solution of (12) 87.50 87.50 62.50 62.50

�

u11 � x1, u21 � x2, u12 � x3, u22 � x4),

u21
(2) � 91.11, u22

(2) � 64.44.

 u21
(2) �  4u22

(2) �  u23 � �u12
(1) � u32.( j � 2)

 u20 �  4u21
(2) �  u22

(2)  � �u11
(1) � u31( j � 1)

i � 2u11
(2) � 91.11, u12

(2) � 64.44,
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1. Derive (5b), (6b), and (6c).

2. Verify the calculations in Example 1 of the text. Find
out experimentally how many steps you need to obtain
the solution of the linear system with an accuracy of 3S.

3. Use of symmetry. Conclude from the boundary values
in Example 1 that and Show
that this leads to a system of two equations and solve it.

4. Finer grid of inner points. Solve Example 1,
choosing (instead of and the
same starting values.

5–10 GAUSS ELIMINATION, GAUSS–SEIDEL
ITERATION

Fig. 456. Problems 5–10

y

x

3

2

1

0
3210

P
12

P
22

P
11

P
21

h � 12
3 � 4)h � 12

4 � 3
3 � 3

u22 � u12.u21 � u11

For the grid in Fig. 456 compute the potential at the
four internal points by Gauss and by 5 Gauss–Seidel
steps with starting values 100, 100, 100, 100 (showing
the details of your work) if the boundary values on the
edges are:

5. on the other
three edges.

6. on the left, on the lower edge, on
the right, on the upper edge.

7. on the upper and lower edges, on the left and
right. Sketch the equipotential lines.

8. on the upper and lower edges, 110 on the left
and right.

9. on the upper edge, 0 on the other edges,
10 steps.

10. on the lower edge, on the right,
on the upper edge, on the left.

Verify the exact solution and
determine the error.

x4 � 6x2y2 � y4
y4x4 � 54x2 � 81

81 � 54y2 � y4u � x4

u � sin 13 px

u � 220

�U0U0

x3 � 27x
27 � 9y2x3u � 0

u (1, 0) � 60, u (2, 0) � 300, u � 100

P R O B L E M  S E T 2 1 . 4

Improving Convergence. Additional improvement of the convergence of the ADI
method results from the following interesting idea. Introducing a parameter p, we can also
write (11) in the form

(16)
(a)

(b)

This gives the more general ADI iteration formulas

(17)
(a)

(b)

For this is (15). The parameter p may be used for improving convergence. Indeed,
one can show that the ADI method converges for positive p, and that the optimum value
for maximum rate of convergence is

(18)

where K is the larger of and (see above). Even better results can be achieved
by letting p vary from step to step. More details of the ADI method and variants are
discussed in Ref. [E25] listed in App. 1.

N � 1M � 1

p0 � 2 sin  
p

K
 

p � 2,

ui, j�1
(m�2) � (2 � p)uij

(m�2) � ui, j�1
(m�2) � �ui�1, j

(m�1) � (2 � p)uij
(m�1) � ui�1, j

(m�1).

ui�1, j
(m�1) � (2 � p)uij

(m�1) � ui�1, j
(m�1) � �ui, j�1

(m) � (2 � p)uij
(m) � ui, j�1

(m)

ui, j�1 � (2 � p)uij � ui, j�1 � �ui�1, j � (2 � p)uij � ui�1, j .

ui�1, j � (2 � p)uij � ui�1, j � �ui, j�1 � (2 � p)uij � ui, j�1
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11. Find the potential in Fig. 457 using (a) the coarse
grid, (b) the fine grid and Gauss elimination.
Hint. In (b), use symmetry; take as boundary
value at the two points at which the potential has a
jump.

Fig. 457. Region and grids in Problem 11

12. Influence of starting values. Do Prob. 9 by Gauss–
Seidel, starting from 0. Compare and comment.

13. For the square let the boundary
temperatures be on the horizontal and on the
vertical edges. Find the temperatures at the interior
points of a square grid with 

14. Using the answer to Prob. 13, try to sketch some
isotherms.

h � 1.

50°C0°C
0 	 x 	 4, 0 	 y 	 4

u = 110 V

u = –110 V

u = 110 V

u = –110 V

u = –110 V

u = 110 V

P
12

P
11

u � 0
5 � 3,

15. Find the isotherms for the square and grid in Prob. 13
if on the horizontal and on the
vertical edges. Try to sketch some isotherms.

16. ADI. Apply the ADI method to the Dirichlet problem
in Prob. 9, using the grid in Fig. 456, as before and
starting values zero.

17. What in (18) should we choose for Prob. 16? Apply
the ADI formulas (17) with that value of to Prob. 16,
performing 1 step. Illustrate the improved convergence
by comparing with the corresponding values 0.077,
0.308 after the first step in Prob. 16. (Use the starting
values zero.)

18. CAS PROJECT. Laplace Equation. (a) Write a
program for Gauss–Seidel with 16 equations in 16
unknowns, composing the matrix (13) from the indicated

submatrices and including a transformation of
the vector of the boundary values into the vector b of

(b) Apply the program to the square grid in 
with and on the upper and

lower edges, on the left edge and 
on the right edge. Solve the linear system also by Gauss
elimination. What accuracy is reached in the 20th
Gauss–Seidel step?

u � �10u � 110
u � 220h � 10 	 y 	 5

0 	 x 	 5,

Ax � b.

4 � 4

p0

p0

�sin 14 pyu � sin 14 px

21.5 Neumann and Mixed Problems. 
Irregular Boundary

We continue our discussion of boundary value problems for elliptic PDEs in a region R
in the xy-plane. The Dirichlet problem was studied in the last section. In solving Neumann
and mixed problems (defined in the last section) we are confronted with a new situation,
because there are boundary points at which the (outer) normal derivative of
the solution is given, but u itself is unknown since it is not given. To handle such points
we need a new idea. This idea is the same for Neumann and mixed problems. Hence we
may explain it in connection with one of these two types of problems. We shall do so and
consider a typical example as follows.

E X A M P L E  1 Mixed Boundary Value Problem for a Poisson Equation

Solve the mixed boundary value problem for the Poisson equation

�2u � uxx � uyy � f (x, y) � 12xy

un � 0u>0n
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P
01

P
11

P
21

P
02

P
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P
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P
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P
32

P
31

P
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P
20

1.0

0.5

0

0 0.5 1.0 1.5

un = 3 u = 3

u = 0u = 0

u = 0

u = 0

u = 0.375

un = 6

R

(a) Region R and boundary values (b) Grid (h = 0.5)

Fig. 458. Mixed boundary value problem in Example 1

Solution. We use the grid shown in Fig. 458b, where We recall that (7) in Sec. 21.4 has the right
side From the formulas and given on the boundary we compute
the boundary data

(1)

and are internal mesh points and can be handled as in the last section. Indeed, from (7), Sec. 21.4, with
and and from the given boundary values we obtain two equations corresponding to

and as follows (with resulting from the left boundary).

(2a)

The only difficulty with these equations seems to be that they involve the unknown values and of u at
and on the boundary, where the normal derivative is given, instead of u; but we

shall overcome this difficulty as follows.
We consider and The idea that will help us here is this. We imagine the region R to be extended

above to the first row of external mesh points (corresponding to and we assume that the Poisson
equation also holds in the extended region. Then we can write down two more equations as before (Fig. 458b)

(2b)

On the right, 1.5 is at and 3 is at and 0 (at and 3 (at ) are given boundary
values. We remember that we have not yet used the boundary condition on the upper part of the boundary of
R, and we also notice that in (2b) we have introduced two more unknowns But we can now use that
condition and get rid of by applying the central difference formula for From (1) we then obtain
(see Fig. 458b)

hence

hence

Substituting these results into (2b) and simplifying, we have

 2u21 �  u12 �  4u22 � 3 � 3 � 6 � �6.

 2u11 � 4u12 �  u22 � 1.5 � 3 � �1.5

u23 � u21 � 6. 6 �
0u22

0y
 �

u23 � u21

2h
 � u23 � u21,

u13 � u11 � 3 3 �
0u12

0y
 �

u13 � u11

2h
 � u13 � u11,

du>dy.u13, u23

u13, u23.

P32P02)(1, 1)12xyh2(0.5, 1)12xyh2

 u21 �  u12 �  4u22  � u23 � 3 � 3 � 0.

 u11 � 4u12 �  u22 �  u13  � 1.5 � 0 � 1.5

y � 1.5),
P22.P12

un � 0u>0n � 0u>0yP22P12

u22u12

 u11 �  4u21  � u22 � 12 (1 � 0.5) � 1
4 � 0.375 � 1.125.

 �4u11 �  u21 �  u12  � 12 (0.5 � 0.5) � 1
4 � 0 � 0.75

�0P21,P11

h2f (x, y) � 3xyh2 � 0.25
P21P11

u31 � 0.375,  u32 � 3,  
0u12

0n
 �

0u12

0y
 � 6 � 0.5 � 3.  

0u22

0n
 �

0u22

0y
 � 6 � 1 � 6.

un � 6xu � 3y3h2f (x, y) � 0.52 � 12xy � 3xy.
h � 0.5.

shown in Fig. 458a.
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Together with (2a) this yields, written in matrix form,

(3)

(The entries 2 come from and and so do and on the right). The solution of (3) (obtained by
Gauss elimination) is as follows; the exact values of the problem are given in parentheses.

Irregular Boundary
We continue our discussion of boundary value problems for elliptic PDEs in a region R
in the xy-plane. If R has a simple geometric shape, we can usually arrange for certain
mesh points to lie on the boundary C of R, and then we can approximate partial derivatives
as explained in the last section. However, if C intersects the grid at points that are not
mesh points, then at points close to the boundary we must proceed differently, as follows.

The mesh point O in Fig. 459 is of that kind. For O and its neighbors A and P we obtain
from Taylor’s theorem

(4)

(a)

(b)

We disregard the terms marked by dots and eliminate Equation (4b) times a plus
equation (4a) gives

uA � auP � (1 � a) uO �
1
2

  a (a � 1) h2 
02uO

0x2   .

0uO>0x.

 uP �  uO �  h 
0uO

0x
�

1

2
  h2  

02uO

0x2 � Á .

 uA �  uO �  ah 
0uO

0x
�

1

2
 (ah)2  

02uO

0x2 � Á

� u11 � 0.077 (exact 0.125)   u21 � 0.191 (exact 0.25).

 u12 � 0.866 (exact 1)   u22 � 1.812 (exact 2)

�6�3u23,u13

E�4 1 1 0

1 �4 0 1

2 0 �4 1

0 2 1 �4

U Eu11

u21

u12

u22

U � E0.75

1.125

1.5 � 3

0 � 6

U � E 0.75

1.125

�1.5

�6

U .

bh

h

ah

O

B

AP

Q
C

Fig. 459. Curved boundary C of a region R, a mesh point O near C, 
and neighbors A, B, P, Q

We solve this last equation algebraically for the derivative, obtaining

02uO

0x2  �
2
h2   c 1

a (1 � a)
  uA �

1
1 � a

  uP �
1
a   uO d  .



Similarly, by considering the points O, B, and Q,

By addition,

(5)

For example, if instead of the stencil (see Sec. 21.4)

we now have

because etc. The sum of all five terms still being zero (which is useful
for checking).

Using the same ideas, you may show that in the case of Fig. 460.

(6)

a formula that takes care of all conceivable cases.

�2uO �
2

h2 c uA

a(a � p)
 �

uB

b(b � q)
 �

uP

p(p � a)
 �

uQ

q(q � b)
 �

ap � bq

abpq
 uO d

 

,

1>[a (1 � a)] � 4
3 ,

d 4
3

2
3 �4 4

3

2
3

t .d 1

1 �4 1

1

t
a � 1

2 , b � 1
2 ,

�2uO �
2

h2   c uA

a(1 � a)
 �

uB

b(1 � b)
 �

uP

1 � a
 �

uQ

1 � b
 �

(a � b)uO

ab
 d  .

02uO

0y2  �
2
h2 c 1

b(1 � b)
 uB �

1
1 � b

 uQ �
1
b

 uO d
 

.
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bh

qh

ahph O

B

AP

Q

Fig. 460. Neighboring points A, B, P, Q of a 
mesh point O and notations in formula (6)

E X A M P L E  2 Dirichlet Problem for the Laplace Equation. Curved Boundary

Find the potential u in the region in Fig. 461 that has the boundary values given in that figure; here the curved
portion of the boundary is an arc of the circle of radius 10 about (0,0). Use the grid in the figure.

Solution. u is a solution of the Laplace equation. From the given formulas for the boundary values 
we compute the values at the points where we need them; the result is shown in the figure.

For and we have the usual regular stencil, and for and we use (6), obtaining

(7) P11, P12: 

1c1 �4 1

1

s 0.5

 ,  P21: c0.6 �2.5 0.9

0.5

s,  P22: 

0.9c0.6 �3 0.9

0.6

s .
P22P21P12P11

u � 512 � 24y2, Á
u � x3,



We use this and the boundary values and take the mesh points in the usual order Then we
obtain the system

In matrix form,

(8)

Gauss elimination yields the (rounded) values

Clearly, from a grid with so few mesh points we cannot expect great accuracy. The exact solution of the PDE
(not of the difference equation) having the given boundary values is and yields the values

In practice one would use a much finer grid and solve the resulting large system by an indirect method. �

u11 � �54,  u21 � 54,  u12 � �297,  u22 � �432.

u � x3 � 3xy2

u11 � �55.6,  u21 � 49.2,  u12 � �298.5,  u22 � �436.3.

E�4 1 1 0

0.6 �2.5 0 0.5

1 0 �4 1

0 0.6 0.6 �3

U  Eu11

u21

u12

u22

U � E �27

�374.4

702

1159.2

U .
0.6u21 � 0.6u12 � 3u22 �  0.9 # 352 � 0.9 # 936 �  1159.2

u11 � 4u12 � u22 �  702 � 0 � 702

0.6u11 � 2.5u21 � 0.5u22 �  �0.9 # 296 � 0.5 # 216 �  �374.4

�4u11 � u21 � u12 � 0 � 27 � �27

P11, P21, P12, P22.
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u = 512 – 24y2

u = 4x3 – 300x

u = x3 

u = x3 – 243x

u = –352

u = –702

u = –936

u = 0
u = 0

u = 0

u = 27
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Fig. 461. Region, boundary values of the potential, and grid in Example 2

1–7 MIXED BOUNDARY VALUE PROBLEMS

1. Check the values for the Poisson equation at the end
of Example 1 by solving (3) by Gauss elimination.

2. Solve the mixed boundary value problem for the
Poisson equation in the region and
for the boundary conditions shown in Fig. 462, using
the indicated grid.

�2u � 2 (x2 � y2)

Fig. 462. Problems 2 and 6

P R O B L E M  S E T  2 1 . 5
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x

P
12

P
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P
11

P
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2

1

0
0 1 2 3

u = 9x2

ux = 6y2u = 0

u = 0



3. CAS EXPERIMENT. Mixed Problem. Do Example
1 in the text with finer and finer grids of your choice
and study the accuracy of the approximate values by
comparing with the exact solution Verify the
latter.

4. Solve the mixed boundary value problem for the
Laplace equation in the rectangle in Fig. 458a
(using the grid in Fig. 458b) and the boundary
conditions on the left edge, on the right
edge, on the lower edge, and on
the upper edge.

5. Do Example 1 in the text for the Laplace equation
(instead of the Poisson equation) with grid and
boundary data as before.

6. Solve for the grid in Fig. 462
and on the other
three sides of the square.

7. Solve Prob. 4 when on the upper edge and
on the other edges.

8–16 IRREGULAR BOUNDARY

8. Verify the stencil shown after (5).

9. Derive (5) in the general case.

10. Derive the general formula (6) in detail.

11. Derive the linear system in Example 2 of the text.

12. Verify the solution in Example 2.

13. Solve the Laplace equation in the region and for the
boundary values shown in Fig. 463, using the
indicated grid. (The sloping portion of the boundary
is y � 4.5 � x.)

u � 110
un � 110

uy(1, 3) � uy(2, 3) � 1
2 1243, u � 0

�2u � �p2y sin 13 px

u � x2 � 1u � x2
ux � 3ux � 0

�2u � 0

u � 2xy3.
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Fig. 463. Problem 13

14. If, in Prob. 13, the axes are grounded what
constant potential must the other portion of the
boundary have in order to produce 220 V at 

15. What potential do we have in Prob. 13 if V
on the axes and on the other portion of the
boundary?

16. Solve the Poisson equation in the region and
for the boundary values shown in Fig. 464, using the
grid also shown in the figure.

�2u � 2

u � 0
u � 100

P11?

(u � 0),

y

x

P
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P
22

P
11

P
21

3
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0
0 1 2 3

u = 0

u = x2 – 1.5x

u = 9 – 3y
u = 0

u = 3x

Fig. 464. Problem 16
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21.6 Methods for Parabolic PDEs
The last two sections concerned elliptic PDEs, and we now turn to parabolic PDEs. Recall
that the definitions of elliptic, parabolic, and hyperbolic PDEs were given in Sec. 21.4.
There it was also mentioned that the general behavior of solutions differs from type to
type, and so do the problems of practical interest. This reflects on numerics as follows.

For all three types, one replaces the PDE by a corresponding difference equation, but
for parabolic and hyperbolic PDEs this does not automatically guarantee the convergence
of the approximate solution to the exact solution as the mesh in fact, it does not
even guarantee convergence at all. For these two types of PDEs one needs additional
conditions (inequalities) to assure convergence and stability, the latter meaning that small
perturbations in the initial data (or small errors at any time) cause only small changes at
later times.

In this section we explain the numeric solution of the prototype of parabolic PDEs, the
one-dimensional heat equation

(c constant).ut � c2uxx

h: 0;



This PDE is usually considered for x in some fixed interval, say, and time
and one prescribes the initial temperature ( f given) and boundary

conditions at and for all for instance, We may
assume and this can always be accomplished by a linear transformation of
x and t (Prob. 1). Then the heat equation and those conditions are

(1)

(2) (Initial condition)

(3) (Boundary conditions).

A simple finite difference approximation of (1) is [see (6a) in Sec. 21.4; j is the number
of the time step]

(4)

Figure 465 shows a corresponding grid and mesh points. The mesh size is h in the x-direction
and k in the t-direction. Formula (4) involves the four points shown in Fig. 466. On the left
in (4) we have used a forward difference quotient since we have no information for negative
t at the start. From (4) we calculate which corresponds to time row in terms
of the three other u that correspond to time row j. Solving (4) for we have

(5)

Computations by this explicit method based on (5) are simple. However, it can be shown
that crucial to the convergence of this method is the condition

(6) r �
k
h2 	

1
2

 .

r �
k

h2
 .ui, j�1 � (1 � 2r)uij � r(ui�1, j � ui�1, j),

ui, j�1,
j � 1,ui, j�1,

1
k

 (ui, j�1 � uij) �
1
h2 (ui�1, j � 2uij � ui�1, j).

u(0, t) � u(1, t) � 0

u(x, 0) � f (x)

0 	 x 	 1, t 
 0ut � uxx

L � 1;c � 1
u(0, t) � 0, u(L, t) � 0.t 
 0,x � Lx � 0

u(x, 0) � f (x)t 
 0,
0 	 x 	 L,
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t
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( j = 3)

( j = 2)u = 0
u = 0

u = f (x)

( j = 1)

10
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k h

Fig. 465. Grid and mesh points corresponding to (4), (5)

h h

k

(i, j + 1)

(i, j)

(i – 1, j) (i + 1, j)

Fig. 466. The four points in (4) and (5)
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That is, should have a positive coefficient in (5) or (for be absent from (5).
Intuitively, (6) means that we should not move too fast in the t-direction. An example is
given below.

Crank–Nicolson Method
Condition (6) is a handicap in practice. Indeed, to attain sufficient accuracy, we have
to choose h small, which makes k very small by (6). For example, if then

Accordingly, we should look for a more satisfactory discretization of the
heat equation.

A method that imposes no restriction on is the Crank–Nicolson (CN)
method,5 which uses values of u at the six points in Fig. 467. The idea of the method
is the replacement of the difference quotient on the right side of (4) by times the
sum of two such difference quotients at two time rows (see Fig. 467). Instead of (4)
we then have

(7)

Multiplying by 2k and writing as before, we collect the terms corresponding to
time row on the left and the terms corresponding to time row j on the right:

(8)

How do we use (8)? In general, the three values on the left are unknown, whereas the
three values on the right are known. If we divide the x-interval in (1) into n
equal intervals, we have internal mesh points per time row (see Fig. 465, where

Then for and formula (8) gives a linear system of 
equations for the unknown values in the first time row in terms
of the initial values and the boundary values 
Similarly for and so on; that is, for each time row we have to solve such a
linear system of equations resulting from (8).

Although is no longer restricted, smaller r will still give better results. In
practice, one chooses a k by which one can save a considerable amount of work, without

r � k>h2
n � 1

j � 1, j � 2,
u01(� 0), un1 (� 0).u00, u10, Á , un0

u11, u21, Á , un�1,1n � 1
n � 1i � 1, Á , n � 1,j � 0n � 4).

n � 1
0 	 x 	 1

(2 � 2r)ui, j�1 � r(ui�1, j�1 � ui�1, j�1 � (2 � 2r)uij � r(ui�1, j � ui�1, j).

j � 1
r � k>h2

 �
1

2h2
 (ui�1, j�1 � 2ui, j�1 � ui�1, j�1).

 
1
k

 (ui, j�1 � uij) �
1

2h2 (ui�1, j  � 2uij  � ui�1, j)

1
2 

r � k>h2

k 	 0.005.
h � 0.1,

r � 1
2 )uij

5JOHN CRANK (1916–2006), English mathematician and physicist at Courtaulds Fundamental Research
Laboratory, professor at Brunel University, England. Student of Sir WILLIAM LAWRENCE BRAGG
(1890–1971), Australian British physicist, who with his father, Sir WILLIAM HENRY BRAGG (1862–1942)
won the Nobel Prize in physics in 1915 for their fundamental work in X-ray crystallography. (This is the only
case where a father and a son shared the Nobel Prize for the same research. Furthermore, W. L. Bragg is the
youngest Nobel laureate ever.) PHYLLIS NICOLSON (1917–1968), English mathematician, professor at the
University of Leeds, England.
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E X A M P L E  1 Temperature in a Metal Bar. Crank–Nicolson Method, Explicit Method

Consider a laterally insulated metal bar of length 1 and such that in the heat equation. Suppose that the
ends of the bar are kept at temperature and the temperature in the bar at some instant—call it —
is Applying the Crank–Nicolson method with and find the temperature in
the bar for Compare the results with the exact solution. Also apply (5) with an r satisfying (6),
say, and with values not satisfying (6), say, and 

Solution by Crank–Nicolson. Since formula (8) takes the form (9). Since and
we have Hence we have to do 5 steps. Figure 468 shows the grid. We shall need

the initial values

Also, and (Recall that means u at in Fig. 468, etc.) In each time row in Fig.
468 there are 4 internal mesh points. Hence in each time step we would have to solve 4 equations in 4
unknowns. But since the initial temperature distribution is symmetric with respect to and at
both ends for all t, we have in the first time row and similarly for the other rows. This
reduces each system to 2 equations in 2 unknowns. By (9), since and for these
equations are

The solution is Similarly, for time row we have the system

 (i � 2)  �u12 � 3u22 � u11 � u21 � 1.045313.

 (i � 1)   4u12 � u22 � u01 � u21 � 0.646039

j � 1u11 � 0.399274, u21 � 0.646039.

 (i � 2)   �u11 � 4u21 � u21 � u10 � u20 � 1.538842.

 (i � 1)   4u11 � u21 � u00 � u20 � 0.951057

j � 0u01 � 0,u31 � u21

u31 � u21, u41 � u11

u � 0x � 0.5,

P10u10u40 � u10.u30 � u20

u10 � sin 0.2p � 0.587785,  u20 � sin 0.4p � 0.951057.

k � h2 � 0.04.r � k>h2 � 1,
h � 0.2r � 1,

r � 2.5.r � 1r � 0.25,
0 	 t 	 0.2.

u(x, t)r � 1,h � 0.2f (x) � sin px.
t � 0u � 0°C

c2 � 1

h h

k

Time row j + 1

Time row j

Fig. 467. The six points in the Crank–Nicolson formulas (7) and (8)
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Fig. 468. Grid in Example 1

making r too large. For instance, often a good choice is (which would be impossible
in the previous method). Then (8) becomes simply

(9) 4ui, j�1 � ui�1, j�1 � ui�1, j�1 � ui�1, j � ui�1, j.

r � 1



The solution is and so on. This gives the temperature distribution
(Fig. 469):

t

0.00 0 0.588 0.951 0.951 0.588 0
0.04 0 0.399 0.646 0.646 0.399 0
0.08 0 0.271 0.439 0.439 0.271 0
0.12 0 0.184 0.298 0.298 0.184 0
0.16 0 0.125 0.202 0.202 0.125 0
0.20 0 0.085 0.138 0.138 0.085 0

x � 1x � 0.8x � 0.6x � 0.4x � 0.2x � 0

u12 � 0.271221, u22 � 0.438844,
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Fig. 469. Temperature distribution in the bar in Example 1

Comparison with the exact solution. The present problem can be solved exactly by separating
variables (Sec. 12.5); the result is

(10)

Solution by the explicit method (5) with For and we have
Hence we have to perform 4 times as many steps as with the Crank–Nicolson

method! Formula (5) with is

(11)

We can again make use of the symmetry. For we need (see p. 939),
and compute

Of course we can omit the boundary terms from the formulas. For we compute

and so on. We have to perform 20 steps instead of the 5 CN steps, but the numeric values show that the accuracy
is only about the same as that of the Crank–Nicolson values CN. The exact 3D-values follow from (10).

 u22 � 0.25(u11 � 3u21) � 0.778094

 u12 � 0.25(2u11 � u21) � 0.480888

j � 1u01 � 0, u02 � 0, Á

 u21 � 0.25(u10 � 2u20 � u30) � 0.25(u10 � 3u20) � 0.860239.

 u11 � 0.25(u00 � 2u10 � u20) � 0.531657

u20 � u30 � 0.951057
u00 � 0, u10 � 0.587785j � 0

ui, j�1 � 0.25(ui�1, j � 2uij � ui�1, j).

r � 0.25
k � rh2 � 0.25 � 0.04 � 0.01.

r � k>h2 � 0.25h � 0.2r � 0.25.

u(x, t) � sin px e�p2t.



t
CN By (11) Exact CN By (11) Exact

0.04 0.399 0.393 0.396 0.646 0.637 0.641
0.08 0.271 0.263 0.267 0.439 0.426 0.432
0.12 0.184 0.176 0.180 0.298 0.285 0.291
0.16 0.125 0.118 0.121 0.202 0.191 0.196
0.20 0.085 0.079 0.082 0.138 0.128 0.132

Failure of (5) with r violating (6). Formula (5) with and —which violates (6)—is

and gives very poor values; some of these are

ui, j�1 � ui�1, j � uij � ui�1, j

r � 1h � 0.2

x � 0.4x � 0.2
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t Exact Exact

0.04 0.363 0.396 0.588 0.641
0.12 0.139 0.180 0.225 0.291
0.20 0.053 0.082 0.086 0.132

x � 0.4x � 0.2

t Exact Exact

0.1 0.0265 0.2191 0.0429 0.3545
0.3 0.0001 0.0304 0.0001 0.0492.

x � 0.4x � 0.2

Formula (5) with an even larger (and as before) gives completely nonsensical results; some of
these are

h � 0.2r � 2.5

�

1. Nondimensional form. Show that the heat equation
u�t� � c2u�x�x�, 0 	 x� 	 L, can be transformed to the
“nondimensional” standard form ut � uxx, 0 	 x 	 1,
by setting x � x�/L, t � c2 t�/L2, u � u�/u0, where is
any constant temperature.

2. Difference equation. Derive the difference approxi-
mation (4) of the heat equation.

3. Explicit method. Derive (5) by solving (4) for 

4. CAS EXPERIMENT. Comparison of Methods.

(a) Write programs for the explicit and the Crank—
Nicolson methods.

(b) Apply the programs to the heat problem of a
laterally insulated bar of length 1 with 
and for all t, using 

for the explicit method (20 steps), 
and (9) for the Crank–Nicolson method (5 steps).
Obtain exact 6D-values from a suitable series and
compare.

(c) Graph temperature curves in (b) in two figures
similar to Fig. 299 in Sec. 12.7.

h � 0.2k � 0.01
h � 0.2,u(0, t) � u(1, t) � 0

u(x, 0) � sin px

ui, j�1.

u0

(d) Experiment with smaller h (0.1, 0.05, etc.) for both
methods to find out to what extent accuracy increases
under systematic changes of h and k.

EXPLICIT METHOD

5. Using (5) with and solve the heat
problem (1)–(3) to find the temperature at in a
laterally insulated bar of length 10 ft and initial
temperature 

6. Solve the heat problem (1)–(3) by the explicit method
with and 8 time steps, when 
if if Compare
with the 3S-values 0.108, 0.175 for 

obtained from the series (2 terms) in
Sec. 12.5.

7. The accuracy of the explicit method depends on
Illustrate this for Prob. 6, choosing (and
as before). Do 4 steps. Compare the values for
and 0.08 with the 3S-values in Prob. 6, which

are 0.156, 0.254 (t � 0.04), 0.105, 0.170 (t � 0.08).
t � 0.04
h � 0.2

r � 1
2 r (	 1

2).

x � 0.2, 0.4
t � 0.08,

1
2 	 x 	 1.0 	 x � 1

2 , f (x) � 1 � x
f (x) � xk � 0.01,h � 0.2

f (x) � x(1 � 0.1x).

t � 2
k � 0.5,h � 1
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8. In a laterally insulated bar of length 1 let the initial
temperature be if 
if Let (1) and (3) hold. Apply the explicit
method with 5 steps. Can you expect
the solution to satisfy for all t?

9. Solve Prob. 8 with if 
if the other data

being as before.

10. Insulated end. If the left end of a laterally insulated
bar extending from to is insulated, the
boundary condition at is 
Show that, in the application of the explicit method
given by (5), we can compute by the formula

Apply this with and to determine the
temperature in a laterally insulated bar extending
from to 1 if the left end is insulated
and the right end is kept at temperature 
Hint. Use 0 � 0u0j>0x � (u1j � u�1j)>2h.

g(t) � sin 50
3  pt.

u(x, 0) � 0,x � 0
u(x, t)

r � 0.25h � 0.2

u0j�1 � (1 � 2r)u0j � 2ru1j.

u0j�1

un(0, t) � ux(0, t) � 0.x � 0
x � 1x � 0

0.2 � x 	 1,f (x) � 0.25(1 � x)
0 	 x 	 0.2,f (x) � x

u(x, t) � u(1 � x, t)
h � 0.2, k � 0.01,

0.5 	 x 	 1.
0 	 x � 0.5, f (x) � 1 � xf (x) � x

CRANK–NICOLSON METHOD

11. Solve Prob. 9 by (9) with 2 steps. Compare
with exact values obtained from the series in Sec. 12.5
(2 terms) with suitable coefficients.

12. Solve the heat problem (1)–(3) by Crank–Nicolson
for with and when

if if 
Compare with the exact values for obtained
from the series (2 terms) in Sec. 12.5.

13–15

Solve (1)–(3) by Crank–Nicolson with (5 steps),
where:

13. if if

14. (Compare with Prob. 15.)

15. f (x) � x(1 � x), h � 0.2

f (x) � x(1 � x), h � 0.1.

0.25 	 x 	 1, h � 0.2
0 	 x � 0.25,  f (x) � 1.25(1 � x)f (x) � 5x

r � 1

t � 0.20

1
2 	 x 	 1.0 	 x � 1

2, f (x) � 1 � xf (x) � x
k � 0.04h � 0.20 	 t 	 0.20

h � 0.2,

21.7 Method for Hyperbolic PDEs
In this section we consider the numeric solution of problems involving hyperbolic PDEs.
We explain a standard method in terms of a typical setting for the prototype of a hyperbolic
PDE, the wave equation:

(1)

(2) (Given initial displacement)

(3) (Given initial velocity)

(4) (Boundary conditions).

Note that an equation and another x-interval can be reduced to the form (1)
by a linear transformation of x and t. This is similar to Sec. 21.6, Prob. 1.

For instance, (1)–(4) is the model of a vibrating elastic string with fixed ends at 
and (see Sec. 12.2). Although an analytic solution of the problem is given in (13),
Sec. 12.4, we use the problem for explaining basic ideas of the numeric approach that are
also relevant for more complicated hyperbolic PDEs.

Replacing the derivatives by difference quotients as before, we obtain from (1) [see (6)
in Sec. 21.4 with 

(5)

where h is the mesh size in x, and k is the mesh size in t. This difference equation relates
5 points as shown in Fig. 470a. It suggests a rectangular grid similar to the grids for

1

k2
 (ui, j�1 � 2uij � ui, j�1) �

1

h2
 (ui�1, j � 2uij � ui�1, j)

y � t]

x � 1
x � 0

utt � c2uxx

u(0, t) � u(1, t) � 0

ut(x, 0) � g(x) 

u(x, 0) � f (x)

0 	 x 	 1, t 
 0utt � uxx



parabolic equations in the preceding section. We choose Then drops
out and we have

(6) (Fig. 470b).

It can be shown that for the present explicit method is stable, so that from
(6) we may expect reasonable results for initial data that have no discontinuities. (For a
hyperbolic PDE the latter would propagate into the solution domain—a phenomenon that
would be difficult to deal with on our present grid. For unconditionally stable implicit
methods see [E1] in App. 1.)

0 � r* 	 1

ui, j�1 � ui�1, j � ui�1, j � u1, j�1

uijr* � k2>h2 � 1.
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(a) Formula (5) (b) Formula (6)

Time row j + 1

Time row j

Time row j – 1

k

k
h h

Fig. 470. Mesh points used in (5) and (6)

Equation (6) still involves 3 time steps , whereas the formulas in the
parabolic case involved only 2 time steps. Furthermore, we now have 2 initial conditions.
So we ask how we get started and how we can use the initial condition (3). This can be
done as follows.

From we derive the difference formula

(7) hence

where . For that is, equation (6) is

Into this we substitute as given in (7). We obtain 
and by simplification

(8)

This expresses in terms of the initial data. It is for the beginning only. Then use (6).

E X A M P L E  1 Vibrating String, Wave Equation

Apply the present method with to the problem (1)–(4), where

Solution. The grid is the same as in Fig. 468, Sec. 21.6, except for the values of t, which now are 
(instead of The initial values are the same as in Example 1, Sec. 21.6. From (8)
and we have

ui1 � 1
2 (ui�1,0 � ui�1,0).

g(x) � 0
u00, u10, Á0.04, 0.08, Á ).

0.2, 0.4, Á

g(x) � 0.f (x) � sin px,

h � k � 0.2

ui1

ui1 � 1
2 (ui�1,0 � ui�1,0) � kgi,

ui1 � ui�1,0 � ui�1,0 � ui1 � 2kgiui,�1

ui1 � ui�1,0 � ui�1,0 � ui,�1.

j � 0,t � 0,gi � g(ih)

ui,�1 � ui1 � 2kgi
1
2k

 (ui1 � ui,�1) � gi,

ut(x, 0) � g(x)

j � 1, j, j � 1



From this we compute, using 

and by symmetry as in Sec. 21.6, Example 1. From (6) with we now compute,
using 

and by symmetry; and so on. We thus obtain the following values of the displacement
of the string over the first half-cycle:

t

0.0 0 0.588 0.951 0.951 0.588 0
0.2 0 0.476 0.769 0.769 0.476 0
0.4 0 0.182 0.294 0.294 0.182 0
0.6 0 �0.182 �0.294 �0.294 �0.182 0
0.8 0 �0.476 �0.769 �0.769 �0.476 0
1.0 0 �0.588 �0.951 �0.951 �0.588 0

These values are exact to 3D (3 decimals), the exact solution of the problem being (see Sec. 12.3)

The reason for the exactness follows from d’Alembert’s solution (4), Sec. 12.4. (See Prob. 4, below.)

This is the end of Chap. 21 on numerics for ODEs and PDEs, a field that continues to
develop rapidly in both applications and theoretical research. Much of the activity in the
field is due to the computer serving as an invaluable tool for solving large-scale and
complicated practical problems as well as for testing and experimenting with innovative
ideas. These ideas could be small or major improvements on existing numeric algorithms
or testing new algorithms as well as other ideas.

�

u(x, t) � sin px cos pt.

x � 1x � 0.8x � 0.6x � 0.4x � 0.2x � 0

u(x, t)
u32 � u22, u42 � u12

 (i � 2)  u22 � u11 � u31 � u20 � 0.475528 � 0.769421 � 0.951057 � 0.293892,

 (i � 1)  u12 � u01 � u21 � u10 � 0.769421 � 0.587785 � 0.181636

u01 � u02 � Á � 0,
j � 1u31 � u21, u41 � u11

(i � 2) u21 � 1
2 (u10 � u30) � 1

2 � 1.538842 � 0.769421

(i � 1) u11 � 1
2 (u00 � u20) � 1

2 � 0.951057 � 0.475528

u10 � u40 � sin 0.2p � 0.587785, u20 � u30 � 0.951057,
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VIBRATING STRING

1–3 Using the present method, solve (1)–(4) with
for the given initial deflection and initial

velocity 0 on the given t-interval.

1. if if 

2.

3. f (x) � 0.2(x � x2), 0 	 t 	 2

f (x) � x2 � x3, 0 	 t 	 2

0 	 t 	 1

1
5 	 x 	 1,0 � x � 1

5 , f (x) � 1
4 (1 � x)f (x) � x

f (x)h � k � 0.2

4. Another starting formula. Show that (12) in Sec. 12.4
gives the starting formula

(where one can evaluate the integral numerically if
necessary). In what case is this identical with (8)?

5. Nonzero initial displacement and speed. Illustrate the
starting procedure when both f and g are not identically

ui,1 �
1
2

 (ui�1,0 � ui�1,0) �
1
2

 �
xi�k

xi�k

g(s) ds

P R O B L E M  S E T  2 1 . 7



zero, say, 
time steps.

6. Solve (1)–(3) time steps) subject to

7. Zero initial displacement. If the string governed by the
wave equation (1) starts from its equilibrium position with
initial velocity what is its displacement
at time and (Use the
present method with Use (8). Compare
with the exact values obtained from (12) in Sec. 12.4.)

h � 0.2, k � 0.2.
x � 0.2, 0.4, 0.6, 0.8?t � 0.4

g(x) � sin px,

f (x) � x2, g(x) � 2x, ux(0, t) � 2t, u(1, t) � (1 � t)2.
(h � k � 0.2, 5

2h � k � 0.1,
g(x) � x(1 � x),f (x) � 1 � cos 2px,
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1. Explain the Euler and improved Euler methods
in geometrical terms. Why did we consider these
methods?

2. How did we obtain numeric methods from the Taylor
series?

3. What are the local and the global orders of a method?
Give examples.

4. Why did we compute auxiliary values in each Runge–
Kutta step? How many?

5. What is adaptive integration? How does its idea extend
to Runge–Kutta?

6. What are one-step methods? Multistep methods? The
underlying ideas? Give examples.

7. What does it mean that a method is not self-starting?
How do we overcome this problem?

8. What is a predictor–corrector method? Give an
important example.

9. What is automatic step size control? When is it needed?
How is it done in practice?

10. How do we extend Runge–Kutta to systems of ODEs?

11. Why did we have to treat the main types of PDEs in
separate sections? Make a list of types of problems and
numeric methods.

12. When and how did we use finite differences? Give as
many details as you can remember without looking
into the text.

13. How did we approximate the Laplace and Poisson
equations?

14. How many initial conditions did we prescribe for the
wave equation? For the heat equation?

15. Can we expect a difference equation to give the exact
solution of the corresponding PDE?

16. In what method for PDEs did we have convergence
problems?

17. Solve by Euler’s method, 10 steps,

18. Do Prob. 17 with 10 steps. Compute the errors.
Compare the error for with that in Prob. 17.

19. Solve by the improved Euler
method, 10 steps.

20. Solve by the improved
Euler method, 10 steps with Determine the
errors.

21. Solve Prob. 19 by RK with 5 steps. Compute
the error. Compare with Prob. 19.

22. Fair comparison. Solve  
for (a) by the Euler method with
(b) by the improved Euler method with

and (c) by RK with Verify that the
exact solution is Compute and
compare the errors. Why is the comparison fair?

23. Apply the Adams–Moulton method to 
starting with

24. Apply the A–M method to 
starting with 

25. Apply Euler’s method for systems to 
5 steps.

26. Apply Euler’s method for systems to 
10 steps.

Sketch the solution.

27. Apply Runge–Kutta for systems to 
5 steps. Determine the

errors.

28. Apply Runge–Kutta for systems to 

3 steps.
h � 0.05,y2(0) � �3,y1(0) � �3,y2r � y1 � 6y2,

y1r � 6y1 � 9y2,

h � 0.2,yr(0) � 1,y(0) � 0,
ys � y � 2ex,

h � 0.2,y2(0) � 0,y1(0) � 2,y2r � �4y1,
y1r � y2,

y(0) � 1, yr(0) � 0, h � 0.1,
ys � x2y,

4.08413.
4.02279,4.00271,x � 0, Á , 1,h � 0.2,

y(0) � 4,yr � (x � y � 4)2,

0.389416, 0.564637.0.198668,
x � 0, Á , 1,h � 0.2,y(0) � 0,

yr � 21 � y2,

y � (ln x)2 � ln x.
h � 0.4.h � 0.2,

h � 0.1,
1 	 x 	 1.8y(1) � 0

yr � 2x�11y � ln x � x�1,

h � 0.1,

h � 0.1.
yr � y � (x � 1)2, y(0) � 3

h � 0.1,
yr � 1 � y2, y(0) � 0

x � 0.1
h � 0.01,

h � 0.1.
yr � y, y(0) � 1
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8. Compute approximate values in Prob. 7, using a finer
grid and notice the increase in
accuracy.

9. Compute u in Prob. 5 for and 
using the formula in Prob. 8, and compare

the values.

10. Show that from d’Alembert’s solution (13) in Sec.12.4
with it follows that (6) in the present section
gives the exact value ui, j�1 � u(ih, ( j � 1)h).

c � 1

0.2, Á , 0.9,
x � 0.1,t � 0.1

k � 0.1),(h � 0.1,


