LECTURE 1

Linear Algebra and Matrices

Before embarking on a study of systems of differential equations we will first review, very quickly, some
fundamental objects and operations in linear algebra.

1. Matrices

DEFINITION 1.1. An n X m matriz (“n by m matriz”) is an arrangement of nm objects (usually numbers)

into a rectangular array with n rows and m columns. We’'ll typically denote the entry in the it" row and

-th )th

" column of a matriz A as a;; (and similarly, b;; for the (ij)"" entry of a matriz B). Thus, for example,

a1 a2 - Aim
a1 422 a2m,
A_ =
n1 Ap2 - Gnpm
An n x 1 matriz
U1
V2
vV = .
Un

1s called a column wvector and a 1 X m matrix
v = [v1,V2,...,Um)

18 called a row vector.

1.1. Matrix Operations.
DEFINITION 1.2. The sum of two n x m matrices A and B is the n x m matriz A + B with entries
(A+B);; = aij +bi;

DEFINITION 1.3. The scalar product of an n x m matriz A with a number X\ is the n x m matriz AA with
entries

()‘A)ij = Aaj;
DEFINITION 1.4. The difference of two n x m matrices A and B is the n x m matriz A — B with entries
(A — B)ij =ai; — b = (A+(-1) B)ij
DEFINITION 1.5. The transpose of an n x m matriz A is the m x n matriz At with entries
(A7), =4ji
(Note the it" row of At is simply the j*" column of A written horizontally.)
DEFINITION 1.6. An n X n matriz A is said to be symmetric if
A=A'

1



2. COMPLEX NUMBERS 2

Note that the transpose of a row-vector is a column vector and the transpose of a column vector is a row
vector.

DEFINITION 1.7. The dot product of an n-dimensional row vector [r1, ..., r,] with a n-dimensional column
C1
vector is the number
Cn
C1
[F1,cmp] | 0 | =riei+ -+ ey
Cn

(This coincides with the usual dot products of vectors when we think of vectors as ordered lists of numbers
rather than special kinds of matrices.)

DEFINITION 1.8. The matrixz product of an n X m matriz A with a m X g matriz B is the n X ¢ matrix
with entries

(AB)ij = Z ikbr;
k=1

Note that the (ij)™"

column of B.

entry of the matriz product AB is the dot product of the i row of A with the j**

2. Complex Numbers

In what follows it will be sometime necessary to consider vectors and matrices with entries that are complex
numbers. We recall here some basic facts about complex numbers.

DEFINITION 1.9. A complex numbers are pairs (x,y) of real numbers which satisfying the following addition
and multiplication rules

(z,y) + (@) = (x+a",y+v)
(z,y)-(@'y') = (za' —yy' 2y’ +ya’)

Usually though we write a complex number as

z=x+1y
and then add and multiply complex numbers by employing the usual rules of arithmetic and the relation
i2 = —1. Thus,

(z+iy) (@' +iy) = a2’ +a(iy)+iy @)+ (iy) (iy)
=z’ —yy +i(zy +y2')

When we write

z=x+1y
we say that z is the real part of z and y is the imaginary part of z.

The complex conjugate of z = x + iy is the complex number Z obtained by switching the sign of it
imaginary part

Z=x—1y
We have
Re(z) = m:z—i—z
2
z2—Z
I = =
m(2) y=
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We will also sometimes consider functions of a complex variable. Here we only state the very fundamental
Euler Formula

e" T = ¢” (cos (y) + isin (y))
We note that
cos(y) = Re(e")
sin(y) = Im(e")
DEFINITION 1.10. A complex matrix is a matriz whose entries are complex numbers. Similarly, a com-

plex vector is a vector whose components are complex numbers. The hermaitian adjoint of a complex
matriz A is the matriz AT with entries

(AT),; =as

ij
Equivalently,

ExampPLE 1.11.
1+ 12 p o 1—i 3—i
A_(B—i-i 3 ) = A _<1+2i 3 )
DEFINITION 1.12. An n x n matriz is hermitian (or self-adjoint) if
A=AT

DEFINITION 1.13. Let x and y be two complex (column) vectors. The (hermitian) inner product (x,y) of
X and y s the compler number

Y1
xtyz[:vh---,xn} =Ty 4+ + TnUn
Un
REMARK 1.14. If A is a real hermitian matrix (that is, all of its entries are real numbers), then
Al = (&) =(A) = A

so a real hemitian matrix is just a real symmetric matrix. If x and y are two real vectors then the hermitian
inner product (x,y) coincides with the usual dot product of real vectors.

3. Determinants

DEFINITION 1.15. The (i) minor of an n x n matriz A is the (n — 1) x (n — 1) matriz M,; obtained by
deleting the it" row and j*" column from A.

DEFINITION 1.16. The determinant of an n X n matriz A is the number det A determined by the following
recursive algorithm:

o If A is alx1 matric [a11], then det A = ay

e if A is an n x n matrix then
n
detA : = Z (=1)" a;; det M;; (i = any fixed row index)
J

Il
_

(—1)i+j a;; det My (j = any fixed column index)

I

=1
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The following formulas for the determinants of 2 x 2 and 3 x 3 matrices follow easily from the above definition

det l: ¢11 012 :l = (—1)1+1 aii det (Mll) + (—1)1+2 ai2 det (Mlg)
a1 Qa22

ail det [agg] — a2 det [agl}
= Q11022 — G12021
a1l aiz2 a13

1+1 a a 142 a a
det | as1 ags ass = (-1 gy det 2 T2 +(_1)+ a1 det 2t 723
asz  a33 a3l  ass
azi1 azz ass

a1 a9
+ (-1 13 415 det
(1) ars az  asz

= a1 (022033 - a23a32) — Q12 (021033 - 1123@31) + ais (a21a32 - a22a31)

4. Inverses

DEFINITION 1.17. The inverse of an n x n matriz A is the n x n matrizx A~ such that
AT'A=I=AA""

(N.B. matriz inverses do not always exist.)

There are two basic ways of computing matrix inverses:

e Row reduction:
[A |1 row reduction T A7

e Cofactor Method:
1 L t
det A
where C is the cofactor matrix of A whose entries are £1 times the determinants of the (n — 1) x
(n — 1) minors of A.

(C),.

)

= (=1)""7 det (M)

5. Eigenvalues and Eigenvectors

DEFINITION 1.18. Let A be an n X n matriz. If there exists a number A and an n-dimensional (column)
vector v such that

Av =)\v

then v is said to be an eigenvector of A and X\ is said to be the eigenvalue of A corresponding to the
etgenvector v.

The following algorithm determines all the eigenvectors and eigenvalues of an n X n matrix A.

e Set pa = det (A — AI). Here A is regarded as a variable, and Al is the matrix obtained by scalar
multiplying the n x n identity matrix by A.
A — )I is thus the matrix obtained by subtracting A from each of the diagonal entries of A.
Upon computation, det (A — AI) will yield a polynomial of degree n in A. The solutions of

pa(A) =0

will be the eigenvalues of A.
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e For each root A =1 of pa (A) =0, find the general solution of
(A—rI)x=0

and expand that solution in terms of the free parameters of the solution. The eigenvectors corre-
sponding to the eigenvalue r of A will be the constant vectors in that expansion.

EXAMPLE 1.19. Find the eigenvalues and eigenvectors of A = [ ; ? } .

e We have

pA()\)::det[ o 13)\]:(1—)\)2—4:>\2—2)\—3=(/\—3)(/\4—1)

Since A\ = 3, —1 are the solutions of pa (A\) = 0, these are the eigenvalues of A.
e Now we look for the eigenvectors corresponding to A = 3.

1-3 2 z1 | | O — -2 2 z1 | _| O
2 1-3 zo | | O 2 =2 zo | | 0O
The reduced row echelon form of the coefficient matrix is
2 2 -2 2] _[1 -1 . T—w=0 B
2 -2 0 0 0 0 0=0 =

— x| 2oy !
- xTo -2 1
SO

et

e Similarly, we look for the eigenvectors corresponding to A = —

] - B = Hi:]

- e[

o O

|

:l — 1 = —T2

—_

and so
ExXAMPLE 1.20. Suppose

Find the eigenvectors and eigenvalues of A.

e The characteristic polynomial is

pA()\)—det[ 1__1)\ 1i/\}—(1—/\)2—|—1_)\2—2/\+2

To solve pa (A) = 0, we apply the quadratic formula

b+ Vb2 -4
ar’+br+c=0 — x:—ac
2a
and find
2++v4-8 24++/—4 2+ +vV—-1v4 2+ 2
pa(N)=0 = A= = = Vi _ 14

2 2 2 2

Thus we have two complex eigenvalues.
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e Setting A =144, we now solve

AN ARDERERIHES

The row reduction method of solving linear systems still works:

i1 ) —i 1 . i
[_21 —i} Ry — Ry + iR, {OZ 0} Ry — (—i) Ry [ é}

. 72.1132 —1
— r1 = —1T2 — X=|: :|:.Z‘2|: 1 :| — V/\_1+i:|: 1

e Similarly, for A = 1 — ¢, one finds

6. Diagonalization of Matrices

Recall that a diagonal matrix is a square n X n matrix with non-zero entries only along the diagonal from
the under left to the lower right (the main diagonal).

Diagonal matrices are particularly convenient for eigenvalue problems since the eigenvalues of a diagonal
matrix

a1 0 0
A — 0 a9
0 0 Ann

coincide with the diagonal entries {a;} and the eigenvector corresponding the eigenvalue a;; is just the it
coordinate vector. That is, if A is of the above form, we always have

Aei = @;;€;

DEFINITION 1.21. An n X n matriz A is diagonalizable if there is an invertible n x n matriz C such that
C~'AC is a diagonal matriz. The matriz C is said to diagonalize A.

LEMMA 1.22. Let A be a real (or complex) n X n matriz, let A1, A2, ..., A, be a set of n real (respectively,
complex) scalars, and let vi,va,..., v, be a set of n vectors in R™ (respectively, C* ). Let C be the n x n
matriz formed by using v; for jth column vector, and let D be the n x n diagonal matriz whose diagonal
entries are A1, Ao,..., A\p . Then

AC=CD

if and only if A1, Aa,..., A\, are the eigenvalues of A and each v; is an eigenvector of A correponding the
eigenvalue A; .

Now suppose AC = CD, and the matrix C is invertible. Then we can write
D=C'AC.
And so we can think of the matrix C as converting A into a diagonal matrix.
THEOREM 1.23. An nxn matriz A is diagonalizable if and only if it has n linearly independent eigenvectors.

ExaAMPLE 1.24. Find the matrix that diagonalizes
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e First we’ll find the eigenvalues and eigenvectors of A.
6
—1-A

The eigenvectors corresponding to the eigenvalue A = 2 are solutions of (A — (2)I)x =0 or

0 6 T o 0 = 6%2:0 - -0 - 1
0 =3 ||a | |0 320 =0 T2 = X="1o

O:det(A—)\I):det[Qg)\ }:(2—)\)(—1—)\) = A=2-1

The eigenvectors corresponding to the eigenvalue A = —1 are solutions of (A — (—=1)I)x =0 or
3 6 zi | |0 31 +6x2 =0 _ _
{00}{@]—{0} = 0=0 = 1 =223 = X—’I“|:1:|
So the vectors vi = [1,0] and vo = [—2,1] will be eigenvectors of A. We now arrange these two
vectors as the column vectors of the matrix C.
1 -2
-l 7]

In order to compute the diagonalization of A we also need C~!. This we compute using the

technique of Section 1.5:
1 -2 11 0 2 1|1 2
b7 oi] = e-fod]

= O
—_

0 1 0 1
Finally,

} Ry — Ri + 2R, [(1)

TG
06 )
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o O O




