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Abstract

In this paper we show how to calculate European-style option prices when the log-stock and

stock returns processes follow a symmetric Lévy-Stable process. We extend our results to price

European-style options when the log-stock process follows a skewed Lévy-Stable process.
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1 Introduction

Up until the early 1990’s most of the underlying stochastic processes used in the financial literature

were based on a combination of Brownian motion and Poisson processes. One of the most funda-

mental assumptions throughout has been that financial asset returns are the cumulative outcome

of many small events that happen at a ‘microscopic level’ very often in time, so that their impact

may be regarded as continuous. If these microscopic events are considered statistically independent

with finite variance it is straightforward to characterise their cumulative behaviour by invoking the

Central Limit Theorem (CLT). Hence, Gaussian-based distributions are a plausible class of models

for financial processes.

But are there any other limiting distributions that characterise the behaviour of the sum of many

‘microscopic’ events? The answer is yes. The sum of many iid events always has, after appropriate
∗We are very gratefull for comments from Hu McCulloch. First Version February 2002. Corresponding author:

a.cartea@bbk.ac.uk
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scaling and shifting, a limiting distribution termed a Lévy-Stable law; this is the generalised version

of the Central Limit Theorem, GCLT, [23]. The Gaussian distribution is one example. Based on

this fundamental result, it is plausible to generalise the assumption of Gaussian price increments

by modelling the ‘formation’ of prices in the market by the sum of many stochastic events with a

Lévy-Stable limiting distribution.

Another important property of Lévy-Stable distributions is that of stability under addition. In

other words, when two independent copies of a Lévy-Stable random variable are added then, up

to scaling and shift, the resulting random variable is again Lévy-Stable with the same shape. This

property is very desirable in models used in finance and particularly in portfolio analysis and risk

management, see for example Fama [8], Ziemba [27] and the most recent work by Tokat and Schwartz

[25], Ortobelli et al [21] and Mittnik et al [19]. Only for Lévy-Stable distributed returns do we have

the property that linear combination of different return series, for example portfolios, again have a

Lévy-Stable distribution [9].

Based on empirical data and with a profound belief in the importance of invariances and the

possibility of identifying stationarity and scaling as invariance principles in economics, Mandelbrot

[15] was the first to propose in the early 1960s the use of Lévy-Stable processes to model stock

returns. For example, scaling is present in finance when ‘short-term’ pieces of a chart are compared

to ‘long-term’ pieces and they look very ‘similar’. One has to acknowledge that there is a limit as to

how short or long are the terms upon which charts may look like down-sized versions of each other.

If the short term is shorter than the physical time between trades in the market then the similarity

argument would not hold. Similarly, for long time scales the forces acting behind changes, say in

stock prices, are due more to macroeconomic fundamentals rather than speculation.

A clear example of the usefulness of the ‘stable’ property in financial markets is the shape of the

implied volatility for different maturity prices. Carr and Wu [6] document that options on US equity

indexes have an invariant smirk across different maturities. This invariance can only be obtained

if innovations are Lévy-Stable distributed but not Gaussian. Standard option pricing models imply

that the volatility smirk flattens as maturity increases; this is mainly a result of the CLT when the

conditional moments for stock returns are finite.

Based on the GCLT we then have, in general terms, two ways of modelling stock prices or stock

returns. If it is believed that stock returns are at least approximately governed by a Lévy-Stable

distribution the accumulation of the random events is additive. On the other hand, if it is believed

that the logarithm of stock prices are approximately governed by a Lévy-Stable distribution then the

accumulation is multiplicative. In the literature most models have assumed that log-prices, instead

of returns, follow a Lévy-Stable process. McCulloch [16] assumes that assets are log Lévy-Stable and

prices options using a utility maximisation argument and in [17]. Recently Carr and Wu [6] priced

European options when the log-stock price follows a maximally skewed Lévy-Stable process. Cartea
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and Howison [7] also assume that log prices follow a Lévy-Stable process and provide a solution to

the pricing problem as a distinguished limit of the Lévy-Stable process.

Finally, based on Mandelbrot and Taylor [15], Platen, Hurst and Rachev [12] provide a model to

price European options when returns follow a (symmetric) Lévy-Stable process. In their models the

Brownian motion that drives the stochastic shocks to the stock process is subordinated to an intrinsic

time process that represents ‘operational time’ on which the market operates. Option pricing can be

done within the Black-Scholes framework and one can show that the subordinated Brownian motion

is a symmetric Lévy-Stable motion.

In this paper we show that returns or log-prices can be modelled using a symmetric Lévy-Stable

process and log-prices can be modelled using an asymmetric Lévy-Stable process.

Before proceeding with the results we give a brief description of the steps we take. First, we

start by showing that if the log-stock process follows a Lévy-Stable process it is possible to price

options within the Black-Scholes risk-neutral framework. The proof of existence relies mainly on

the existence of the Laplace transform for totally skewed Lévy-Stable random variables and the fact

that all Lévy-Stable symmetric variables can be represented as the product of a symmetric and a

totally skewed random variable. In the construction of these symmetric random variables we will

use the Gaussian case as one of the building blocks and will see that all Lévy-Stable symmetric cases

can be seen as conditionally Gaussian. Hence we will show that when log-stock or stock returns are

modelled using a symmetric Lévy-Stable motion or process, the resulting option prices are weighted

averages of the Black-Scholes formula with random volatility. Then we show that this result may be

readily extended to cases where the log-stock follows a negatively skewed Lévy-Stable process. In

other words, the model we propose is

ln(St/S0) =
∫ t

0

µ(s)ds +
∫ t

0

σ(s)dW (s) + g(X(t))

σ(S, t) = f(Y (t)),

where dW is the increment of a standard Brownian motion, X(t) and Y (t) follow independent

Lévy-Stable process, and µ, g, f are deterministic functions.

The paper is structured as follows: Section 2 presents definitions and properties of Lévy-Stable

processes. In particular we show how symmetric Lévy-Stable random variables may be ‘built’ as a

combination of two independent Lévy-Stable random variables. Section 3 shows how option prices

may be obtained when stock returns evolve according to a Lévy-Stable motion. Section 4 shows

that if integrated variance is modelled as a totally skewed to the right Lévy-Stable process, option

prices can be obtained for stock returns that follow a symmetric Lévy-Stable process. Section 5

shows that it is also possible to extend the results in Section 4 to obtain option prices for log-stock

prices that evolve as a skewed Lévy-Stable motion or process within the Black-Scholes risk-neutral

framework. Section 6 calculates option prices according to the proposed models and compares the
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results to those given by the Black-Scholes framework.

2 Lévy-Stable random variables

In this section we show how to obtain any symmetric Lévy-Stable motion as a stochastic process

where the innovations are the product of two independent Lévy-Stable random variables. The only

conditions we require (we will make this mathematically precise in Proposition 3) are that one of

the independent random variables is symmetric and the other is totally skewed to the right. This

is a simple, yet very important, result since we can choose a Gaussian random variable as one of

the building blocks together with any other totally skewed random variable to ‘produce’ symmetric

Lévy-Stable random variables. Furthermore, choosing a Gaussian random variable as one of the

building blocks of a symmetric random variable will be very convenient since we will be able to

relate any symmetric Lévy-Stable motion as a conditional Brownian motion, conditioned on the

other building block; the totally skewed Lévy-Stable random variable.

Below we review definitions and properties of Lévy-Stable random variables; see [23], [24].

Definition 1 Lévy-Stable random variable. Let X be a random variable. X has a Lévy-Stable

distribution if for any positive numbers A, B there is a positive number C and a real number D such

that

AX1 + BX2
d= CX + D, (1)

where X1 and X2 are independent copies of X, and where d= denotes equality in distribution.

In other words, the shape of the distribution of AX1 + BX2 is the same as the distribution of X

up to scale and shift.

Definition 2 Lévy-Stable process. Let X(t) be a random variable dependent on time t. Then

the stochastic process X(t), for 0 < t < ∞, is a Lévy-Stable process if the finite-dimensional distri-

bution of X(t) is Lévy-Stable. The finite-dimensional distribution of a stochastic process X are the

distributions of the finite-dimensional vectors (X(t1), · · · , X(tn)), t1 < · · · < tn < ∞.

The characteristic function of a Lévy-Stable process is given in the following proposition.

Proposition 1 Characteristic Function of Lévy-Stable Process. Let X(t) be a Lévy-Stable

process. Then the natural logarithm of its characteristic function is given in terms of certain param-

eters α, κ, β and m by
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lnE[eiX(t)θ] ≡ [Ψ(θ)] =




−tκα|θ|α {1− iβ sign(θ) tan(απ/2)}+ imθ for α 6= 1,

−tκ|θ|
{

1 + 2iβ
π sign(θ) ln |θ|

}
+ imθ for α = 1.

(2)

Note that for Lévy-Stable processes we have that lnE[eiX(t)θ] = t lnE[eiX(1)θ].

If the random variable X(1) belongs to a Lévy-Stable process with parameters α, κ, β, m we

write X ∼ Sα(κ, β,m). The parameter α ∈ (0, 2] is known as the stability index; κ > 0 is a scaling

parameter; β ∈ [−1, 1] is a skewness parameter and m is a location parameter.

In view of the characteristic function for Lévy-Stable processes it is straightforward to see that

for the case 0 < α ≤ 1 the random variable X does not have any moments, and for the case

1 < α < 2 only the first moment exists. Moreover, given the asymptotic behaviour of the tails of

the distribution of a Lévy-Stable random variable, given in Property 2 below, it can be shown that

the Laplace transform of X exists only when its distribution is totally skewed to the right, that is

β = 1.

Property 1 [23] Let X ∼ Sα(κ, β, 0) with 0 < α < 2 and β = 0 in the case α = 1. Then for every

0 < p < α, there is a constant Dα,β(p) such that

E[|X|p]1/p = Dα,β(p)κ. (3)

For a proof see .

Property 2 Tails of the Lévy-Stable distributions: asymptotic behaviour [23].

Let X ∼ Sα(κ, β, m) with 0 < α < 2. Then

as x →∞ P(X > x) ∼
{

x−α 1+β
2 κα 1−α

Γ(2−α) cos απ/2 for α 6= 1,

x−α 1+β
2 κα 2

π for α = 1,
(4)

and

as x → −∞ P(X < x) ∼
{
|x|−α 1−β

2 κα 1−α
Γ(2−α) cos απ/2 for α 6= 1,

|x|−α 1−β
2 κα 2

π for α = 1
(5)

where the notation a ∼ b is used to denote limx→∞ a/b = 1.

Proposition 2 The Laplace Transform [23].
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The Laplace Transform E[e−τX ] with τ ≥ 0 of the Lévy-Stable variable X ∼ Sα(κ, 1, 0) with

0 < α ≤ 2 and scale parameter κ > 0 satisfies

lnE[e−τX ] =

{
− κα

cos πα
2

τα for α 6= 1,
2κ
π τ ln τ for α = 1.

(6)

Lévy-Stable densities are supported on either the whole real line or a half line. The latter

situation can only occur when α < 1 and β = 1 or β = −1; in this case precise limits are given. The

following lemma characterises the support of the pdf’s as a function of the characteristic exponent

α and the skewness β.

Lemma 1 Support of the probability density functions [20]. Let X be a Lévy-Stable random

variable, X ∼ Sα(κ, β, 0). Then the support of its pdf fX(x) is given by

Supp(fX(x)) =





[− tan πα
2 ,∞) α < 1 and β = 1

(−∞, tan πα
2 ] α < 1 and β = −1

(−∞,∞) otherwise.

Remark 1 At this point we note that in a financial context the plausible range for α is in the

interval 1 < α ≤ 2. First, for this range the first moments exist. Second, α < 1 implies that as the

distribution of the process becomes more skewed, β = ±1 the support will be the half real line, which

clearly is not financially plausible.

As for the Brownian motion case we can define the Lévy-Stable motion.

Definition 3 Standard Lévy-Stable motion.

A stochastic process X(t) is called a Standard Lévy-Stable motion if

1. X(0) = 0 a.s.,

2. X has stationary increments, and

3. X(t) − X(s) ∼ Sα((t − s)1/α, β, 0) for any 0 ≤ s < t < ∞ and for some 0 < α ≤ 2 and

−1 ≤ β ≤ 1.

Observe that the process is Brownian motion when α = 2 and β = 0.

Remark 2 In the sequel we will encounter stochastic integrals of the form

I(f) =
∫ b

a

f(s)dL(s)
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where f is a deterministic function and dL is the increment of a standard Lévy-Stable motion. These

stochastic integrals are defined in a very similar way to stochastic integrals with respect to Brownian

motion. To ensure the existence of the stochastic integral I(f) it will suffice, see [23], to check that

I(f) =
∫ b

a

|f(s)|αds < ∞ for α 6= 1

and

I(f) =
∫ b

a

|f(s) log |f(s)||ds < ∞ for α = 1.

It was thought that the Lévy-Stable hypothesis for stock returns or log-stock prices would not

deliver reasonable prices for financial instruments. Merton [18] conjectured that if the process for

price changes were a function of Lévy-Stable distributions with infinite moments, the only equilib-

rium value for a warrant would be the stock price itself, independent of the length to maturity.

Moreover, Merton conjectured that an infinite expected future price for a stock would require an

infinite discount rate to obtain finite values for the stock prices.

The existence of the Laplace transform of a totally skewed to the right Lévy-Stable random

variable will enable us to prove the existence of option prices for the symmetric Lévy-Stable case

as a weighted average of the classical Black-Scholes price when Brownian motion drives the condi-

tional underlying uncertainty. First we see that any symmetric Lévy-Stable random variable can be

represented as the product of a totally skewed with a symmetric Lévy-Stable variable as shown by

the following proposition.

Proposition 3 Constructing Symmetric Variables. Let X ∼ Sα′(κ, 0, 0), Y ∼ Sα/α′((cos πα
2α′ )

α′
α , 1, 0)

with 0 < α < α′ ≤ 2. Then if X and Y are independent, the random variable

Z = Y 1/α′X ∼ Sα(κ, 0, 0).

Note that we may use Brownian motion as one of the building blocks to obtain symmetric Lévy-

Stable processes, see [2] and [23].

3 Option Pricing for Symmetric Lévy-Stable Processes

We now exploit the close relationship between totally skewed and symmetric Lévy-Stable random

variables shown in Proposition 3. The aim is to calculate European-style option prices where the

underlying log-stock or stock returns process is driven by a Lévy-Stable process with α ∈ (1, 2].

As mentioned above, the GCLT indicates that the limiting distribution of the sum of many iid

events is Lévy-Stable. Apart from this feature, we know that empirical data of market returns
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show that Brownian motion is a poor model given the rapid decay of the tails of its distribution.

However, we know that Lévy-Stable distributions can accommodate thickness of tails through its

shape parameter. Property 2 above shows that the smaller is the parameter α the heavier the tail.

Hence, our first step is to construct a more plausible model of stock returns, from both a theoretical

and empirical point of view; therefore we will use the symmetric Lévy-Stable motion to model the

stochastic shocks to the stock returns process. However, on the other hand, since the Brownian

motion case has been considerably studied we would like to build on these widely known results and

extend them to satisfy our requirements. Therefore we will ‘construct’ the symmetric Lévy-Stable

process with a Gaussian random variable, ie α = 2, together with a totally skewed Lévy-Stable

random variable.

3.1 Option pricing for symmetric Lévy-Stable processes

In view of Proposition 3 we know how to obtain a symmetric Lévy-Stable process from two indepen-

dent Lévy-Stable random variables. Therefore, it seems natural to look at a stock returns process

that is conditionally Gaussian and enquire whether we can price vanilla options.

Conjecture 1 Option Prices for Symmetric Lévy-Stable Processes. Let dW ∼ N(0, dt) be

independent of a totally skewed to the right Lévy-Stable process
∫ T

t
Y (s)ds.

Now, let the price process, under the physical measure, be

ST = Ste
(T−t)µ+

∫ T
t

√
Y (s)dW (s). (7)

Let V(S,t) be the value of a European vanilla option written on the underlying stock price S(t) with

payoff Π(S, t). Then the value of the financial instrument is given by

V (S, t) = EQ
Y


VBS


S(t), t, K,

(
1

T − t

∫ T

t

Y (s)ds

)1/2

, T





 , (8)

where the expected value is with respect to the random variable Y under the risk-neutral measure Q.

Here VBS(S(t), t,K, Y
1/2

, T ) is the Black-Scholes price with strike price K, at time t and ‘volatility’

Y
1/2

=
(

1
T−t

∫ T

t
Y (s)ds

)1/2

.

If we assume that the distribution of
∫ T

t
Y (s)ds is correctly specified then we can proceed to

‘show’ the conjecture. Before proceeding we note that since we are using Brownian motion as one of

the building blocks to construct a symmetric Lévy-Stable process we have that (from Proposition 3)

α′ = 2 and that is why we let the constant cos πα
2α′ = cos πα

4 . Note also that dW ∼ S2

(
1√
2
dt1/2, 0, 0

)
,

but for clarity we choose to use the more usual notation for normally distributed random variables

dW ∼ N(0, dt).
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Proof

We first ensure that the discounted stock process is, under the risk-neutral measure Q, a mar-

tingale. So that

EQ[er(T−t)ST |St] = St.

Therefore we have that the stock process under the measure Q, (the change of measure can be

performed as in [12]), is given by

ST = Ste
r(T−t)− 1

2

∫ T
t

Y (s)ds+
∫ T

t

√
Y (s)dW (s). (9)

The value of the option can be expressed as the expected value of the discounted payoff Π(S, T ):

V (S, t) = EQ
[
e−r(T−t)Π(S, T )

]
.

Now conditioning on the path of Y (s), t ≤ s ≤ T , using iterated expectations and noting the inner

expectation is given by the Black-Scholes formula we get

V (S, t) = EQ
Y

[
EQ

[
e−r(T−t)Π(S, T ) | Y, t ≤ s ≤ T

]]

= EQ
Y


VBS


S(t), t, K,

(
1

T − t

∫ T

t

Y (s)ds

)1/2

, T





 .

Conjecture If we conjecture that the distribution of the process
∫ T

t
Y (s)ds is such that

∫ T

t

Y (s)ds ∼ Sα/2

(
(cos

πα

4
)2/α(T − t)

2
α , 1, 0

)
with 1 < α < 2, (10)

we can show that the shocks to the stock process, under the physical measure, are driven by a

symmetric Lévy-Stable process. We derive the characteristic function of
∫ T

t

√
Y (s)dW (s). First

condition on the path of Y (s) and then use iterated expectations to get

E
[
eiθ

∫ T
t

√
Y (s)dW (s)

]
= EY

[
E

[
eiθ

∫ T
t

√
Y (s)dW (s)|Y, t ≤ s ≤ T

]]

= EY

[
e−

1
2 θ2 ∫ T

t
Y (s)ds

]
(11)

= e−( 1
2 )

α/2|θ|α(T−t). (12)

Hence ∫ T

t

√
Y (s)dW (s) ∼ Sα

(
(1/2)1/2(T − t)1/α, 0, 0

)
,

ie a symmetric Lévy-Stable process.

¤

Assuming that the distribution of the process
∫ T

t
Y (s)ds is correctly specified we can interpret

the above result. The intuition behind the option value is surprisingly simple: for log-stock processes
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that follow a symmetric Lévy-Stable process under the physical measure, option values are given by

the weighted average, ie expected value, of the Black-Scholes formula where the ‘volatility’ is the

square root of a totally skewed to the right Lévy-Stable random variable with support in the positive

real line. We point out that this intuitive explanation refers to the variable
√

Y (t) as the volatility,

hence Y = 1
T−t

∫ T

t
Y (s)ds can be seen as the ‘integrated variance’. In option pricing, within the

Black-Scholes framework, integrated variance is a very important component. If volatility is not

constant, European option prices depend on the average variance of the underlying from the initial

time t to expiry T . The following section shows that it is possible to model integrated variance as a

totally skewed Lévy-Stable process and shows that option prices, where the log-stock prices follow

a symmetric Lévy-Stable process, can be calculated.

4 Stochastic Volatility with Lévy-Stable Shocks

In view of Conjecture 1, and in particular the form in which the positive random variable Y (s)

enters the pricing equation (8), there seems to be an obvious choice to model volatility. We recall

from Conjecture 1 that the form of ‘average variance’ is Y = 1
T−t

∫ T

t
Y (s)ds, where Y (s) is a totally

skewed to the right Lévy-Stable random variable, therefore one might be tempted to model variance,

instead of volatility, as
∫ T

t
σ2(s)ds =

∫ T

t
Y (s)ds. Hence, assuming that this is a feasible choice ie

that our conjecture for the distribution of
∫ T

t
Y (s)ds given by (10) is correct, we are saying that the

SDE for the variance process could be taken as
∫ T

t

σ2(s)ds =
∫ T

t

dL(s), (13)

with
∫ T

t
dL(t) being a totally skewed to the right and positive Lévy-Stable motion. Note that, by

Definition 3, we have
∫ T

t

dL(s) ∼ Sα/2

(
(T − t)

2
α , 1, 0

)
with 1 < α < 2.

Hence, at this point, we ask the question of whether a similar solution to (8) may be derived under

a ‘stochastic volatility’ model and whether we can assume that the distribution of the integrated

volatility process can be assumed to be as in (10). In other words, we ask whether we can state

the same problem as in Conjecture 1 but with a second SDE driving the volatility process in the

following way:

ln(St/S0) =
∫ t

0

µ(s)ds +
∫ t

0

σ(s)dW (s)

σ(S, t) = f(Y (t)),

where Y (t) follows a certain process that must be specified. Before addressing this question we note

the following:
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• First, we would like to specify a stochastic volatility model that yields a solution similar to

(8) in the sense that the integrated variance, ie
∫ T

t
σ2(s)ds, has a totally skewed to the right

distribution so option prices are in fact those of a stock process where shocks are given by a

symmetric Lévy-Stable process as in definition 3 above.

• Second, an interesting feature is that the variable Y (s) is a non-negative random variable (ie

α/2 < 1); therefore we may model directly the variance process instead of volatility since

it will be simpler to obtain the distribution of the integrated variance. In fact, finding the

distribution of the variance process given the distribution of the volatility process is extremely

hard (and the solution is not known for some classical stochastic volatility models such as the

Hull-White model [11]).

Unfortunately the above choice to model integrated variance is not mathematically correct. Let

us inspect the SDE (13) and explain intuitively why this is not a feasible choice. On the left-hand

side we have the integrated variance
∫ T

t
σ2(s)ds which is, by construction, a continuous process.

However, on the right hand side of the SDE we have the nonnegative Lévy-Stable motion
∫ T

t
dL(s)

which is by construction a purely discontinuous process.

Although the choice presented above is not correct we ask whether we can modify the SDE (13)

to make it continuous and still have the integrated variance follow a totally skewed to the right

Lévy-Stable process. In other words, is it possible to obtain a continuous process driven by a Lévy-

Stable stochastic component? What are the sample path properties required to model integrated

variance?

4.1 Sample Path Properties: Modelling Integrated Volatility

In this section we show that it is possible to specify a model for stochastic variance such that its

finite-dimensional distribution is a totally skewed to the right Lévy-Stable and it possesses continuous

paths. Intuitively one would like to start to understand how a purely discontinuous process such

as the Lévy motion
∫ T

t
dL(t) can be modified to obtain a continuous process. We may start by

asking if introducing a suitable deterministic function of time f(s, T ) with s ∈ R+ in the kernel of∫ T

t
f(s, T )dL(s) can ‘damp’ the jump process and ‘force’ it to be continuous. The answer to this

question is yes and depending on the behaviour of the kernel f(s, T ). For a general discussion on the

path behaviour of processes of the type
∫ T

t
f(s, T )dL(s) see [23]. In our case it will suffice to check

path continuity using Kolmogorov’s Continuity Condition.1 Before stating Kolmogorov’s condition

we give the following definitions.

We can define a stochastic process {X(t), t ∈ T}, where T is a time interval, by its finite-

1The authors are grateful to Ben Hambly for his comments on parts of this subsection.
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dimensional distributions. We can also view it as a collection of random variables and study their

sample paths. One of the important concepts we introduce is that of version, which applies to

stochastic processes in general. The process X̃(t) is a version (also known as equivalent) of the

process X(t) if they have the same finite-dimensional distribution; this will be made precise below

in Definition 5, but before that we provide a working definition of sample path.

Definition 4 Sample Path. Let X = {X(t), t ∈ T} be a stochastic process on a probability space

(Ω,F , P ). Each element ω ∈ Ω gives rise to a realisation or sample path denoted

{X(t, ω), t ∈ T}.

Definition 5 Version of a Stochastic Process. Two stochastic processes {X(t), t ∈ T} and

{Y (t), t ∈ T} are said to be versions of each other if they have the same finite-dimensional distribu-

tions, ie,

{X(tn), n = 1, 2..., N} d= {Y (tn), n = 1, 2..., N},

for any N and t1, · · · , tN ∈ T ; where the equality is in distribution.

Hence a version of a stochastic process is a representative of the equivalence class of all stochastic

processes with a given set of finite-dimensional distributions. We must note that although the

versions of the same process are defined on the same probability space they represent, in general,

two different collections of measurable functions on that space but their path properties may be

different. Moreover, if {X(t), t ∈ T} and {Y (t), t ∈ T} are defined on the same probability space

and

P(X(t) = Y (t), t ∈ T ) = 1,

then obviously the two processes are versions of each other; however they might still possess very

different sample paths [23].

Proposition 4 Kolmogorov’s Continuity Condition. Let {X(t), t ≥ 0} be a stochastic process

obeying the bound

E[|X(t)−X(s)|a] ≤ D|ϕ(t)− ϕ(s)|1+b for all s, t ≥ 0,

where a, b, and D are positive constants independent of s and t and ϕ is a continuous nondecreasing

function. Then there exists a version X̃(t) of X(t) possessing continuous paths.

Remark 3 In the sequel when a stochastic process is considered and there is an equivalent version

of it satisfying Kolmogorov’s condition we will always use the continuous version.
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Now we go back to our question of finding a deterministic function of time f(s, T ) which we take

to be of the form g(T − s), such that the integral representation of the process
∫ T

t
g(T − s)dL(s) is

continuous in T , ie it satisfies Kolmogorov’s Continuity Condition. Since we are interested in pricing

options where the underlying stochastic component is driven by a symmetric Lévy-Stable process

we would like to specify a kernel g(T − s) so the finite-dimensional distribution of
∫ T

t
g(T − s)dL(s)

is symmetric Lévy-Stable. There are a many such functions, hence we denote the class of such

functions by F, of which we show three examples. Two possible choices are

g(T − s) = T − s T ≥ s ≥ 0, (14)

g(T − s) =
1
γ

(
1− e−γ(T−s)n

)
for T, s ≥ 0 and n ≥ 1, (15)

where γ is a positive constant that can be seen as a damping factor.

Initially we think of γ as a parameter that we can choose freely. As we shall see below, in

Proposition 7, any particular choice of γ will still yield the desired result: to price options where

returns follow a symmetric Lévy-Stable process.

Remark 4 Moreover, we note that when n = 1 we get an Ornstein-Uhlenbeck-type process (OU-

type). An OU-type model is the ‘extension’ of an OU process that instead of the shocks being driven

by Brownian motion they are driven by a Lévy process, see [26]. Barndorff-Nielsen and Shephard

[1] were the first to introduce OU-type stochastic volatility models driven by positive Lévy processes.

A third choice is

g(T − s) = ln(T − s + 1) for T ≥ s ≥ 0. (16)

Now, we continue by checking that the integral representations, for the kernels presented above,

∫ T

t

(T − s)dL(s),
∫ T

t

1
γ

(
1− e−γ(T−s)n

)
dL(s), and

∫ T

t

ln(T − s + 1)dL(s)

have versions with continuous paths. We proceed to prove it in detail for the second integral

representation since the proof for the other cases are very similar. Note that in the three cases we

have chosen g(T − s) so that g(0) = 0. Intuitively as s → T the last ‘jumps’ of the process L(t) are

‘killed’ leading to a continuous process.

Before proceeding we derive, since we will use this result for the proof of continuity, the dis-

tribution of the integral representation
∫ T

t
1
γ

(
1− e−γ(T−s)n)

dL(s) which is given by the following

proposition.

13



Proposition 5 Let dL ∼ Sα(dt1/α, 1, 0) with 0 < α < 1. Then the process

X(t) =
∫ T

0

1
γ

(
1− e−γ(T−s)n

)
dL(s) ∼ Sα




(
1
γ

∫ T

0

∣∣∣1− e−γ(T−s)n
∣∣∣
α

ds

)1/α

, 1, 0


 .

Proof

We find the distribution of the stochastic term
∫ T

0
1
γ

(
1− e−γ(T−s)n)

dL(s) by deriving its char-

acteristic function. We first partition the time interval [0, t] into n steps

0 = t0 < t1 < t2 < ... < tn = T .

Now we let f(s) = f(tk) for s ∈ [tk, tk+1) and use the approximation to the stochastic integral∫ T

t
f(s)dL(s) ≈ ∑n−1

k=0 f(tk) {L(tk+1)− L(tk)}. We write

E
[
eiθ

∫ t
0

1
γ (1−e−γ(T−s)n)dL(s)

]
≈ E

[
eiθ

∑n−1
k=0 f(tk){L(tk+1)−L(tk)}

]

=
n−1∏

k=0

e|θf(tk)|α∆t{1−isign(θf(tk)) tan(πα/2)}

= e|θ|
α

∫ T
0 |f(s)|αds{1−isign(θ) tan(πα/2)}.

Therefore, by letting the mesh of the partition go to zero,

∫ T

0

1
γ

(
1− e−γ(T−s)n

)
dL(s) ∼ Sα




(
1
γ

∫ T

0

∣∣∣1− e−γ(t−s)n
∣∣∣
α

ds

)1/α

, 1, 0


 .

¤

Now we show that the integral representation γ−1
∫ T

t

(
1− e−γ(T−s)n)

dL(s) has a version with

continuous paths.

Proposition 6 Let the stochastic process X(t) have the integral representation
∫ T

t

1
γ

(
1− e−γ(T−s)n

)
dL(s)

where
∫ T

t
dL(s) is a totally skewed to the right Lévy-Stable motion, i.e. L(T )−L(t) ∼ Sα

(
(T − t)1/α, 1, 0

)

with 0 < α < 1. Then X(t) has a continuous version.

Proof

Let t ∈ [s, T ]. Then according to Property 1 for any 0 < a < α we have that the following

moment exists:

E [|X(T )−X(s)|a] = E

[∣∣∣∣∣
∫ T

s

1
γ

(
1− e−γ(T−u)n

)
dL(u)

∣∣∣∣∣

a]
.
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Now invoking Property 5 we can write the expectation as

E [|X(T )−X(s)|a] = E




∣∣∣∣∣∣

(∫ T

s

1
γ

(
1− e−γ(T−u)n

)α

du

)1/α
∣∣∣∣∣∣

a

φa




=

∣∣∣∣∣∣

(∫ T

s

1
γ

(
1− e−γ(T−u)n

)α

du

)1/α
∣∣∣∣∣∣

a

E [φa]

where φ ∼ Sα(1, 1, 0) and recall that since α < 1 the random variable φ is positive. Moreover, recall

from Property 1 above that E [φa] = D < ∞ if a < α. Now noting that for u < t the function

f(u) = 1
γ

(
1− e−γ(T−u)n)α

is decreasing in u, then

∣∣∣∣∣∣

(∫ T

s

1
γ

(
1− e−γ(T−u)n

)α

du

)1/α
∣∣∣∣∣∣

a

D ≤
∣∣∣∣∣
(

1
γ

(T − s)
(
1− e−γ(T−s)n

)α
)1/α

∣∣∣∣∣

a

D

and using the fact that 1− e−x ≤ x we have that
∣∣∣∣∣
(

1
γ

(T − s)
(
1− e−γ(T−s)n

)α
)1/α

∣∣∣∣∣

a

D ≤ D(T − s)
a
α +na.

Finally, it is straightforward to see that a can be chosen so that n > 1
a − 1

α , hence a(n+1/α) > 1

for n ≥ 1.

¤

4.2 Building Blocks for the Integrated Variance

In this subsection we depict the different building blocks to obtain the integrated variance process

described above. First we simulate a totally skewed to the right Lévy-Stable motion; then we get the

spot variance process, by choosing an appropriate kernel; then we produce the integrated variance

process. One can think of the integrated variance process as a ‘smooth’ version of the Lévy-Stable

motion resulting from the choice of kernel g(t − s). We focus on kernels of the integrated variance

of the form

g(T − s) =
1
γ

(
1− e−γ(T−s)n

)
.

We look at two cases and depict them below. For both figures we have used the same Lévy-Stable

motion as a building block to produce the spot and the integrated variance. In Figure 1 we used

g(T − s) = γ−1(1 − e−γ(T−s)n

) with n = 1 and γ = 25, which would yield a standard OU process.

In Figure 2 we used the same kernel g(T − s) = γ−1(1 − e−γ(T−s)n

) but with n = 1.2 and γ = 25.

Note that the higher is the constant n the ‘smoother’ is the path of the integrated variance.
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Figure 1: Simulated integrated variance with kernel g(T − s) = 25−1
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1− e−25(1−s)

)
.
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4.3 Option Pricing with Lévy-Stable Volatility

The preceding subsections were devoted to finding a suitable model for stochastic volatility that

would enable us to model the unconditional returns process as a symmetric Lévy-Stable process.

With all the different components in place we can turn again to the question of option pricing with

Lévy-Stable processes.

Before proceeding we point out that in their original work Mandelbrot and Taylor [15] proposed a

model where returns are measured in terms of transaction volume. The cumulative volume, denoted

by T (t), followed a totally skewed Lévy-Stable process with 0 < α < 1 and the returns process was

measured in terms of calendar time: Z = W [T (t)] where

T (t + s)− T (t) ∼ Sα/2

(
s1/α

(
cos

πα

4

)2/α

, 1, 0
)

and W is a standard Brownian motion. It is straightforward to show that Z ∼ Sα(1/
√

2, 0, 0) for

0 < α < 2. In Hurst, Platen and Rachev [12], based on the Mandelbrot-Taylor model, show how to

price European options when the returns of the stock process follow, under the physical measure, a

symmetric Lévy-Stable motion.

Proposition 7 Let the log-stock process follow, under the physical measure, a standard Brownian

motion with integrated variance as a function of an asymmetric Lévy-Stable motion given by the

following:

ln(ST /St) =
∫ T

t

µ(s)ds +
∫ T

t

σ(s)dW (s) (17)

∫ T

t

σ2(s)ds =
∫ T

t

g(T − s)dL(s). (18)

Here dW (t) is the standard Brownian motion and

dL(t) ∼ Sα/2

(
2

(
1
2

cos
πα

4

)2/α

σ2
LSdt2/α, 1, 0

)

is a Lévy-Stable motion with 0 < α < 2, g(T − s) ∈ F, and µ(s) is a deterministic function. Then

option prices, under the risk-adjusted measure Q, for a European vanilla option with payoff Π(S, t)

are given by

V (S, t) = EQ
σ(t)


VBS


S(t), t,K,

(
1

T − t

∫ T

t

σ2(s)ds

)1/2

, T





 . (19)

Proof The proof is similar to that of Proposition 1. It is straightforward to show that the distribution

of the shocks to the stock process is symmetric Lévy-Stable. First note that the stochastic component
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of the returns process is given by the random process

Z(T ) =
∫ T

t

σ(s)dW (s). (20)

Now we calculate the characteristic function of the random process Z(T ). We have

E[eiθZ(T )] = E[eiθ
∫ T

t
σ(s)dW (s)],

and conditioning on the path of σ(s) and using iterated expectations we get

E[eiθZ(T )] = E
[
e−

1
2 θ2 ∫ T

t
σ2(s)ds

]
.

Now, given that
∫ T

t
σ2(s)ds =

∫ T

t
g(T − s)dL(s) we write

E[eiθZ(T )] = E
[
e−

1
2 θ2 ∫ T

t
g(T−s)dL(s)

]

= e−
1
2 σα

LS

∫ T
t

g(T−s)2/αds|θ|α .

This is clearly the characteristic function of a symmetric Lévy-Stable process with index α.The result

follows since the process under the risk-neutral measure Q follows

ST = Ste
r(T−t)− 1

2

∫ T
t

σ2(s)ds+
∫ T

t
σ(s)dW (s).

¤

Note that since the integrated variance is distributed as

Sα/2

(
2

(
1
2

cos
πα

4

)2/α

σ2
LSG(T, t)2/α, 1, 0

)

where G(T, t) =
∫ T

t
g(T − s)2/αds and α/2 < 1, its first moment does not exist, ie E[

∫ T

t
σ2(s)ds] =

E[
∫ T

t
g(T − s)dL(s)] = ∞.

Remark 5 We also note that integrated variance can be modelled as
∫ T

t

σ2(s)ds = h(T, t)
∫ T

t

g(T − s)dL(s) (21)

where h(T, t) is a deterministic function of time. In section 6 we illustrate this flexibility by choosing

a plausible h(T, t).

Remark 6 In the proposition above we could have also used a model where the returns process

followed a symmetric Lévy-Stable process and we would have obtained the same value for the option,

V (S, t). That is, assuming

dS(t)
S(t)

= µdt + σ(t)dW (t) (22)

∫ T

t

σ2(s)ds =
∫ T

t

g(T − s)dL(s), (23)
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where dW (t) denote the increments of the standard Brownian motion and

dL(t) ∼ Sα/2

(
2

(
1
2

cos
πα

4

)2/α

σ2
LSdt2/α, 1, 0

)

is a Lévy-Stable motion with 0 < α < 2, f(s) ∈ F, and r is the risk-free rate. Then, option prices,

under the risk-adjusted measure Q′, for a European vanilla option with payoff Π(S, t) are given by

V (S, t) = EQ′

σ(t)


VBS


S(t), t,K,

(
1

T − t

∫ T

t

σ2(s)ds

)1/2

, T





 .

Note that since the integrated variance process is independent of the Brownian motion we can, using

Ito’s lemma, write the solution to the returns SDE (22) as

ST = Ste
r(T−t)− 1

2

∫ T
t

σ2(s)ds+
∫ T

t
σ(s)dW (s);

which is the same expression obtained above for the stock process under the risk-neutral measure Q.

In the introduction we mentioned, based on the GCLT, that there were two ways of modelling

stock prices or stock returns. We pointed out that most of the literature models log-stock prices

as a Lévy-Stable process, [16], [4], [7]. In the case presented above, when the driving Lévy-Stable

process is symmetric (constructed with Brownian motion and a totally skewed Lévy-Stable process)

both the log-stock price and returns follow, under the physical measure, a symmetric Lévy-Stable

process. In Section 5 when we extend these results to include asymmetric Lévy-Stable processes we

model log-stock prices and not returns.

As an example, we can use the approach above to derive closed-form solutions for option prices

when the random shocks to the price process are distributed according to a Cauchy Lévy-Stable

process, α = 1 and β = 0.

Remark 7 Closed-form Solution when Returns follow a Cauchy Process. Let the returns

process follow, under the physical measure, a Brownian motion with volatility as a function of a

totally skewed Lévy-Stable random variable, given by

dS(t) = rS(t)dt + σ(t)S(t)dW (t) (24)
∫ T

t

σ2(s)ds =
∫ T

t

g(T − s)dL(s). (25)

Here dW (t) is the standard Brownian motion, dL(t) ∼ S1/2

(
dt2, 1, 0

)
, g(T − s) ∈ F and r denotes

the risk-free rate. Then option prices, under the risk-adjusted measure Q, are given by

V (S, t) =
T − t

2π

∫ ∞

0

VBS(S(t),K, Y
1/2

, T )
e−

(T−t)2

2y

y3/2
dy,

where Y = 1
T−t

∫ T

t
σ2(s)ds.
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First, we express the value of a vanilla option as the discounted expected value of the terminal

payoff:

V (S, t) = EQ
[
e−r(T−t)Π(S, T )

]
.

Conditioning on the volatility path and using iterated expectations we get

V (S, t) = EQ
[
EQ

[
e−r(T−t)Π(S, T ) | σ(t), t ≤ s ≤ T

]]

= EQ[VBS(S(t),K, Y
1/2

, T )].

Recall that the pdf for the Lévy-Smirnov distribution, S1/2(κ, 1, 0), is given by (κ/2π)1/2
x−3/2e−κ/2x

with support (0,∞). Hence

V (S, t) =
(

T − t

2π

)1/2 ∫ ∞

0

VBS(S(t), K, Y
1/2

, T )
1

y3/2
e−

T−t
2y dy,

where Y
1/2

is a totally skewed to the right Lévy-Stable process with α = 1/2. Moreover, the

distribution of the shocks to the returns process (24) is Cauchy, ie α = 1, β = 0.

¤

Because the combination of a Gaussian and Lévy-Smirnov S1/2(κ, 1,m) random variables results

in a Cauchy random variable S1(κ, 0,m). This can be seen either by calculating the characteristic

function of (dL)1/2dW or by the convolution of their respective pdf’s.

5 Option Pricing for Lévy-Stable Processes with Leverage

Effect

Financial data suggests [3], [13], [6] that returns are skewed rather than symmetric. Therefore we

enquire whether the results above can be extended to a more general case where the shocks to the

stock process follow an asymmetric Lévy-Stable process instead of a symmetric Lévy-Stable motion

or process. This section shows that this is possible when the skewness parameter β ∈ (−1, 1).

In stochastic volatility models one way to introduce skewness in the log-stock process is to

correlate the random shocks of the volatility process to the shocks of the stock process. It is typical

in the literature to assume that the Brownian motion of the stock process, say dW (t), is correlated

with the Brownian motion of the volatility process, say dZ(t). Thus E[dW (t)dZ(t)] = ρdt and we can

write Z̃(t) = ρW (t) +
√

1− ρ2Z(t), where Z̃(t) is independent of W (t). The correlation parameter

ρ is also known in the literature as the leverage effect and empirical studies [10] suggest that ρ < 0.

In our case we may also include a leverage effect via a parameter ` to produce skewness in the stock

returns. However, the notion of ‘correlation’ does not apply in our case because for Lévy-Stable
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random variables, given that moments of second and higher order do not exist, correlations do not

exist. Proposition 8 shows that we can introduce negative skewness via a negative leverage effect.

The financial interpretation is that in periods of high volatility prices go down and vice versa.

Proposition 8 Option Pricing for Asymmetric Lévy-Stable Processes. Let the log-stock

process follow, under the physical measure, a Brownian motion plus a leverage effect. Let the inte-

grated volatility follow a skewed Lévy-Stable process. That is, suppose that

ln(ST /St) =
∫ T

t

µ(s)ds +
∫ T

t

σ(s)dW (s) + `

∫ T

t

dL̃(s) (26)

∫ T

t

σ2(s)ds =
∫ T

t

g(T − s)dL(s). (27)

Here dW (t) is the standard Brownian motion independent of both dL̃(t) and dL(t); also

dL̃(t) ∼ Sα

(
1

21/α

σTL

(1 + `α)1/α
dt1/α,−1, 0

)

and

dL(t) ∼ Sα/2

(
2

(
1
2

cos
πα

4

)2/α
σ2

TL

(1 + `α)2/α
dt2/α, 1, 0

)

are two independent standard Lévy-Stable motions.2 Moreover, µ(s) is a deterministic function,

g(T − s) ∈ F and the leverage parameter ` ≥ 0.

Then option prices, under the risk-neutral measure Q, are given by

V (S, t) = EQ

L̃

[
EQ

L

[
EQ

[
VBS

(
S(t)e`

∫ T
t

dL̃(s), t,K, Y
1/2

, T
)]

L̃, L|L̃
]]

. (28)

Proof Let the value of a vanilla option be expressed as

V (S, t) = EQ[e−r(T−t)Π(S, T )].

It is straightforward to see, given the independence of the integrated variance process and the

Brownian motion that under the risk-neutral measure Q the stock process must follow

S(T ) = S(t) exp

[
r(T − t)− 1

2

∫ T

t

σ2(s)ds

+
1
2
G(T, t)

`α

1 + `α
σα

TL sec
πα

2
+

∫ T

t

σ(s)dW (s) + `

∫ T

t

dL̃(s)

]
,

where G(T, t) =
∫ T

t
g(T−s)α/2ds. By conditioning on L(s) and L̃(s) and using iterated expectations

we get

V (S, t) = EQ

L̃

[
EQ

L

[
EQ

[
e−r(T−t)Π(S, T )|L, L̃

]
L̃

]]

= EQ

L̃

[
EQ

L

[
VBS

(
S(t)e`

∫ T
t

dL̃(s),K, Y
1/2

, T
)
|L̃

]]
,

2Note that dL̃ is totally skewed to the left and α < 2, ie it is not restricted to be less than unity.
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where Y = 1
T−t

∫ T

t
σ2(s)ds.

¤

Remark 8 It is straightforward to verify that the shocks to the returns process above are those of a

Lévy-Stable process with negative skewness β ∈ (−1, 0] . First recall that G(T, t) =
∫ T

t
g(T −s)α/2ds.

Look at the process

Z(T ) =
∫ T

t

σ(s)dW (s) + `

∫ T

t

dL̃(s).

The characteristic function of Z(T ) is given by

E
[
eiθZ(T )

]
= E

[
eiθ(

∫ T
t

σ(s)dW (s)+`
∫ T

t
dL̃(s))

]

= e−
1
2 G(T,t)

σα
T L

1+`α |θ|αE
[
eiθ`

∫ T
t

dL̃(s)
]

= e−
1
2 G(T,t)

σα
T L

1+`α |θ|αe−
1
2

T `α

1+`α σα
T L|θ|α{1−isign(θ) tan(πα/2)}

= e−
1
2

G(T,t)+T `α

1+`α σα
LS |θ|α{1− −T `α

G(T,t)+T `α isign(θ) tan(πα/2)}.

This is obviously the characteristic function of a skewed Lévy-Stable process with skewness parameter

β(T, t) = −T`α

G(T,t)+T`α ∈ (−1, 0]; see Proposition 1. Moreover, when ` = 0 we obtain β = 0 and

β → −1 as ` →∞ .

Note that the integrated variance does not have a finite first moment since α/2 < 1. However,

in the case of the leverage effect `
∫ T

t
dL̃(s) its first moment exists, ie E[`

∫ T

t
dL̃(s)] < ∞ since

1 < α < 2.

Proposition 9 It is possible to extend the results above to price European call and put options when

the skewness coefficient β ∈ [0, 1).

Proof Using Put-Call inversion, see McCulloch [16], we have by no arbitrage that European call

and put options are related in the following way

C(S, t; K, T, α, β) = SKP (S−1, t; K−1, T, α,−β).

¤

Note that if we want to extend the previous results to model asymmetric returns we cannot

include a leverage effect in equation (22) in the form

dS(t)
S(t)

= µdt + σ(t)dW (t) + `dL̃(s) (29)

∫ T

t

σ2(s)ds =
∫ T

t

g(T − s)dL(s).
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The reason is that the solution to the SDE with leverage (29) will deliver a stock process S(t)

that allows negative values due to the jumps of the process L̃(s).

We also point out that modelling returns using a Lévy-Stable motion is not possible since it

delivers negative stock prices. For example, let the returns process that is driven by Lévy-Stable

motion in the following way
dS

S
= µdt + ςdL (30)

where µ and ς are constants and L is a Lévy-Stable motion.

Therefore the solution to the SDE (30) is given by

St = S(0)eLt− 1
2 [L,L]ct Πs≤t(1 + ∆Ls)e−∆Ls , (31)

where the infinite product converges and [L,L]ct denotes the path by path continuous path of the

quadratic variation [L,L]t, [22]. And it is clear that in this case the stock price level can achieve

negative values if jumps are such that

1 + ∆Ls < 0

hence we cannot model returns using where the shocks exhibit jumps lower than −1.

6 Numerical results: Lévy-Stable Option Prices

In this section we show how vanilla option prices are calculated according to the above derivations.

One route is to calculate the expected value of the Black-Scholes formula weighted by the stochastic

volatility component and the leverage effect. Another route to price vanilla options for stock prices

that follow a geometric Lévy-Stable processes is to compute the option value as an integral in Fourier

Space.

We will continue to use the Black-Scholes model as a benchmark to compare the option prices

obtained when the returns follow a Lévy-Stable process. We will see that our results are consistent

with the findings in Hull and White [11] where the Black-Scholes model underprices in- and out-of-

the-money Call option prices and overprices at-the-money options.

6.1 Option Prices for Symmetric Lévy-Stable log-Stock Prices

In this subsection we will calculate prices for vanilla options where the underlying log-stock or stock

returns follow a symmetric Lévy-Stable motion. We will use Complex Fourier Transform techniques,

see Lewis [14], Carr and Madan [5], to calculate the value of the options.
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We start with the stock process as in Proposition 7. As pointed out in Remark 5 we can ‘scale’

the integrated volatility using a deterministic function. We do so in this case because it simplifies

the way in which time enters the pricing equations. Hence we let the integrated variance process

follow
∫ T

t

σ2(s)ds = h(T, t)
∫ T

t

g(T − s)dL(s),

where h(T, t) is chosen to be:

h(T, t) =
(T − t)α/2

∫ T

t
g(T − s)2/αds

. (32)

The motivation for this choice becomes clear when inspecting equation (10). Now, under the

risk-neutral measure, the stock process follows

ST = Ste
r(T−t)− 1

2

∫ T
t

σ2(s)ds+
∫ T

t
σ(s)dW (s). (33)

∫ T

t

σ2(s)ds = h(T, t)
∫ T

t

g(T − s)dL(s), (34)

where dW (t) is the increments of a standard Brownian motion, dL(t) ∼ Sα/2

(
2( 1

2 cos πα
4 )2/ασ2

LSdt2/α, 1, 0
)

is a Lévy-Stable motion with 0 < α < 2, g ∈ F and r denotes the risk-free rate.

The first step we take is to calculate the characteristic function of the process

Z(T, t) = −1
2

∫ T

t

σ2(s)ds +
∫ T

t

σ(s)dW (s).

Proposition 10 The Characteristic function of Z(T, t) is given by

Ψ(ξ) = e−
1
2 σα

LS(T−t)(iξ+ξ2)α/2

, (35)

where ξ = ξr +iξi and −1 ≤ ξi ≤ 0. Moreover, the function Ψ(ξ) is analytic in the strip −1 < ξi < 0.

Proof

The characteristic function is given by

EQ
[
eiξZ(T,t)

]
= EQ

[
e−

1
2 iξ

∫ T
t

σ2(s)ds+iξ
∫ T

t
σ(s)dW (s)

]

= EQ
[
e−

1
2 iξ

∫ T
t

σ2(s)ds− 1
2 ξ2 ∫ T

t
σ2(s)ds

]

= EQ
[
e−

1
2 (iξ+ξ2)h(T,t)

∫ T
t

g(T−s)dL(s)
]

= e−
1
2 σα

LS(T−t)(iξ+ξ2)α/2

.

The last step is possible since the expected value exists, as shown below, if ξ is restricted so that

ξ2
r − ξ2

i + ξi ≥ 0. To show that EQ
[
e−

1
2 iξ

∫ T
t

σ2(s)ds− 1
2 ξ2 ∫ T

t
σ2(s)ds

]
exists, we proceed in the following
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way:
∣∣∣EQ

[
e−

1
2 (iξ+ξ2)

∫ T
t

g(T−s)dL(s)
]∣∣∣ =

∣∣∣EQ
[
e−

1
2 (iξr(1+2ξi)+ξ2

r−ξ2
i−ξi)

∫ T
t

g(T−s)dL(s)
]∣∣∣

= EQ
[
e−

1
2 (ξ2

r−ξ2
i−ξi)

∫ T
t

g(T−s)dL(s)
]

< ∞.

For the last step we require ξ2
r − ξ2

i − ξi ≥ 0 so the expected value is finite given the tails of the

distribution of
∫ T

t
g(T − s)dL(s) as shown in Proposition 2. The region where this is true contains

the strip −1 ≤ ξi ≤ 0. Finally, it is straightforward to observe that Ψ(ξ) is analytic in the strip

−1 < ξi < 0.

¤

We note that if we choose h(T, t) = 1 the characteristic equation of Z(T, t) is

Ψ(ξ) = e−
1
2 σα

LSG(T,t)(iξ+ξ2)α/2

,

where G(T, t) =
∫ T

t
g(T − s)α/2dL(s).

To price call options we proceed as above and use the following expression:

C(x, t) = ex−D0(T−t) − 1
2π

e−r(T−t)K

iξi+∞∫

iξi−∞

e−iξz Kiξ

ξ2 − iξ
e(T−t)[Ψ(−ξ)]dξ (36)

where x = ln S(T ) and 0 < ξi < 1 and Ψ(−ξ) is the characteristic function of the process ln S(T ).

6.1.1 Numerics for Symmetric Lévy-Stable log-Stock Prices

We now calculate European Style option prices when log-stock or stock returns are symmetric Lévy-

Stable using (36). In order to compare these prices to those obtained using the Black-Scholes pricing

formula, we have to decide how to choose the relevant parameters of the two models. In fact, the

only parameter that we must carefully examine is the scaling parameter of the Lévy-Stable process;

we opt for one that can be related to the standard deviation used when the classical Black-Scholes

model is used. One approach is to proceed as in [12] and match a given percentile of the Normal

and a symmetric Lévy-Stable distribution. For example, if we want to match the first and third

quartile of a Brownian motion with standard deviation σ = 0.20to a symmetric Lévy-Stable motion

dL ∼ Sα(κ, 0, 0) with characteristic exponent α = 1.7, we would require κ = 0.1401. We have chosen

these parameters to compare the option prices. Moreover, in the simulations below, for illustrative

purposes, we use the kernel g(T − s) =
(
1− e−(T−s)

)
.

Figure 3 shows the difference between European Call options when the stock returns are dis-

tributed according to a symmetric Lévy-Stable motion with annual σLS = 0.1401 and α = 1.7 and

when returns follow a Brownian motion with annual volatility σBS = 0.20.
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Figure 3: Difference between Lévy-Stable and Black-Scholes Call option prices for different expiry

dates: T = 0.1 year, T = 0.3 year and T = 0.5 year. In the Black-Scholes annual volatility is

σBS = 20% and in the symmetric Lévy-Stable case the scaling coefficient is σLS = 14.01% per year.

6.2 Option Prices for Asymmetric Lévy-Stable log-Stock Prices

In this subsection we obtain option prices, and implied volatilities, when there is a negative leverage

effect, ie log-stock prices follow an asymmetric Lévy-Stable process. Recall that, under the risk-

neutral measure Q, the stock price and variance process are given by

S(T ) = S(t)er(T−t)− 1
2

∫ T
t

σ2(s)ds+ 1
2 (T−t) `α

1+`α σα
LS sec πα

2 +
∫ T

t
σ(s)dW (s)+`

∫ T
t

dL̃(s)

∫ T

t

σ2(s)ds = h(T, t)
∫ T

t

g(T − s)dL(s),

where h(T, t) is as in (32); with this choice of h(T, t) the skewness parameter is β = −`α/(1 + `α).

We proceed as above and calculate the characteristic function of the process

Z(T, t) = −1
2

∫ T

t

σ2(s)ds +
∫ T

t

σ(s)dW (s) + `

∫ T

t

dL̃(s),

where dW (t) is the standard Brownian motion independent of both dL̃(t) and dL(t);

dL̃(t) ∼ Sα

(
1

21/α
σT L

(1+`α)1/α dt1/α,−1, 0
)

and dL(t) ∼ Sα/2

(
2

(
1
2 cos πα

4

)2/α σ2
T L

(1+`α)2/α dt1/α, 1, 0
)

are

two independent Lévy-Stable motions.
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Figure 4: Black-Scholes implied volatility for the Lévy-Stable Call option prices when returns follow

a symmetric Lévy-Stable motion with α = 1.7, β = 0, σLS = 14.01% and three expiry dates: T = 0.1

year, T = 0.3 year and T = 0.5 year.

Proposition 11 The Characteristic function of Z(T, t) is given by

Ψ(ξ) = e
− 1

2 (T−t)
σα

LS
1+`α

[
(iξ+ξ2)α/2−(iξ`)α sec πα

2

]
, (37)

where −1 ≤ ξi ≤ 0, ξ = ξr + iξr. Moreover, the function Ψ(ξ) is analytic in the strip −1 < ξi < 0.

Proof

The proof is very similar to the one above. It suffices to note that for ξi ≤ 0

EQ
[
eiξ`

∫ T
t

dL̃(s)
]

≤ EQ
[∣∣∣eiξ`

∫ T
t

dL̃(s)
∣∣∣
]

= EQ
[
e−ξi`

∫ T
t

dL̃(s)
]

< ∞.

Moreover, for ξi < 0 we have that EQ
[
eiξ`

∫ T
t

dL̃(s)
]

is analytic, ie

d

dξ
EQ

[
eiξ`

∫ T
t

dL̃(s)
]

= EQ

[
i`

∫ T

t

dL̃(s)eiξ`
∫ T

t
dL̃(s)

]

< ∞.
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Putting these results together with the results from Proposition 10 we get the desired result.

¤

Remark 9 Note that the requirement is −1 < ξi < 0 because dL̃(s) is totally skewed to the left,

therefore we need −ξ` > 0.

Note again that if we let h(T, t) = 1 the characteristic function of Z(T, T ) is given by

Ψ(ξ) = e
− 1

2 G(T,t)
σα

LS
1+`α

[
(iξ+ξ2)α/2− T−t

G(T,t) (iξ`)α sec πα
2

]
,

where G(T, t) =
∫ T

t
g(T − s)α/2ds.

We use the same g(T−s) as above and include a leverage parameter ` = 1 so that returns follow a

negatively skewed process β = −1/2. Figure 5 shows the difference between Lévy-Stable and Black-

Scholes Call option prices for different expiry dates. In the Black-Scholes case annual volatility

is σBS = 0.20 and in the asymmetric Lévy-Stable case with β = −1/2 the scaling coefficient is

σLS = 0.1401 per year. Finally, Figure 6 shows the corresponding implied volatility.

7 Conclusions

The GCLT provides a very strong theoretical foundation to argue that the limiting distribution of

stock return or log-stock prices follow a Lévy-Stable process. In this paper we have shown that it is

possible to model stock returns and log-stock prices where the stochastic component is Lévy-Stable

distributed, symmetric and negatively skewed, and European-style option prices are straightforward

to calculate.
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Figure 5: Difference between Lévy-Stable and Black-Scholes Call option prices for different expiry

dates: T = 0.1 year, T = 0.3 year and T = 0.5 year. In the Black-Scholes annual volatility

is σBS = 0.20 and in the asymmetric Lévy-Stable case with β = −1/2 the scaling coefficient is

σLS = 0.1401 per year.
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