
Chapter 4

Lebesgue measure and
integration

If you look back at what you have learned in your earlier mathematics
courses, you will definitely recall a lot about area and volume — from the
simple formulas for the areas of rectangles and triangles that you learned in
grade school, to the quite sophisticated calculations with double and triple
integrals that you had to perform in calculus class. What you have probably
never seen, is a systematic theory for area and volume that unifies all the
different methods and techniques.

In this chapter we shall first study such a unified theory for d-dimensional
volume based on the notion of a measure, and then we shall use this theory
to build a stronger and more flexible theory for integration. You may think
of this as a reversal of previous strategies; instead of basing the calculation
of volumes on integration, we shall create a theory of integration based on
a more fundamental notion of volume.

The theory will cover volume in Rd for all d ∈ N, including d = 1 and
d = 2. To get a unified terminology, we shall think of the length of a set in R
and the area of a set in R2 as one- and two-dimensional volume, respectively.

To get a feeling for what we are aiming for, let us assume that we want
to measure the volume of subsets A ⊂ R3, and that we denote the volume
of A by µ(A). What properties would we expext µ to have?

(i) µ(A) should be a nonnegative number or ∞. There are subsets of R3

that have an infinite volume in an intuitive sense, and we capture this
intuition by the symbol ∞.

(ii) µ(∅) = 0. It will be convenient to assign a volume to the empty set,
and the only reasonable alternative is 0.

(iii) If A1, A2, . . . , An, . . . are disjoint (i.e. non-overlapping) sets, then
µ(
⋃∞

n=1 An) =
∑∞

n=1 µ(An). This means that the volume of the whole
is equal to the sum of the volumes of the parts.
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(iv) If A = (a1, a2) × (b1, b2) × (c1, c2) is a rectangular box, then µ(A) is
equal to the volume of A in the traditional sence, i.e.

µ(A) = (a2 − a1)(b2 − b1)(c2 − c1)

It turns out that it is impossible to measure the size of all subsets of A
such that all these requirements are satisfied; there are sets that are simply
too irregular to be measured in a good way. For this reason we shall restrict
ourselves to a class of measurable sets which behave the way we want. The
hardest part of the theory will be to decide which sets are measurable.

We shall use a two step procedure to construct our measure µ: First we
shall construct an outer measure µ∗ which will assign a size µ∗(A) to all
subsets A ∈ R3, but which will not satisfy all the conditions (i)-(iv) above.
Then we shall use µ∗ to single out the class of measurable sets, and prove
that if we restrict µ∗ to this class, our four conditions are satisfied.

4.1 Outer measure in Rd

The first step in our construction is to define outer measure in Rd. The
outer measure is built from rectangular boxes, and we begin by intoducing
the appropriate notation and teminology.

Definition 4.1.1 A subset A of Rd is called an open box if there are num-
bers a

(1)
1 < a

(1)
2 , a

(2)
1 < a

(2)
2 , . . . , a

(d)
1 < a

(d)
2 such that

A = (a(1)
1 , a

(1)
2 )× (a(2)

1 , a
(2)
2 )× . . .× (a(d)

1 , a
(d)
2 )

In addition, we count the empty set as a rectangular box. We define the
volume |A| of A to be 0 if A is the empty set, and otherwise

|A| = (a(1)
2 − a

(1)
1 )(a(2)

2 − a
(2)
1 ) · . . . · (a(d)

2 − a
(d)
1 )

Observe that when d = 1, 2 and 3, |A| denotes the length, area and
volume of A in the usual sense.

If A = {A1, A2, . . . , An, . . .} is a countable collection of open boxes, we
define its size |A| by

|A| =
∞∑

k=1

|Ak|

(we may clearly have |A| = ∞). Note that we can think of a finite collection
A = {A1, A2, . . . , An} of open boxes as a countable one by putting in the
empty set in the missing positions: A = {A1, A2, . . . , An, ∅, ∅, . . .}. This is
the main reason for including the empty set among the open boxes. Note
also that since the boxes A1, A2, . . . may overlap, the size |A| need not be
closely connected to the volume of

⋃∞
n=1 An.
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A covering of a set B ⊂ Rd is a countable collection

A = {A1, A2, . . . , An, . . .}

of open boxes such that B ⊂
⋃∞

n=1 An. We are now ready to define outer
measure.

Definition 4.1.2 The outer measure of a set B ∈ Rd is defined by

µ∗(B) = inf{|A| : A is a covering of B by open boxes}

The idea behind outer measure should be clear – we measure the size
of B by approximating it as economically as possible from the outside by
unions of open boxes. You may wonder why we use open boxes and not
closed boxes

A = [a(1)
1 , a

(1)
2 ]× [a(2)

1 , a
(2)
2 ]× . . .× [a(d)

1 , a
(d)
2 ]

in the definition above. The answer is that it does not really matter, but that
open boxes are a little more convenient in some arguments. The following
lemma tells us that closed boxes would have given us exactly the same result.
You may want to skip the proof at the first reading.

Lemma 4.1.3 For all B ⊂ Rd,

µ∗(B) = inf{|A| : A is a covering of B by closed boxes}

Proof: We must prove that

inf{|A| : A is a covering of B by open boxes} =

= inf{|A| : A is a covering of B by closed boxes}

Observe first that if A0 = {A1, A2, . . .} is a covering of B by open boxes, we
can get a covering A = {A1, A2, . . .} of B by closed boxes just by closing
each box. Since the two coverings have the same size, this means that

µ∗(B) = inf{|A| : A is a covering of B by open boxes} ≥

≥ inf{|A| : A is a covering of B by closed boxes}

To prove the opposite inequality, assume that ε > 0 is given. If A =
{A1, A2, . . .} is a covering of B by closed boxes, we can for each n find
an open box Ãn containing An such that |Ãn| < |An|+ ε

2n . Then Ã = {Ãn}
is a covering of B by open boxes, and |Ã| < |A|+ ε. Since ε > 0 is arbitrary,
this shows that to any closed covering, there is an open covering arbitrarily
close in size, and hence

inf{|A| : A is a covering of B by open boxes} ≤
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≤ inf{|A| : A is a covering of B by closed boxes}

2

Here are some properties of the outer measure:

Proposition 4.1.4 The outer measure µ∗ on Rd satisfies:

(i) µ∗(∅) = 0.

(ii) (Monotonicity) If B ⊂ C, then µ∗(B) ≤ µ∗(C).

(iii) (Subadditivity) If {Bn}n∈N is a sequence of subsets of Rd, then

µ∗(
∞⋃

n=1

Bn) ≤
∞∑

n=1

µ∗(Bn)

(iv) For all closed boxes

B = [b(1)
1 , b

(1)
2 ]× [b(2)

1 , b
(2)
2 ]× . . .× [b(d)

1 , b
(d)
2 ]

we have

µ∗(B) = |B| = (b(1)
2 − b

(1)
1 )(b(2)

2 − b
(2)
1 ) · . . . · (b(d)

2 − b
(d)
1 )

Proof: (i) Since A = {∅, ∅, ∅, . . .} is a covering of ∅, µ∗(∅) = 0.

(ii) Since any covering of C is a covering of B, we have µ∗(B) ≤ µ∗(C).

(iii) If µ∗(Bn) = ∞ for some n ∈ N, there is nothing to prove, and we
may hence assume that µ∗(Bn) < ∞ for all n. Let ε > 0 be given. For each
n ∈ N, we can find a covering A

(n)
1 , A

(n)
2 , . . . of Bn such that

∞∑
k=1

|A(n)
k | < µ∗(Bn) +

ε

2n

The collection {A(n)
k }k,n∈N of all sets in all coverings is a countable covering

of
⋃∞

n=1 Bn, and

∑
k,n∈N

|A(n)
k | =

∞∑
n=1

( ∞∑
k=1

|A(n)
k |

)
≤

∞∑
n=1

(
µ∗(Bn) +

ε

2n

)
=

∞∑
n=1

µ∗(Bn) + ε

(if you are unsure about these manipulation, take a look at exercise 5). This
means that

µ∗(
∞⋃

n=1

Bn) ≤
∞∑

n=1

µ∗(Bn) + ε
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and since ε is an arbitrary, positive number, we must have

µ∗(
∞⋃

n=1

Bn) ≤
∞∑

n=1

µ∗(Bn)

(iv) Since we can cover B by Bε = {Bε, ∅, ∅, . . .}, where

B = (b(1)
2 + ε, b

(1)
1 − ε)× (b(2)

2 + ε, b
(2)
1 − ε)× . . .× (b(d)

2 + ε, b
(d)
1 − ε),

for any ε > 0, we se that

µ∗(B) ≤ |B| = (b(1)
2 − b

(1)
1 )(b(2)

2 − b
(2)
1 ) · . . . · (b(d)

2 − b
(d)
1 )

The opposite inequality,

µ∗(B) ≥ |B| = (b(1)
2 − b

(1)
1 )(b(2)

2 − b
(2)
1 ) · . . . · (b(d)

2 − b
(d)
1 )

may seem obvious, but is actually quite tricky to prove. We shall need a
few lemmas to establish this and finish the proof. 2

I shall carry out the remaining part of the proof of Proposition 4.1.4(iv)
in the three dimensional case. The proof is exactly the same in the d-
dimensional case, but the notation becomes so messy that it tends to blur
the underlying ideas. Let us begin with a lemma.

Lemma 4.1.5 Assume that the intervals (a0, aK), (b0, bN ), (c0, cM ) are
partioned

a0 < a1 < a2 < . . . < aK

b0 < b1 < b2 < . . . < bN

c0 < c1 < c2 < . . . < cM

and let ∆ak = ak+1 − ak, ∆bn = an+1 − nn, ∆cm = cm+1 − cm. Then

(aK − a0)(bN − b0)(cm − c0) =
∑

k,n,m

∆ak∆bn∆cm

where the sum is over all triples (k, n,m) such that 0 ≤ k < K, 0 ≤ n < N ,
0 ≤ m < M . In other words, if we partition the box

A = (a0, aK)× (b0, bN )× (c0, cM )

into KNM smaller boxes B1, B2, . . . , BKNM , then

|A| =
KNM∑
j=1

|Bj |
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Proof: If you think geometrically, the lemma seems obvious — it just says
that if you divide a big box into smaller boxes, the volume of the big box
is equal to the sum of the volumes of the smaller boxes. An algebraic
proof is not much harder and has the advantage of working also in higher
dimensions: Note that since aK − a0 =

∑K−1
k=0 ∆ak, bN − b0 =

∑N−1
n=0 ∆bn,

cM − c0 =
∑M−1

m=0 ∆cm, we have

(aK − a0)(bN − b0)(cm − c0) =

=

(
K−1∑
k=0

∆ak

)(
N−1∑
n=0

∆bn

)(
M−1∑
m=0

∆cm

)
=

=
∑

k,n,m

∆ak∆bn∆cm

2

The next lemma reduces the problem from countable coverings to finite
ones. It is the main reason why we choose to work with open coverings.

Lemma 4.1.6 Assume that A = {A1, A2, . . . , An, . . .} is a countable cover-
ing of a compact set K by open boxes. Then K is covered by a finite number
A1, A2, . . . , An of elements in A.

Proof: Assume not, then we can for each n ∈ N find an element xn ∈ K
which does not belong to

⋃n
k=1 Ak. Since K is compact, there is a subse-

quence {xnk
} converging to an element x ∈ K. Since A is a covering of K,

x must belong to an Ai. Since Ai is open, xnk
∈ Ai for all sufficently large

k. But this is impossible since xnk
/∈ Ai when nk ≥ i. 2

We are now ready to prove the missing inequality in Proposition 4.1.4(iv).

Lemma 4.1.7 For all closed boxes

B = [a1, a2]× [b1, b2]× [c1, c2]

we have
µ∗(B) ≥ |B| = (a2 − a1)(b2 − b1)(c2 − c1)

Proof: By the lemma above, it suffices to show that if A1, A2, . . . , An is a
finite covering of B, then

|B| ≤ |A1|+ |A2] + . . . + |An|

Let
Ai = (x(i)

1 , x
(i)
2 )× (y(i)

1 , y
(i)
2 )× (z(i)

1 , z
(i)
2 )
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We collect all x-coordinates x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 , . . . , x

(n)
1 , x

(n)
2 and rearrange

them according to size:

x0 < x1 < x2 < . . . < xI

Doing the same with the y- and the z-coodinates, we get partitions

y0 < y1 < y2 < . . . < yJ

z0 < z1 < z2 < . . . < zK

Let B1, B2, . . . , BP be all boxes of the form (xi, xi+1)×(yj , yj+1)×(zk, zk+1)
that is contained in at least one of the sets A1, A2, . . . , An. Each Ai, 1 ≤
i ≤ n is made up of a finite number of Bj ’s, and each Bj belongs to at least
one of the Ai’s. According to Lemma 4.1.5,

|Ai| = |Bji1
|+ |Bji2

|+ . . . + |Bjiq
|

where Bji1
, Bji2

, . . . , Bjiq
are the small boxes making up Ai. If we sum over

all i, we get
n∑

i=1

|Ai| >
P∑

j=1

|Bj |

(we get an inequality since some of the Bj ’s belong to more than one Ai,
and hence are counted twice or more on the left hand side).

On the other hand, the Bj ’s almost form a partition of the original box
B, the only problem being that some of the Bj ’s stick partly outside B. If
we shrink these Bj ’s so that they just fit inside B, we get a partition of B
into even smaller boxes C1, C2, . . . , CQ (some boxes may disappear when we
shrink them). Using Lemma 4.1.5 again, we see that

|B| =
Q∑

k=1

|Ck| <
P∑

j=1

|Bj |

Combining the results we now have, we see that

|B| <
P∑

j=1

|Bj | <
n∑

i=1

|Ai|

and the lemma is proved. 2

We have now finally established all parts of Proposition 4.1.4. and are
ready to move on. The problem with the outer measure µ∗ is that it fails
to be countably additive: If {An} is a disjoint sequence of sets, we can only
guarantee that

µ∗(
∞⋃

n=1

An) ≤
∞∑

n=1

µ∗(An)
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not that

µ∗(
∞⋃

n=1

An) =
∞∑

n=1

µ∗(An) (4.1.1)

As it is impossible to change µ∗ such that (4.1.1) holds for all disjoint se-
quences {An} of subsets of Rd, we shall follow a different strategy: We shall
show that there is a large class M of subsets of Rd such that (4.1.1) holds
for all disjoint sequences where An ∈ M for all n ∈ N. The sets in M will
be called measurable sets.

Exercises for Section 4.1

1. Show that all countable sets have outer measure zero.

2. Show that the x-axis has outer measure 0 in R2.

3. If A is a subset of Rd and b ∈ Rd, we define

A + b = {a + b | a ∈ A}

Show that µ∗(A + b) = µ∗(A).

4. If A is a subset of Rd, define 2A = {2a | a ∈ A}. Show that µ∗(2A) =
2dµ∗(A).

5. Let {an,k}n,k∈N be a collection of nonnegative, real numbers, and let a be
the supremum over all finite sums of distinct elements in this collection, i.e.

A = sup{
I∑

i=1

ani,ki
: I ∈ N and all pairs (n1, k1), . . . , (nI , kI) are different}

a) Assume that {bm}m∈N is a sequence which contains each element in the
set {an,k}n,k∈N exactly ones. Show that

∑∞
m=1 bm = a.

b) Show that
∑∞

n=1 (
∑∞

k=1 an,k) = a.

c) Comment on the proof of Proposition 4.1.4(iii).

4.2 Measurable sets

We shall now begin our study of measurable sets — the sets that can be
assigned a “volume” in a coherent way. The definition is rather mysterious:

Definition 4.2.1 A subset E of Rd is called measurable if

µ∗(A ∩ E) + µ∗(A ∩ Ec) = µ∗(A)

for all A ⊂ Rd. The collection of all measurable sets is denoted by M.
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Although the definition above is easy to grasp, it is not easy too see
why it captures the essence of the sets that are possible to measure. The
best I can say is that the reason why some sets are impossible to measure,
is that they have very irregular boundaries. The definition above says that
a set is measurable if we can use it to split any other set in two without
introducing any further irregularities, i.e. all parts of its boundary must
be reasonably regular. Admittedly, this explanation is vague and not very
helpful in understanding why the definition captures exactly the right no-
tion of measurability. The best argument may simply be to show that the
definition works, so let us get started.

Let us first of all make a very simple observation. Since A = (A ∩ E) ∪
(A∩Ec), subadditivity (recall Proposition 4.1.4(iii)) tells us that we always
have

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≥ µ∗(A)

Hence to prove that a set is measurable, we only need to prove that

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A)

Our first observation on measurable sets is simple.

Lemma 4.2.2 If E has outer measure 0, then E is measurable. In partic-
ular, ∅ ∈ M.

Bevis: If E has measure 0, so has A ∩ E since A ∩ E ⊂ E. Hence

µ∗(A ∩ E) + µ∗(A ∩ Ec) = µ∗(A ∩ Ec) ≤ µ∗(A)

for all A ⊂ Rd. 2

Next we have:

Proposition 4.2.3 M is an algebra of sets, i.e.:

(i) ∅ ∈ M.

(ii) If E ∈M, then Ec ∈M.

(iii) If E1, E2, . . . , En ∈M, then E1 ∪ E2 ∪ . . . ∪ En ∈M.

(iv) If E1, E2, . . . , En ∈M, then E1 ∩ E2 ∩ . . . ∩ En ∈M.

Proof: We have already proved (i), and (ii) is obvious from the definition of
measurable sets. Since E1 ∪ E2 ∪ . . . ∪ En = (Ec

1 ∩ Ec
2 ∩ . . . ∩ Ec

n)c by De
Morgans laws, (iii) follows from (ii) and (iv). Hence it remains to prove (iv).
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To prove (iv) is suffices to prove that if E1, E2 ∈M, then E1 ∩E2 ∈M
as we can then add more sets by induction. If we first use the measurability
of E1, we see that for any set A ⊂ Rd

µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ Ec
1)

Using the measurability of E2, we get

µ∗(A ∩ E1) = µ∗((A ∩ E1) ∩ E2) + µ∗((A ∩ E1) ∩ Ec
2)

Combining these two expressions, we have

µ∗(A) = µ∗((A ∩ (E1 ∩ E2)) + µ∗((A ∩ E1) ∩ Ec
2) + µ∗(A ∩ Ec

1)

Observe that (draw a picture!)

(A ∩ E1 ∩ Ec
2) ∪ (A ∩ Ec

1) = A ∩ (E1 ∩ E2)c

and hence

µ∗(A ∩ E1 ∩ Ec
2) + µ∗(A ∩ Ec

1) ≥ µ∗(A ∩ (E1 ∩ E2)c)

Putting this into the expression for µ∗(A) above, we get

µ∗(A) ≥ µ∗((A ∩ (E1 ∩ E2)) + µ∗(A ∩ (E1 ∩ E2)c)

which means that E1 ∩ E2 ∈M. 2

We would like to extend parts (iii) and (iv) in the proposition above to
countable unions and intersection. For this we need the following lemma:

Lemma 4.2.4 If E1, E2, . . . , En is a disjoint collection of measurable sets,
then

µ∗(A∩ (E1 ∪E2 ∪ . . .∪En)) = µ∗(A∩E1) + µ∗(A∩E2) + . . . + µ∗(A∩En)

Proof: It suffices to prove the lemma for two sets E1 and E2 as we can then
extend it by induction. Using the measurability of E1, we see that

µ∗(A ∩ (E1 ∪E2)) = µ∗((A ∩ (E1 ∪E2)) ∩E1) + µ∗(A ∩ (E1 ∪E2)) ∩Ec
1) =

= µ∗(A ∩ E1) + µ∗(A ∩ E2)

2

We can now prove that M is closed under countable unions.

Lemma 4.2.5 If An ∈M for each n ∈ N, then
⋃

n∈N An ∈M.
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Proof: Note that since M is an algebra,

En = An ∩ (E1 ∪ E2 ∪ . . . En−1)c

belongs to M for n > 1 (for n = 1, we just let E1 = A1). The new sequence
{En} is disjoint and have the same union as {An}, and hence it suffices to
prove that

⋃
n∈N En ∈M, i.e.

µ∗(A) ≥ µ∗
(
A ∩

∞⋃
n=1

En

)
+ µ∗

(
A ∩

( ∞⋃
n=1

En

)c)
Since

⋃N
n=1 En ∈M for all N ∈ N, we have:

µ∗(A) = µ∗
(
A ∩

N⋃
n=1

En

)
+ µ∗

(
A ∩

( N⋃
n=1

En

)c) ≥
≥

N∑
n=1

µ∗(A ∩ En) + µ∗
(
A ∩

( ∞⋃
n=1

En

)c)
where we in the last step have used the lemma above plus the observation
that

(⋃∞
n=1 En

)c ⊂ (⋃N
n=1 En

)c. Since this inequality holds for all N ∈ N,
we get

µ∗(A) ≥
∞∑

n=1

µ∗(A ∩ En) + µ∗
(
A ∩

( ∞⋃
n=1

En

)c)
By sublinearity, we have

∑∞
n=1 µ∗(A ∩ En) ≥ µ∗(

⋃∞
n=1(A ∩ En)) = µ∗(A ∩⋃∞

n=1(En)), and hence

µ∗(A) ≥ µ∗
(
A ∩

∞⋃
n=1

En

)
+ µ∗

(
A ∩

( ∞⋃
n=1

En

)c)
2

Let us sum up our results so far.

Theorem 4.2.6 The measurable sets M form a σ-algebra, i.e.:

(i) ∅ ∈ M

(ii) If E ∈M, then Ec ∈M.

(iii) If En ∈M for all n ∈ N, then
⋃∞

n=1 En ∈M.

(iv) If En ∈M for all n ∈ N, then
⋂∞

n=1 En ∈M.
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Proof: We have proved everything except (iv), which follows from (ii) and
(iii) since

⋂∞
n=1 En =

(⋃∞
n=1 Ec

n

)c. 2

Remark: By definition, a σ-algebra is a collection of subsets satisfying (i)-
(iii), but — as we have seen — point (iv) follows from the others.

There is one more thing we have to check: that M contains sufficiently
many sets. So far we only know that M contains the sets of outer measure
0 and their complements!

In the first proof it is convenient to use closed coverings as in Lemma
4.1.3 to determine the outer measure.

Lemma 4.2.7 For each i and each a ∈ R, the open halfspaces

H = {(x1, . . . , xi, . . . , xd) ∈ Rd : xi < a}

and
K = {(x1, . . . , xi, . . . , xd) ∈ Rd : xi > a}

are measurable.

Proof: We only prove the H-part. We have to check that for any B ⊂ Rd,

µ∗(B) ≥ µ∗(B ∩H) + µ∗(B ∩Hc)

Given a covering A = {Ai} of B by closed boxes, we can create closed
coverings A(1) = {A(1)

i } and A(1) = {A(2)
i } of B∩H and B∩Hc, respectively,

by putting
A

(1)
i = {(x1, . . . , xi, . . . , xd) ∈ Ai : xi ≤ a}

A
(2)
i = {(x1, . . . , xi, . . . , xd) ∈ Ai : xi ≥ a}

Hence
|A| = |A(1)|+ |A(2)| ≥ µ∗(B ∩H) + µ∗(B ∩Hc)

and since this holds for all closed coverings A of B, we get

µ∗(B) ≥ µ∗(B ∩H) + µ∗(B ∩Hc)

2

The next step is now easy:

Lemma 4.2.8 All open boxes are measurable.

Proof: An open box is a finite intersection of open halfspaces. 2

The next result tells us that there are many measurable sets:
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Theorem 4.2.9 All open sets in Rd are countable unions of open boxes.
Hence all open and closed sets are measurable.

Proof: Note first that the result for closed sets follows from the result for
open sets since a closed set is the complement of an open set. To prove the
theorem for open sets, let us first agree to call an open box

A = (a(1)
1 , a

(1)
2 )× (a(2)

1 , a
(2)
2 )× . . .× (a(d)

1 , a
(d)
2 )

rational if all the coordinates a
(1)
1 , a

(1)
2 , a

(2)
1 , a

(2)
2 , . . . , a

(d)
1 , a

(d)
2 are rational.

There are only countably many rationals boxes, and hence we only need to
prove that if G is an open set, then

G =
⋃
{B : B is a rational box contained in G}

We leave the details to the reader. 2

Exercises for Section 4.2

1. Show that if A,B ∈M, then A \B ∈M.

2. Explain in detail why 4.2.3(iii) follows from (ii) and (iv).

3. Carry out the induction step in the proof of Proposition 4.2.3(iv).

4. Explain the equality (A∩E1 ∩Ec
2)∪ (A∩Ec

1) = A∩ (E1 ∩E2)c in the proof
of Lemma 4.2.3.

5. Carry out the induction step in the proof of Lemma 4.2.4.

6. Explain in detail why (iv) follows from (ii) and (iii) in Theorem 4.2.6.

7. Show that all closed halfspaces

H = {(x1, . . . , xi, . . . , xd) ∈ Rd : xi ≤ a}

and
K = {(x1, . . . , xi, . . . , xd) ∈ Rd : xi ≥ a}

are measurable

8. Recall that if A is a subset of Rd and b ∈ Rd, then

A + b = {a + b | a ∈ A}

Show that A + b is measurable if and only if A is.

9. If A is a subset of Rd, define 2A = {2a | a ∈ A}. Show that 2A is measurable
if and only if A is.

10. Fill in the details in the proof of Lemma 4.2.8.

11. Complete the proof of Theorem 4.2.9.
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4.3 Lebesgue measure

Having constructed the outer measure µ∗ and explored its basic properties,
we are now ready to define the measure µ.

Definition 4.3.1 The Lebesgue measure µ is the restriction of the outer
measure µ∗ to the measurable sets, i.e. it is the function

µ : M→ [0,∞]

defined by
µ(A) = µ∗(A)

for all A ∈M.

Remark: Since µ and µ∗ are essentially the same function, you may wonder
why we have introduced a new symbol for the Lebesgue measure. The an-
swer is that although it is not going to make much of a difference for us here,
it is convenient to distinguish between the two in more theoretical studies
of measurability. All you have to remember for this text, is that µ(A) and
µ∗(A) are defined and equal as long as A is measurable.

We can now prove that µ has the properties we asked for at the beginning
of the chapter:

Theorem 4.3.2 The Lebesgue measure µ : M → [0,∞] has the following
properties:

(i) µ(∅) = 0.

(ii) (Completeness) Assume that A ∈ M, and that µ(A) = 0. Then all
subset B ⊂ A are measurable, and µ(B) = 0.

(iv) (Countable subadditivity) If {An}n∈N is a sequence of measurable sets,
then

µ(
∞⋃

n=1

An) ≤
∞∑

n=1

µ(An)

(iv) (Countable additivity) If {En}n∈N is a disjoint sequence of measurable
sets, then

µ(
∞⋃

n=1

En) =
∞∑

n=1

µ(En)

(v) For all closed boxes

B = [b(1)
1 , b

(1)
2 ]× [b(2)

1 , b
(2)
2 ]× . . .× [b(d)

1 , b
(d)
2 ]

we have

µ(B) = |B| = (b(1)
2 − b

(1)
1 )(b(2)

2 − b
(2)
1 ) · . . . · (b(d)

2 − b
(d)
1 )
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Proof: (i) and (ii) follow from Lemma 4.2.2, and (iii) follows from part (iii) of
Proposisition 4.1.4 sinceM is a σ-algebra, and

⋃∞
n=1 An hence is measurable.

Since we know from Theorem 4.2.9 that closed boxes are measurable, part
(v) follows from Proposition 4.1.4(iv).

To prove (iv), we first observe that

µ(
∞⋃

n=1

En) ≤
∞∑

n=1

µ(En)

by (iii). To get the opposite inequality, we use Lemma 4.2.4 with A = Rd

to see that
N∑

n=1

µ(En) = µ(
N⋃

n=1

En) ≤ µ(
∞⋃

n=1

En)

Since this holds for all N ∈ N, we must have
∞∑

n=1

µ(En) ≤ µ(
∞⋃

n=1

En)

Hence we have both inequalities, and (iii) is proved. 2

In what follows, we shall often need the following simple lemma:

Lemma 4.3.3 If C,D are measurable sets such that C ⊂ D and µ(D) < ∞,
then

µ(D \ C) = µ(D)− µ(C)

Proof: By additivity
µ(D) = µ(C) + µ(D \ C)

Since µ(D) is finite, so is µ(C), and it makes sense to subtract µ(C) on both
sides to get

µ(D \ C) = µ(D)− µ(C)

2

The next properties are often referred to as continuity of measure:

Proposition 4.3.4 Let {An}n∈N be a sequence of measurable sets.

(i) If the sequence is increasing (i.e. An ⊂ An+1 for all n), then

µ(
∞⋃

n=1

An) = lim
n→∞

µ(An)

(ii) If the sequence is decreasing (i.e. An ⊃ An+1 for all n), and µ(A1) is
finite, then

µ(
∞⋂

n=1

An) = lim
n→∞

µ(An)
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Proof: (i) If we put E1 = A1 and En = An \ An−1 for n> 1, the sequence
{En} is disjoint, and

⋃n
k=1 Ek = An for all N (make a drawing). Hence

µ(
∞⋃

n=1

An) = µ(
∞⋃

n=1

En) =
∞∑

n=1

µ(En) =

= lim
n→∞

n∑
k=1

µ(Ek) = lim
n→∞

µ(
n⋃

k=1

Ek) = lim
n→∞

µ(An)

where we have used the additivity of µ twice.

(ii) We first observe that {A1 \An}n∈N is an increasing sequence of sets
with union A1 \

⋂∞
n=1 An. By part (ii), we thus have

µ(A1 \
∞⋂

n=1

An) = lim
n→∞

µ(A1 \An)

Applying Lemma 4.3.3 on both sides, we get

µ(A1)− µ(
∞⋂

n=1

An) = lim
n→∞

(µ(A1)− µ(An)) = µ(A1)− lim
n→∞

µ(An)

Cancelling, we have µ(
⋂∞

n=1 An) = limn→∞ µ(An), as we set out to prove. 2

Remark: The finiteness condition in part (ii) may look like an unnecessary
consequence of a clumsy proof, but it is actually needed. To see why, let µ
be Lebesgue measure in R, and let An = [n,∞). Then µ(An) = ∞ for all n,
but µ(

⋂∞
n=1 An) = µ(∅) = 0. Hence limn→∞ µ(An) 6= µ(

⋂∞
n=1 An).

Example 1: We know already that closed boxes have the “right” measure
(Theorem 4.3.2 (iv)), but what about open boxes? If

B = (b(1)
1 , b

(1)
2 )× (b(2)

1 , b
(2)
2 )× . . .× (b(d)

1 , b
(d)
2 )

is an open box, let Bn be the closed box

Bn =
[
b
(1)
1 +

1
n

, b
(1)
2 − 1

n

]
×
[
b
(2)
1 +

1
n

, b
(2)
2 − 1

n

]
× . . .×

[
b
(d)
1 +

1
n

, b
(d)
2 − 1

n

]
obtained by moving all walls a distance 1

n inwards. By the proposition,

µ(B) = lim
n→∞

µ(Bn)

and since the closed boxes Bn have the “right” measure, it follows that so
does the open box B.
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Example 2: Let
Kn = [−n, n]d

be the closed box centered at the origin and with edges of length 2n. For
any measurable set A, it follows from the proposition above that

µ(A) = lim
n→∞

µ(A ∩Kn)

We shall need one more property of measurable sets. It tells us that
measurable sets can be approximated from the outside by open sets and
from the inside by closed sets.

Proposition 4.3.5 Assume that A ⊂ Rd is a measurable set. For each
ε > 0, there is an open set G ⊃ A such that µ(G \ A) < ε, and a closed set
F ⊂ A such that µ(A \ F ) < ε.

Proof: We begin with the open sets. Assume first A has finite measure.
Then there is a covering {Bn} of A by open rectangles such that

∞∑
n=1

|Bn| < µ(A) + ε

Since µ(
⋃∞

n=1 Bn) ≤
∑∞

n=1 µ(Bn) =
∑∞

n=1 |Bn|, we see that G =
⋃∞

n=1 Bn

is an open set such that A ⊂ G, and µ(G) < µ(A) + ε. Hence

µ(G \A) = µ(G)− µ(A) < ε

by Lemma 4.3.3.
If µ(A) is infinite, we first use the boxes Kn in Example 2 to slice A into

pieces of finite measure. More precisely, we let An = A ∩ (Kn \Kn−1), and
use what we have already proved to find an open set Gn such that An ⊂ Gn

and µ(Gn \An) < ε
2n . Then G =

⋃∞
n=1 Gn is an open set which contains A,

and since G \A ⊂
⋃∞

n=1(Gn \An), we get

µ(G \A) ≤
∞∑

n=1

µ(Gn \An) <
∞∑

n=1

ε

2n
= ε,

proving the statement about approximation by open sets.
To prove the statement about closed sets, just note that if we apply

the first part of the theorem to Ac, we get an open set G ⊃ Ac such that
µ(G \ Ac) < ε. This means that F = Gc is a closed set such that F ⊂ A,
and since A \ F = G \Ac, we have µ(A \ F ) < ε. 2

We have now established the basic properties of the Lebesgue measure.
For the remainder of the chapter, you may forget about the construction of
the measure and concentrate on the results of this section plus the properties
of measurable sets summed up in theorems 4.2.6 and 4.2.9 of the previous
section.



18 CHAPTER 4. LEBESGUE MEASURE AND INTEGRATION

Exercises for Section 4.3

1. Explain that A \ F = G \Ac and the end of the proof of Proposition 4.3.5.

2. Show that if E1, E2 are measurable, then

µ(E1) + µ(E2) = µ(E1 ∪ E2) + µ(E1 ∩ E2)

3. The symmetric differenceA4B of two sets A, B is defined by

A4B = (A \B) ∪ (B \A)

A subset of Rd is called a Gδ-set if it is the intersection of countably many
open sets, and it is called a Fσ-set if it is union of countably many closed set.

a) Show that if A and B are measurable, then so is A4B.

b) Explain why all Gδ- and Fσ-sets are measurable.

c) Show that if A is measurable, there is a Gδ-set G such that µ(A4G) = 0.

d) Show that if A is measurable, there is a Fσ-set F such that µ(A4F ) =
0.

4. Assume that A ∈ M has finite measure. Show that for every ε > 0, there is
a compact set K ⊂ A such that µ(A \K) < ε.

5. Assume that {An} is a countable sequence of measurable sets, and assume
that

∑∞
n=1 µ(An) < ∞. Show that the set

A = {x ∈ Rd |x belongs to infinitely many An}

has measure zero.

4.4 Measurable functions

Before we turn to integration, we need to look at the functions we hope to
integrate, the measurable functions. As functions taking the values ±∞ will
occur naturally as limits of sequences of ordinary functions, we choose to
include them from the beginning; hence we shall study functions

f : Rd → R

where R = R ∪ {−∞,∞} is the set of extended real numbers. Don’t spend
too much effort on trying to figure out what −∞ and ∞ “really” are — they
are just convenient symbols for describing divergence.

To some extent we may extend ordinary algebra to R, e.g., we shall let

∞+∞ = ∞, −∞−∞ = −∞

and
∞ ·∞ = ∞, (−∞) · ∞ = −∞, (−∞) · (−∞) = ∞.
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If r ∈ R, we similarly let

∞+ r = ∞, −∞+ r = −∞

For products, we have to take the sign of r into account, hence

∞ · r =


∞ if r > 0

−∞ if r < 0

and similarly for (−∞) · r.
All the rules above are natural and intuitive. Expressions that do not

have an intuitive interpretation, are usually left undefined, e.g. is ∞−∞
not defined. There is one exception to this rule; it turns out that in measure
theory (but not in other parts of mathematics!) it is convenient to define
0 · ∞ = ∞ · 0 = 0.

Since algebraic expressions with extended real numbers are not always
defined, we need to be careful and always check that our expressions make
sense.

We are now ready to define measurable functions:

Definition 4.4.1 A function f : Rd → R is measurable if

f−1([−∞, r)) ∈M

for all r ∈ R. In other words, the set

{x ∈ Rd : f(x) < r}

must be measurable for all r ∈ R.

The half-open intervals in the definition are just a convenient starting
point for showing that the inverse images of more complicated sets are mea-
surable:

Proposition 4.4.2 If f : Rd → R is measurable, then f−1(I) ∈ M for all
intervals I = (s, r), I = (s, r], I = [s, r), I = [s, r] where s, r ∈ R. Indeed,
f−1(A) ∈M for all open and closed sets A.

Proof: We use that inverse images commute with intersections, unions and
complements. First observe that for any r ∈ R

f−1
(
[−∞, r]

)
= f−1

( ⋂
n∈N

[−∞, r +
1
n

)
)

=
⋂
n∈N

f−1
(
[−∞, r +

1
n

)
)
∈M

which shows that the closed intervals [−∞, r] are measurable. Taking com-
plements, we see that the intervals [s,∞] and (s,∞] are measurable:

f−1([s,∞]) = f−1([−∞, s)c) =
(
f−1([−∞, s)

)
)c ∈M
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and
f−1((s,∞]) = f−1([−∞, s]c) =

(
f−1([−∞, s]

)
)c ∈M

To show that finite intervals are measurable, we just take intersections, e.g.,

f−1((s, r)) = f−1([−∞, r) ∩ (s,∞]) = f−1([−∞, r)) ∩ f−1((s,∞]) ∈M

If A is open, we know from Theorem 4.2.9 that it is a countable union
A =

⋃
n∈N In of open intervals. Hence

f−1(A) = f−1
( ⋃

n∈N
In

)
=
⋃
n∈N

f−1(In) ∈M

Finally, if A is closed, we use that its complement is open to get

f−1(A) =
(
f−1(Ac)

)c ∈M
2

It is sometimes convenient to use other kinds of intervals than those in
the definition to check that a function is measurable:

Proposition 4.4.3 Consider a function f : Rd → R. If either

(i) f−1([−∞, r]) ∈M for all r ∈ R, or

(ii) f−1([r,∞]) ∈M for all r ∈ R, or

(iii) f−1((r,∞]) ∈M for all r ∈ R,

then f is measurable.

Proof: In either case we just have to check that f−1([−∞, r)) ∈ M for all
r ∈ R. This can be done by the techniques in the previous proof. The details
are left to the reader. 2

The next result tells us that there are many measurable functions:

Proposition 4.4.4 All continuous functions f : Rd → R are measurable.

Proof: Since f is continuous and takes values in R,

f−1([−∞, r)]) = f−1((−∞, r))

is an open set by Proposition 1.3.9 and thus measurable by Theorem 4.2.9. 2

We shall now prove a series of results showing how we can obtain new
measurable functions from old ones. These results are not very exciting, but
they are necessary for the rest of the theory. Note that the functions in the
next two propositions take values in R and not R.
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Proposition 4.4.5 If f : Rd → R is measurable, then φ ◦ f is measurable
for all continuous functions φ : R → R. In particular, f2 is measurable.

Proof: We have to check that

(φ ◦ f)−1((−∞, r)) = f−1(φ−1((−∞, r)))

is measurable. Since φ is contiunuous, φ−1((−∞, r)) is open, and con-
sequently f−1(φ−1((−∞, r))) is measurable by Proposition 4.4.2. To see
that f2 is measurable, apply the first part of the theorem to the function
φ(x) = x2. 2

Proposition 4.4.6 If the functions f, g :→ R are measurable, so are f + g,
f − g, and fg.

Proof: To prove that f +g is measurable, observe first that f +g < r means
that f < r − g. Since the rational numbers are dense, it follows that there
is a rational number q such that f < q < r − g. Hence

(f + g)−1([−∞, r)) = {x ∈ Rd | (f + g) < r) =⋃
q∈Q

(
{x ∈ Rd | f(x) < q} ∩ {x ∈ Rd | g < r − q}

)
which is measurable since Q is countable and a countabe union of measurable
sets is measurable. A similar argument proves that f − g is measurable.

To prove that fg is measurable, note that by Proposition 4.4.5 and what
we have already proved, f2, g2, and (f + g)2 are measurable, and hence

fg =
1
2
(
(f + g)2 − f2 − g2

)
is measurable (check the details). 2

We would often like to apply the result above to functions that take
values in the extended real numbers, but the problem is that the expressions
need not make sense. As we shall mainly be interested in functions that are
finite except on a set of measure zero, there is a way out of the problem.
Let us start with the terminology.

Definition 4.4.7 We say that a measurable function f : Rd → R is finite
almost everywhere if the set {x ∈ Rd : f(x) = ±∞} has measure zero. We
say that two measurable functions f, g : Rd → R are equal almost everywhere
if the set {x ∈ Rd : f(x) 6= g(x)} has measure zero. We usually abbreviate
“almost everywhere” by “a.e.”.
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If the measurable functions f and g are finite a.e., we can modify them
to get measurable functions f ′ and g′ which take values in R and are equal
a.e. to f and g, respectively (see exercise 11). By the proposition above,
f ′ + g′, f ′ − g′ and f ′g′ are measurable, and for many purposes they are
good representatives for f + g, f − g and fg.

Let us finally see what happens to limits of sequences.

Proposition 4.4.8 If {fn} is a sequence of measurable functions, then
supn∈N fn(x), infn∈N fn(x), lim supn→∞ fn(x) and lim infn→∞ fn(x) are mea-
surable. If the sequence converges pointwise, then limn→∞ fn(x) is a mea-
surable function.

Proof: To see that f(x) = supn∈N fn(x) is measurable, we use Proposition
4.4.3(iii). For any r ∈ R

f−1((r,∞)) = {x ∈ Rd : sup
n∈N

fn(x) > r} =

=
⋃
n∈N

{x ∈ Rd : fn(x) > r} =
⋃
n∈N

f−1
n ((r,∞]) ∈M

and hence f is measurable by Propostion 4.4.3(iii). The argument for
infn∈N fn(x) is similar.

To show that lim supn→∞ fn(x) is measurable, first observe that the
functions

gk(x) = sup
n≥k

fn(x)

are measurable by what we have already shown. Since

lim sup
n→∞

fn(x) = inf
k∈N

gk(x)
)
,

the measurability of lim supn→∞ fn(x) follows. A similar argument holds for
lim infn→∞ fn(x). If the sequence converges pointwise, then limn→∞ fn(x) =
lim supn→∞ fn(x) and is hence measurable. 2

Let us sum up what we have done so far in this chapter. We have
constructed the Lebesgue measure µ which assigns a d-dimensional volume
to a large class of subset of Rd, and we have explored the basic properties of
a class of measurable functions which are closely connected to the Lebesgue
measure. In the following sections we shall combine the two to create a
theory of integration which is stronger and more flexible than the one you
are used to.
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Exercises for Section 4.4

1. Show that if f : Rd → R is measurable, the sets f−1({∞}) and f−1({−∞})
are measurable.

2. Complete the proof of Proposition 4.4.2 by showing that f−1 of the intervals
(−∞, r), (−∞, r], [r,∞), (r,∞), (−∞,∞), where r ∈ R, are measurable.

3. Prove Proposition 4.4.3.

4. Show that if f1, f2, . . . , fn are measurable functions with values in R, then
f1 + f2 + · · ·+ fn and f1f2 · . . . · fn are measurable.

5. The indicator function of a set A ⊂ R is defined by

1A(x) =

 1 if x ∈ A

0 otherwise

a) Show that 1A is a measurable function if and only if A ∈M.
b) A simple function is a function f : Rd → R of the form

f(x) =
n∑

i=1

ai1Ai
(x)

where a1, a2, . . . , an ∈ R and A1, A2, . . . , An ∈M. Show that all simple
functions are measurable.

6. Let {En} be a disjoint sequence of measurable sets such that
⋃∞

n=1 En = Rd,
and let {fn} be a sequence of measurable functions. Show that the function
defined by

f(x) = fn(x) when x ∈ En

is measurable.

7. Fill in the details of the proof of the fg part of Proposition 4.4.6. You may
want to prove first that if h : Rd → R is measurable, then so is h

2 .

8. Prove the inf- and the lim inf-part of Proposition 4.4.8.

9. Let us write f ∼ g to denote that f and g are two measurable functions
which are equal a.e.. Show that ∼ is an equivalence relation, i.e.:

(i) f ∼ f

(ii) If f ∼ g, then g ∼ f .
(iii) If f ∼ g and g ∼ h, then f ∼ h.

10. Show that if f : Rd → R is measurable and g : Rd → R equals f almost
everywhere, then g is measurable.

11. Assume that f : Rd → R is finite a.e. Define a new function f ′ : Rd → R by

f ′(x) =

 f(x) if f(x) is finite

0 otherwise

Show that f ′ is measurable and equal to f a.e.

12. A sequence {fn} of measurable functions is said to converge almost every-
where to f if there is a set A of measure 0 such that fn(x) → f(x) for all
x /∈ A. Show that f is measurable.
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4.5 Integration of simple functions

If A is a subset of Rd, we define its indicator function by

1A(x) =


1 if x ∈ A

0 otherwise

The indicator function is measuable if and only if A is measurable.
A measurable function f : Rd → R is called a simple function if it takes

only finitely many different values a1, a2, . . . , an. We may then write

f(x) =
n∑

i=1

a11Ai(x)

where the sets Ai = {x ∈ Rd | f(x) = ai} are disjoint and measurable. Note
that if one of the ai’s is zero, the term does not contribute to the sum, and
it is occasionally convenient to drop it.

If we instead start with measurable sets B1, B2, . . . , Bm and real numbers
b1, b2, . . . , bm, then

g(x) =
m∑

i=1

bi1Bi(x)

is measurable and takes only finitely many values, and hence is a simple
function. The difference between f and g is that the sets A1, A2, . . . , An

in f are disjoint with union Rd, and that the numbers a1, a2, . . . , an are
distinct. The same need not be the case for g. We say that the simple
function f is on standard form, while g is not.

You may think of a simple function as a generalized step function. The
difference is that step functions are constant on intervals (in R), rectangles
(in R2), or boxes (in higher dimensions), while simple functions need only
be constant on much more complicated (but still measurable) sets.

We can now define the integral of a nonnegative simple function.

Definition 4.5.1 Assume that

f(x) =
n∑

i=1

ai1Ai(x)

is a nonnegative simple function on standard form. Then the (Lebesgue)
integral of f is defined by ∫

f dµ =
n∑

i=1

aiµ(Ai)

Recall that we are using the convention that 0·∞ = 0, and hence aiµ(Ai) = 0
if ai = 0 and µ(Ai) = ∞.
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Note that the integral of a simple function is∫
1A dµ = µ(A)

To see that the definition is reasonable, assume that you are in R2. Since
µ(Ai) measures the area of the set Ai, the product aiµ(Ai) measures in an
intuitive way the volume of the solid with base Ai and height ai.

We need to know that the formula in the definition also holds when the
simple function is not on standard form. The first step is the following,
simple lemma

Lemma 4.5.2 If

g(x) =
m∑

j=1

bj1Bj (x)

is a nonnegative simple function where the Bj’s are disjoint and Rd =⋃m
j=1 Bj, then ∫

g dµ =
n∑

j=1

bjµ(Bj)

Proof: The problem is that the values b1, b2, . . . , bm need not be distinct, but
this is easily fixed: If c1, c2, . . . , ck are the distinct values taken by g, let bi,1,
bi,2,. . . ,bi,ni be the bj ’s that are equal to ci, and let Ci = Bi,1∪Bi,2∪. . .∪Bi,ni .
Then µ(Ci) = µ(Bi,1) + µ(Bi,2) + . . . + µ(Bi,ni), and hence

n∑
j=1

bjµ(Bj) =
k∑

i=1

ciµ(Ci)

Since g(x) =
∑k

i=1 ci1Ci(x) is the standard form representation of g, we
have ∫

g dµ =
n∑

j=1

ciµ(Ci)

and the lemma is proved 2

The next step is also easy:

Proposition 4.5.3 Assume that f and g are two nonnegative simple func-
tions, and let c be a nonnnegative, real number. Then

(i)
∫

cf dµ = c
∫

f dµ

(ii)
∫

(f + g) dµ =
∫

f dµ +
∫

g dµ



26 CHAPTER 4. LEBESGUE MEASURE AND INTEGRATION

Proof: (i) is left to the reader. To prove (ii), let

f(x) =
n∑

i=1

ai1Ai(x)

g(x) =
n∑

j=1

bj1Bj (x)

be standard form representations of f and g, and define Ci,j = Ai ∩Bj . By
the lemma above ∫

f dµ =
∑
i,j

aiµ(Ci,j)

and ∫
g dµ =

∑
i,j

bjµ(Ci,j)

and also ∫
(f + g) dµ =

∑
i,j

(ai + bj)µ(Ci,j)

since the value of f + g on Ci,j is ai + bj 2

We can now easily prove that the formula in Definition 4.5.1 holds for
all positive representations of step functions:

Corollary 4.5.4 If f(x) =
∑

n=1 ai1Ai(x) is a step function with ai ≥ 0
for all i, then ∫

f dµ =
n∑

i=1

aiµ(Ai)

Proof: By the Proposition∫
f dµ =

∫ n∑
i=1

ai1Ai dµ =
n∑

i=1

∫
ai1Ai dµ =

n∑
i=1

ai

∫
1Ai dµ =

n∑
i=1

aiµ(Ai)

2

We need to prove yet another, almost obvious result. We write g ≤ f to
say that g(x) ≤ f(x) for all x.

Proposition 4.5.5 Assume that f and g are two nonnegative simple func-
tions. If g ≤ f , then ∫

g dµ ≤
∫

f dµ
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Proof: We use the same trick as in the proof of Proposition 4.5.3: Let

f(x) =
n∑

i=1

ai1Ai(x)

g(x) =
n∑

j=1

bj1Bj (x)

be standard form representations of f and g, and define Ci,j = Ai ∩ Bj .
Then ∫

f dµ =
∑
i,j

aiµ(Ci,j) ≥
∑
i,j

bjµ(Ci,j) =
∫

g dµ

2

We shall end this section with a key result on limits of integrals, but
first we need some notation. Observe that if f =

∑n
i=1 an1An is a simple

function and B is a measurable set, then 1Bf =
∑n

i=1 an1An∩B is also a
measurable function. We shall write∫

B
f dµ =

∫
1Bf dµ

and call this the integral of f over B. The lemma below may seem obvious,
but it is the key to many later results.

Lemma 4.5.6 Assume that B is a measurable set, b a positive real number,
and {fn} an increasing sequence of nonnegative simple functions such that
limn→∞ fn(x) ≥ b for all x ∈ B. Then limn→∞

∫
B fn dµ ≥ bµ(B).

Proof: Let a be any positive number less than b, and define

An = {x ∈ B | fn(x) ≥ a}

Since fn(x) ↑ b for all x ∈ B, we see that the sequence {An} is increasing
and that

B =
∞⋃

n=1

An

By continuity of measure (Proposition 4.3.4(i)), µ(B) = limn→∞ µ(An), and
hence for any positive number m less that µ(B), we can find an N ∈ N such
that µ(An) > m when n ≥ N . Since fn ≥ a on An, we thus have∫

B
fn dµ ≥

∫
An

a dµ = am

whenever n ≥ N . Since this holds for any number a less than b and any
number m less than µ(B), we must have limn→∞

∫
B fn dµ ≥ bµ(B) 2

To get the result we need, we extend the lemma to simple functions:
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Proposition 4.5.7 Let g be a nonnegative simple function and assume that
{fn} is an increasing sequence of nonnegative simple functions such that
limn→∞ fn(x) ≥ g(x) for all x. Then

lim
n→∞

∫
fn dµ ≥

∫
g dµ

Proof: Let g(x) =
∑m

i=1 bi1B1(x) be the standard form of g. If any of the
bi’s is zero, we may just drop that term in the sum, so that we from now on
assume that all the bi’s are nonzero. By Corollary 4.5.3(ii), we have∫

B1∪B2∪...∪Bm

fn dµ =
∫

B1

fn dµ +
∫

B2

fn dµ + . . . +
∫

Bm

fn dµ

By the lemma, limn→∞
∫
Bi

fn dµ ≥ biµ(Bi), and hence

lim
n→∞

∫
fn dµ ≥ lim

n→∞

∫
B1∪B2∪...∪Bm

fn dµ ≥
m∑

i=1

biµ(Bi) =
∫

g dµ

2

We are now ready to extend the Lebesgue integral to all positive, mea-
surable functions. This will be the topic of the next section.

Exercises for Section 4.5

1. Show that if f is a measurable function, then the level set

Aa = {x ∈ Rd | f(x) = a}

is measurable for all a ∈ R.

2. Check that according to Definition 4.5.1,
∫

1A dµ = µ(A) for all A ∈M.

3. Prove part (i) of Proposition 4.5.3.

4. Show that if f1, f2, . . . , fn are simple functions, then so are

h(x) = max{f1(x), f2(x), . . . , fn(x)}

and

h(x) = min{f1(x), f2(x), . . . , fn(x)}

5. Let A = Q ∩ [0, 1]. This function is not integrable in the Riemann sense.
What is

∫
1A dµ?
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4.6 Integrals of nonnegative functions

We are now ready to define the integral of a general, nonnegative, measurable
function.

Definition 4.6.1 If f : Rd → [0,∞] is measurable, we define∫
f dµ = sup{

∫
g dµ | g is a nonnegative simple function, g ≤ f}

Remark: Note that if f is a simple function, we now have two definitions
of
∫

f dµ; the original one in Definition 4.5.1 and a new one in the definition
above. It follows from Proposition 4.5.5 that the two definitions agree.

The definition above is natural, but also quite abstract, and we shall
work toward a reformulation that is often easier to handle.

Proposition 4.6.2 Let f : Rd → [0,∞] be a measurable function, and
assume that {hn} is an increasing sequence of simple functions converging
pointwise to f . Then

lim
n→∞

∫
hn dµ =

∫
f dµ

Proof: Since the sequence {
∫

hn dµ} is increasing by Proposition 4.5.5, the
limit clearly exists (it may be ∞), and since

∫
hn dµ ≤

∫
f dµ for all n, we

must have
lim

n→∞

∫
hn dµ ≤

∫
f dµ

To get the opposite inequality, it suffices to show that

lim
n→∞

∫
hn dµ ≥

∫
g dµ

for each simple function g ≤ f , but this follows from Proposition 4.5.7. 2

The proposition above would lose much of its power if there weren’t any
increasing sequences of simple functions converging to f . The next result
tells us that there always are. Pay attention to the argument, it is a key to
why the theory works.

Proposition 4.6.3 If f : Rd → [0,∞) is measurable, there is an increasing
sequence {hn} of simple functions converging pointwise to f . Moreover, for
each n either fn(x)− 1

2n < hn(x) ≤ fn(x) or hn(x) = 2n

Proof: To construct the simple function hn, we cut the interval [0, 2n) into
half-open subintervals of length 1

2n , i.e. intervals

Ik =
[

k

2n
,
k + 1
2n

)
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where 0 ≤ k < 22n, and then let

Ak = f−1(Ik)

We now define

hn(x) =
22n−1∑
k=0

k

2n
1Ak

(x) + 2n1{x | f(x)≥2n}

By definition, hn is a simple function no greater than f . Since the intervals
get narrower and narrower and cover more and more of [0,∞), it is easy to
see that hn converges pointwise to f . To see why the sequence increases,
note that each time we increase n by one, we split each of the former intervals
Ik in two, and this will cause the new step function to equal the old one for
some x’s and jump one step upwards for others (make a drawing).

The last statement follows directly from the construction. 2

Remark: You should compare the partitions in the proof above to the par-
titions you have seen in earlier treatments of integration. When we integrate
a function of one variable in calculus, we partition an interval [a, b] on the
x-axis and use this partition to approximate the original function by a step
function. In the proof above, we instead partitioned the y-axis into intervals
and used this partition to approximate the original function by a simple
function. The difference is that the latter approach gives us much better
control over what is going one; the partition controls the oscillations of the
function. The price we have to pay, it that we get simple functions instead of
step functions, and to use simple functions for integration, we need measure
theory.

Let us combine the last two results in a handy corollary:

Corollary 4.6.4 If f : Rd → [0,∞) is measurable, there is an increasing
sequence {hn} of simple functions converging pointwise to f , and∫

f dµ = lim
n→∞

∫
hn dµ

Let us take a look at some properties of the integral.

Proposition 4.6.5 Assume that f, g : Rd → [0,∞] are measurable func-
tions and that c is a nonnegative, real number. Then:

(i)
∫

cf dµ = c
∫

f dµ.

(ii)
∫

(f + g) dµ =
∫

f dµ +
∫

g dµ.

(iii) If g ≤ f , then
∫

g dµ ≤
∫

f dµ.
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Proof: (iii) is immediate from the definition, and (i) is left to the reader. To
prove (ii), let {fn} and {gn} be to increasing sequence of simple functions
converging to f and g, respectively. Then {fn+gn} is an increasing sequence
of simple functions converging to f + g, and∫

(f + g) dµ = lim
n→∞

∫
(fn + gn) dµ = lim

n→∞

(∫
fn dµ +

∫
gn dµ

)
=

= lim
n→∞

∫
fn dµ + lim

n→∞

∫
gn dµ =

∫
f dµ +

∫
g dµ

2

One of the big advantages of Lebesgue integration over traditional Rie-
mann integration, is that the Lebesgue integral is much better behaved with
respect to limits. The next result is our first example:

Theorem 4.6.6 (Monotone Convergence Theorem) If {fn} is an in-
creasing sequence of nonnegative, measurable functions such that f(x) =
limn→∞ fn(x) for all x, then

lim
n→∞

∫
fn dµ =

∫
f dµ

In other words,

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ

Proof: We know from Proposition 4.4.8 that f is measurable, and hence the
integral

∫
f dµ is defined. Since fn ≤ f , we have

∫
fn dµ ≤

∫
f dµ for all n,

and hence
lim

n→∞

∫
fn dµ ≤

∫
f dµ

To prove the opposite inequality, we approximate each fn by simple functions
as in the proof of Proposition 4.6.3; in fact, let hn be the n-th approximation
to fn. Assume that we can prove that the sequence {hn} converges to f ;
then

lim
n→∞

∫
hn dµ =

∫
f dµ

by Proposition 4.6.2. Since fn ≥ hn, this would give us the desired inequality

lim
n→∞

∫
fn dµ ≥

∫
f dµ

It remains to show that hn(x) → f(x) for all x. From Proposition 4.6.3
we know that for all n, either fn(x)− 1

2n < hn(x) ≤ fn(x) or hn(x) = 2n. If
hn(x) = 2n for infinitely many n, then hn(x) goes to ∞, and hence to f(x).
If hn(x) is not equal to 2n for infinitely many n, then we eventually have
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fn(x)− 1
2n < hn(x) ≤ fn(x), and hence hn(x) converges to f(x) since fn(x)

does. 2

We would really have liked the formula

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ (4.6.1)

above to hold in general, but as the following example shows, this is not the
case.

Example 1: Let fn = 1[n,n+1]. Then limn→∞ fn(x) = 0 for all x, but∫
fn dµ = 1. Hence

lim
n→∞

∫
fn dµ = 1

but ∫
lim

n→∞
fn dµ = 0

There are many results in measure theory giving conditions for (4.6.1)
to hold, but there is no ultimate theorem covering all others. There is,
however, a simple inequality that always holds.

Theorem 4.6.7 (Fatou’s Lemma) Assume that {fn} is a sequence of non-
negative, measurable functions. Then

lim inf
n→∞

∫
fn dµ ≥

∫
lim inf
n→∞

fn dµ

Proof: Let gk(x) = infk≥n fn(x). Then {gk} is an increasing sequence of
measurable functions, and by the Monotone Convergence Theorem

lim
k→∞

∫
gk dµ =

∫
lim

k→∞
gk dµ =

∫
lim inf
n→∞

fn dµ

where we have used the definition of lim inf in the last step. Since fk ≥ gk,
we have

∫
fk dµ ≥

∫
gk dµ, and hence

lim inf
k→∞

∫
fk dµ ≥ lim

k→∞

∫
gk dµ =

∫
lim inf
n→∞

fn dµ

and the result is proved. 2

Fatou’s Lemma is often a useful tool in establishing more sophisticated
results, see Exercise 14 for a typical example.

Just as for simple functions, we define integrals over measurable subsets
A of Rd by the formula
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∫
A

f dµ =
∫

1Af dµ

So far we have allowed our integrals to be infinite, but we are mainly
interested in situations where

∫
f dµ is finite:

Definition 4.6.8 A function f : Rd → [0,∞] is said to be integrable if it
is measurable and

∫
f dµ < ∞.

Exercises for Section 4.6

1. Assume f : Rd → [0,∞] is a nonnegative simple function. Show that the two
definitions of

∫
f dµ given in Definitions 4.5.1 and 4.6.1 coincide.

2. Prove Proposition 4.6.5(i).

3. Show that if f : Rd → [0,∞] is measurable, then

µ({x ∈ Rd | f(x) ≥ a}) ≤ 1
a

∫
f dµ

for all positive, real numbers a.

4. In this problem, f, g : Rd → [0,∞] are measurable functions.

a) Show that
∫

f dµ = 0 if and only if f = 0 a.e.

b) Show that if f = g a.e., then
∫

f dµ =
∫

g dµ.

c) Show that if
∫

E
f dµ =

∫
E

g dµ for all measurable sets E, then f = g
a.e.

5. In this problem, f : Rd → [0,∞] is a measurable function and A,B are
measurable sets.

a) Show that
∫

A
f dµ ≤

∫
f dµ

b) Show that if A,B are disjoint, then
∫

A∪B
f dµ =

∫
A

f dµ +
∫

B
f dµ.

c) Show that in general
∫

A∪B
f dµ +

∫
A∩B

f dµ =
∫

A
f dµ +

∫
B

f dµ.

6. Show that if f : Rd → [0,∞] is integrable, then f is finite a.e.

7. Let f : R → R be the function

f(x) =

 1 if x is rational

0 otherwise

and for each n ∈ N, let fn : R → R be the function

fn(x) =


1 if x = p

q where p ∈ Z, q ∈ N, q ≤ n

0 otherwise

a) Show that {fn(x)} is an increasing sequence converging to f(x) for all
x ∈ R.
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b) Show that each fn is Riemann integrable over [0, 1] with
∫ 1

0
fn(x) dx = 0

(this is integration as taught in calculus courses).

c) Show that f is not Riemann integrable over [0, 1].

d) Show that the one-dimensional Lebesgue integral
∫
[0,1]

f dµ exists and
find its value.

8. a) Let {un} be a sequence of positive, measurable functions. Show that∫ ∞∑
n=1

un dµ =
∞∑

n=1

∫
un dµ

b) Assume that f is a nonnnegative, measurable function and that {Bn}
is a disjoint sequence of measurable sets with union B. Show that∫

B

f dµ =
∞∑

n=1

∫
Bn

f dµ

9. Assume that f is a nonnegative, measurable function and that {An} is an
increasing sequence of measurable sets with union A. Show that∫

A

f dµ = lim
n→∞

∫
An

f dµ

10. Show the following generalization of the Monotone Convergence Theorem:
If {fn} is an increasing sequence of nonnegative, measurable functions such
that f(x) = limn→∞ fn(x) almost everywhere. (i.e. for all x outside a set N
of measure zero), then

lim
n→∞

∫
fn dµ =

∫
f dµ

11. Find a decreasing sequence {fn} of measurable functions fn : R → [0,∞)
converging pointwise to zero such that limn→∞

∫
fn dµ 6= 0

12. Assume that f : Rd → [0,∞] is a measurable function, and that {fn} is a
sequence of measurable functions converging pointwise to f . Show that if
fn ≤ f for all n,

lim
n→∞

∫
fn dµ =

∫
f dµ

13. Assume that {fn} is a sequence of nonnegative functions converging pointwise
to f . Show that if

lim
n→∞

∫
fn dµ =

∫
f dµ < ∞,

then

lim
n→∞

∫
E

fn dµ =
∫

E

f dµ

for all measurable E ⊂ Rd.
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14. Assume that g : Rd → [0,∞] is an integrable function, and that {fn} is
a sequence of nonnegative, measurable functions converging pointwise to a
function f . Show that if fn ≤ g for all n, then

lim
n→∞

∫
fn dµ =

∫
f dµ

Hint: Apply Fatou’s Lemma to both sequences {fn} and {g − fn}.

4.7 Integrable functions

So far we only know how to integrate nonnegative functions, but it is not
difficult to extend the theory to general functions. Given a function f :
Rd → R, we first observe that f = f+ − f−, where f+ and f− are the
nonnegative functions

f+(x) =


f(x) if f(x) > 0

0 otherwise

and

f−(x) =


−f(x) if f(x) < 0

0 otherwise

Note that f+ and f− are measurable if f is.

Definition 4.7.1 A function f : Rd → R is called integrable if it is mea-
surable, and f+ and f− are integrable. We define the (Lebesgue) integral
of f by ∫

f dµ =
∫

f+ dµ−
∫

f− dµ

The next lemma gives a useful characterization of integrable functions.
The proof is left to the reader.

Lemma 4.7.2 A measurable function f is integrable if and only if its ab-
solute value |f | is integrable, i.e. if and only if

∫
|f | dµ < ∞.

The next lemma is a useful technical tool:

Lemma 4.7.3 Assume that g : Rd → [0,∞] and h : Rd → [0,∞] are two
integrable, nonnegative functions, and that f(x) = g(x)− h(x) at all points
where the difference is defined. Then f is integrable and∫

f dµ =
∫

g dµ−
∫

h dµ
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Proof: Note that since g and h are integrable, they are finite a.e., and hence
f = g − h a.e. Modifying g and h on a set of measure zero (this will not
change their integrals), we may assume that f(x) = g(x) − h(x) for all x.
Since |f(x)| = |g(x) − h(x)| ≤ |g(x)| + |h(x)|, it follows from the lemma
above that f is integrable.

As
f(x) = f+(x)− f−(x) = g(x)− h(x)

we have
f+(x) + h(x) = g(x) + f−(x)

where we on both sides have sums of nonnegative functions. By Proposition
4.6.5(ii), we get ∫

f+ dµ +
∫

h dµ =
∫

g dµ +
∫

f− dµ

Rearranging the integrals (they are all finite), we get∫
f dµ =

∫
f+ dµ−

∫
f− dµ =

∫
g dµ−

∫
h dµ

and the lemma is proved. 2

We are now ready to prove that the integral behaves the way we expect:

Proposition 4.7.4 Assume that f, g : Rd → R are integrable functions,
and that c is a constant. Then f + g and cf are integrable, and

(i)
∫

cf dµ = c
∫

f dµ.

(ii)
∫

(f + g) dµ =
∫

f dµ +
∫

g dµ.

(iii) If g ≤ f , then
∫

g dµ ≤
∫

f dµ.

Proof: (i) is left to the reader (treat positive and negative c’s separately). To
prove (ii), first note that since f and g are integrable, the sum f(x) + g(x)
is defined a.e., and by changing f and g on a set of measure zero (this
doesn’t change their integrals), we may assume that f(x) + g(x) i defined
everywhere. Since

|f(x) + g(x)| ≤ |f(x)|+ |g(x)|,

f + g is integrable. Obviously,

f + g = (f+ − f−) + (g+ − g−) = (f+ + g+)− (f− + g−)

and hence by the lemma above and Proposition 4.6.5(ii)∫
(f + g) dµ =

∫
(f+ + g+) dµ−

∫
(f− + g−) dµ =
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=
∫

f+ dµ +
∫

g+ dµ−
∫

f− dµ−
∫

g− dµ =

=
∫

f+ dµ−
∫

f− dµ +
∫

g+ dµ−
∫

g− dµ =

=
∫

f dµ +
∫

g dµ

To prove (iii), note that f − g is a nonnegative function and hence by (i)
and (ii):∫

f dµ−
∫

g dµ =
∫

f dµ +
∫

(−1)g dµ =
∫

(f − g) dµ ≥ 0

Consequently,
∫

f dµ ≥
∫

g dµ and the proposition is proved. 2

We can now extend our limit theorems to general, integrable functions.
The following result is probably the most useful of all limit theorems for
integrals as it quite strong and at the same time easy to use. It tells us that
if a convergent sequence of functions is dominated by an integrable function,
then

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ

Theorem 4.7.5 (Lebesgue’s Dominated Convergence Theorem) As-
sume that g : Rd → R is a nonnegative, integrable function and that {fn}
is a sequence of measurable functions converging pointwise to f . If |fn| ≤ g
for all n, then

lim
n→∞

∫
fn dµ =

∫
f dµ

Proof: First observe that since |f | ≤ g, f is integrable. Next note that
since {g − fn} and {g + fn} are two sequences of nonnegative measurable
functions, Fatou’s Lemma gives:

lim inf
n→∞

∫
(g−fn) dµ ≥

∫
lim inf
n→∞

(g−fn) dµ =
∫

(g−f) dµ =
∫

g dµ−
∫

f dµ

and

lim inf
n→∞

∫
(g+fn) dµ ≥

∫
lim inf
n→∞

(g+fn) dµ =
∫

(g+f) dµ =
∫

g dµ+
∫

f dµ

On the other hand,

lim inf
n→∞

∫
(g − fn) dµ =

∫
g dµ− lim sup

n→∞

∫
fn dµ

and
lim inf
n→∞

∫
(g + fn) dµ =

∫
g dµ + lim inf

n→∞

∫
fn dµ
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Combining the two expressions for lim infn→∞
∫

(g − fn) dµ, we see that∫
g dµ− lim sup

n→∞

∫
fn dµ ≥

∫
g dµ−

∫
f dµ

and hence
lim sup

n→∞

∫
fn dµ ≤

∫
f dµ

Combining the two expressions for lim infn→∞
∫

(g+fn) dµ, we similarly get

lim inf
n→∞

∫
fn dµ ≥

∫
f dµ

Hence
lim sup

n→∞

∫
fn dµ ≤

∫
f dµ ≤ lim inf

n→∞
fn dµ

which means that limn→∞
∫

fn dµ =
∫

f dµ. The theorem is proved. 2

Remark: It is easy to check that we can relax the conditions above some-
what: If fn(x) converges to f(x) a.e., and |fn(x) ≤ g(x) fails on a set of
measure zero, the conclusion still holds (see Exercise 8 for the precise state-
ment).

Let us take a look at a typical application of the theorem:

Proposition 4.7.6 Assume that f : R2 → R is a continuous function,
and assume that there is an integrable function g : R → [0,∞] such that
|f(x, y)| ≤ g(y) for all x, y ∈ R. Then the function

h(x) =
∫

f(x, y) dµ(y)

is continuous (the expression
∫

f(x, y) dµ(y) means that we for each fixed x
integrate f(x, y) as a function of y).

Proof: According to Proposition 1.2.5 it suffices to prove that if {an} is a
sequence converging to a point a, then h(an) converges to h(a). Observe
that

h(an) =
∫

f(an, y) dµ(y)

and
h(a) =

∫
f(a, y) dµ(y)

Observe also that since f is continuous, f(an, y) → f(a, y) for all y. Hence
{f(an, y)} is a sequence of functions which is dominated by the integrable
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function g and which converges pointwise to f(a, y). By Lebesgue’s Domi-
nated Convergence Theorem,

lim
n→∞

h(an) = lim
n→∞

∫
f(an, y) dµ =

∫
f(a, y) dµ = h(a)

and the proposition is proved. 2

As before, we define
∫
A f dµ =

∫
f1A dµ for measurable sets A. We say

that f is integrable over A if f1A is integrable.

Exercises to Section 4.7

1. Show that if f is measurable, so are f+ and f−.

2. Show that if an integrable function f is zero a.e., then
∫

f dµ = 0.

3. Prove Lemma 4.7.1.

4. Prove Proposition 4.7.4(i). You may want to treat positive and negative c’s
separately.

5. Assume that f : Rd → R is a measurable function.

a) Show that if f is integrable over a measurable set A, and An is an
increasing sequence of measurable sets with union A, then

lim
n→∞

∫
An

f dµ =
∫

A

f dµ

b) Assume that {Bn} is a decreasing sequence of measurable sets with
intersection B. Show that if f is integrable over B1, then

lim
n→∞

∫
Bn

f dµ =
∫

B

f dµ

6. Show that if f : Rd → R is integrable over a measurable set A, and An is a
disjoint sequence of measurable sets with union A, then∫

A

f dµ =
∞∑

n=1

∫
An

f dµ

7. Let f : R → R be a measurable function, and define

An = {x ∈ Rd | f(x) ≥ n}

Show that

lim
n→∞

∫
An

f dµ = 0



40 CHAPTER 4. LEBESGUE MEASURE AND INTEGRATION

8. Prove the following slight extension of the Dominated Convergence Theorem:

Theorem: Assume that g : Rd → R is a nonnegative, integrable function
and that {fn} is a sequence of measurable functions converging a.e. to f . If
|fn(x)| ≤ g(x) a.e. for each n, then

lim
n→∞

∫
fn dµ =

∫
f dµ

9. Assume that g : R2 → R is continuous and that y → g(x, y) is integrable for
each x. Assume also that the partial derivative ∂g

∂x (x, y) exists for all x and
y, and that there is an integrable function h : R → [0,∞] such that∣∣∣∣∂g

∂x
(x, y)

∣∣∣∣ ≤ h(y)

for all x, y. Then the function

f(x) =
∫

g(x, y) dµ(y)

is differentiable at all points x and

f ′(x) =
∫

∂g

∂x
(x, y) dµ(y)

4.8 L1(Rd) and L2(Rd)

In this final section we shall connect integration theory to the theory of
normed spaces in Chapter 3. Recall from Definition 3.5.2 that a norm on a
real vector space V is a function || · || : V → [0,∞) satisfying

(i) ||u|| ≥ 0 with equality if and only if u = 0.

(ii) ||αu|| = |α|||u|| for all α ∈ R and all u ∈ V .

(iii) ||u + v|| ≤ ||u||+ ||v|| for all u,v ∈ V .

Let us now put

L1(Rd) = {f : Rd → R : f is integrable}

and define || · ||1 : L1(Rd) → [0,∞) by

||f ||1 =
∫
|f | dµ

It is not hard to see that || · ||1 satisfies the three axioms above with one
exception; ||f ||1 may be zero even when f is not zero — actually ||f ||1 = 0 if
and only if f = 0 a.e.
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The usual way to fix this is to consider two functions f and g to be equal
if they are equal almost everywhere. To be more precise, let us write f ∼ g
if f and g are equal a.e., and define the equivalence class of f to be the set

[f ] = {g ∈ L1(Rd) | g ∼ f}

Note that two such equivalence classes [f ] and [g] are either equal (if f
equals g a.e.) or disjoint (if f is not equal to g a.e.). If we let L1(Rd) be
the collection of all equivalence classes, we can organize L1(Rd) as a normed
vector space by defining

α[f ] = [αf ] and [f ] + [g] = [f + g] and |[f ]|1 = ||f ||1

The advantage of the space (L1(Rd), | · |1) compared to (L1(Rd), || · ||1) is that
it is a normed space where all the theorems we have proved about such spaces
apply — the disadvantage is that the elements are no longer functions, but
equivalence classes of functions. In practice, there is very little difference
between (L1(Rd), | · |1) and (L1(Rd), || · ||1), and mathematicians tend to blur
the distinction between the two spaces: they pretend to work in L1(Rd), but
still consider the elements as functions. We shall follow this practice here;
it is totally harmless as long as you remember that whenever we talk about
an element of L1(Rd) as a function, we are really choosing a representative
from an equivalence class (Exercise 3 gives a more thorough and systematic
treatment of L1(Rd)).

The most important fact about (L1(Rd), | · |1) is that it is complete. In
many ways, this is the most impressive success of the theory of Lebesgue
integration: We have seen in previous chapters how important completeness
is, and it is a great advantage to work with a theory of integration where
the space of integrable functions is naturally complete. Before we turn to
the proof, you may want to remind yourself of Proposition 3.5.5 which shall
be our main tool.

Theorem 4.8.1 (L1(Rd), | · |1) is complete.

Proof: Assume that {un} is a sequence of functions in L1(Rd) such that the
series

∑∞
n=1 |un|1 converges. According to Proposition 3.5.5, it suffices to

show that the series
∑∞

n=1 un(x) must converge in L1(Rd). Observe that

∞ >

∞∑
n=1

|un|1 = lim
N→∞

N∑
n=1

|un|1 = lim
N→∞

N∑
n=1

∫
|un| dµ =

= lim
N→∞

∫ N∑
n=1

|un| dµ =
∫

lim
N→∞

N∑
n=1

|un| dµ =
∫ ∞∑

n=1

|un| dµ
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where we have used the Monotone Convergence Theorem to move the limit
inside the integral sign. This means that the function

g(x) =
∞∑

n=1

|un(x)|

is integrable. We shall use g as the dominating function in the Dominated
Convergence Theorem.

Let us first observe that since g(x) =
∑∞

n=1 |un(x)| is integrable, the
series converges a.e. Hence the sequence

∑∞
n=1 un(x) (without the absolute

values) converges absolutely a.e., and hence it converges a.e. in the ordi-
nary sense. Let f(x) =

∑∞
n=1 un(x) (put f(x) = 0 on the null set where

the series does not converge). It remains to prove that the series converges
in L1-sense, i.e. that |f −

∑N
n=1 un|1 → 0 as N → ∞. By definition of

f , limN→∞

(
f(x)−

∑N
n=1 un(x)

)
= 0 a.e. Since |f(x) −

∑N
n=1 un(x)| =

|
∑∞

n=N+1 un(x)| ≤ g(x) a.e., it follows from Dominated Convergence Theo-
rem (actually from the slight extension in Exercise 4.7.8) that

|f −
N∑

n=1

un|1 =
∫
|f −

N∑
n=1

un| dµ → 0

The theorem is proved. 2

Let us take a brief look at another space of the same kind. Let

L2(Rd) = {f : Rd → R : |f |2 is integrable}

and define || · ||2 : L2 → [0,∞) by

||f ||2 =
(∫

|f |2 dµ

) 1
2

It turns out (see Exercise 4) that L2(Rd) is a vector space, and that || · || is a
norm on L2(Rd), except that ||f ||2 = 0 if f = 0 a.e. If we consider functions
as equal if they are equal a.e., we can turn (L2(Rd), || · ||2) into a normed
space (L2(Rd), | · |2) just as we did with L1(Rd). One of the advantages of
this space, is that it is an inner product space with inner product

〈f, g〉 =
∫

fg dµ

By almost exactly the same argument as for L1(Rd), one may prove:

Theorem 4.8.2 (L2(Rd), | · |2) is complete.
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Let me finally mention that L1(Rd) and L2(Rd) are just two representa-
tives of a whole family of spaces. For any p ∈ [1,∞), we may let

Lp(Rd) = {f : Rd → R : |f |p is integrable}

and define || · ||p : Lp → [0,∞) by

||f ||2 =
(∫

|f |2 dµ

) 1
p

Proceeding as before, we get complete, normed spaces (Lp(Rd), | · |p).

Exercises for Section 4.8

1. Show that L1(Rd) is a vector space. Since the set of all functions from Rd

to R is a vector space, it suffices to show that L1(Rd) is a subspace, i.e. that
cf and f + g are in L1(Rd) whenever f, g ∈ L1(Rd) and c ∈ R.

2. Show that || · ||1 satisfies the following conditions:

(i) ||f ||1 ≥ 0 for all f , and ||0||1 = 0 (here 0 is the function that is constant
0).

(ii) ||cf ||1 = |c|||f ||1 for all f ∈ L1(Rd) and all c ∈ R.

(iii) ||f + g||1 ≤ ||f ||1 + ||g||1 for all f, g ∈ L1(Rd)

This means that || · ||1 is a seminorm.

3 If f, g ∈ L1(Rd), we write f ∼ g if f = g a.e. Recall that the equivalence
class [f ] of f is defined by

[f ] = {g ∈ L(Rd) : g ∼ f}

a) Show that two equivalence classes [f ] and [g] are either equal or disjoint.

b) Show that if f ∼ f ′ and g ∼ g′, then f + g ∼ f ′ + g′. Show also that
cf ∼ cf ′ for all c ∈ R.

c) Show that if f ∼ g, then ||f − g||1 = 0 and ||f ||1 = ||g||1.
d) Show that the set L1(Rd) of all equivalence classes is a normed space if

we define scalar multiplication, addition and norm by:

(i) c[f ] = [cf ] for all c ∈ R, f ∈ L1(Rd).
(ii) [f ] + [g] = [f + g] for all f, g ∈ L1(Rd)
(iii) |[f ]|1 = ||f ||1 for all f ∈ L1(Rd).

Why do we need to establish the results in (i), (ii), and (iii) before we
can make these definitions?

4. a) Show that L2(Rd) is a vector space. Since the set of all functions
from Rd to R is a vector space, it suffices to show that L2(Rd) is a
subspace, i.e. that cf and f + g are in L2(Rd) whenever f, g ∈ L2(Rd)
and c ∈ R. (To show that f + g ∈ L2(Rd), you may want to use that
|a + b|2 ≤ 2|a|2 + 2|b|2 for all real numbers a, b).
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b) Show that if f, g ∈ L2(Rd), then fg is integrable. (You may want to
use the identity |fg| = 1

2 ((|f |+ |g|)2 − |f |2 − |g|2).
c) Show that the semi inner product

〈f, g〉 =
∫

fg dµ

on L2(Rd) satisfies:

(i) 〈f, g〉 = 〈g, f〉 for all f, g ∈ L2(Rd).
(ii) 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉 for all f, g, h ∈ L2(Rd) .
(iii) 〈cf, g〉 = c〈f, g〉 for all c ∈ R, f, g ∈ L2(Rd).
(iv) For all f ∈ L2(Rd), 〈f, f〉 ≥ 0 with equality if f = 0 (here 0 is the

function that is constant 0).

Show also that 〈f, f〉 = 0 if and only if f = 0 a.e.

e) Assume that f, f ′, g, g′ ∈ L2(Rd), and that f = f ′, g = g′ a.e. Show
that 〈f, g〉 = 〈f ′, g′〉

5. Show that (L2(Rd), | · |2) is complete by modifying the proof of Theorem
4.8.1.


