
Hahn-Banach theorems

The Hahn-Banach theorem (H-B theorem, for short), in its various forms, is
without doubt the most important theorem in Convexity.

Zorn’s Lemma. Let us recall the so-called Zorn’s Lemma which is equivalent to the Axiom
of Choice, usually assumed to be true in Mathematical Analysis. (The Axion of Choice is
independent of usual basic axioms of the Set Theory).

A partially ordered set is a set E equipped with a binary relation “≤” which is reflexive,
transitive and antisymmetric, but not necessarily defined for each couple of elements of E.
A set C ⊂ E is a chain (or a linearly ordered set) if every two elements of C are comparable
by “≤”, that is, for each x, y ∈ C we have either x ≤ y or y ≤ x. An upper bound of a set
A ⊂ X is an element of z ∈ X such that x ≤ z for each x ∈ A. A maximal element of A is
an a0 ∈ A such that a = a0 whenever a ∈ A, a0 ≤ a (in other words, A contains no element
which is strictly greater that a0). Notice that a maximal element of A is not necessarily an
upper bound for A (there can be elements incomparable with it) and not necessarily unique.

Now, we are ready to state the Zorn’s Lemma: Let E be a partially ordered set. If
every chain in E has an upper bound, then E contains a maximal element.

Hahn-Banach extension theorems. Recall that p : X → R∪ {+∞} is sublinear
if p(0) = 0, p(tx) = tp(x) and p(x + y) ≤ p(x) + p(y) whenever t > 0 and x, y ∈ X.

Theorem 0.1 (Algebraic H-B Extension Theorem). Let L be a subspace of a vector
space X. Let p : X → R ∪ {+∞} be sublinear. Suppose that

(1) L + dom(p) = X

(this condition is automatically satisfied if p is real-valued!).
If ` : L → R is a linear functional such that

`(u) ≤ p(u) whenever u ∈ L,

then ` can be extended to a linear functional ˆ̀: X → R such that ˆ̀≤ p on X.

Proof. (a) First, let us prove that ` can be extended to one dimension more, that
is, to a subspace M = span(L ∪ {v0}) where v0 ∈ X \ L. Each element of M is of
the form u + tv0 with u ∈ L and t ∈ R, and the needed extension should satisfy
ˆ̀(u + tv0) = `(u) + tˆ̀(v0). So, we have to choose the real number α := ˆ̀(v0) so that

(2) `(u) + αt ≤ p(u + tv0) (u ∈ L, t ∈ R).

Note that (2) is satisfied for t = 0. Thus, considering separately t > 0 and t = −s <
0, we see that α has to satisfy the inequalitites

(3)
α ≤ inf

{
p(u+tv0)−`(u)

t : t > 0, u ∈ L
}

=: b ,

α ≥ sup
{

`(u)−p(u−sv0)
s : s > 0, u ∈ L

}
=: a .

Observe that positive homogeneity of p, ` implies

a = sup{`(w)− p(w − v0) : w ∈ L} , b = inf{p(z + v0)− `(z) : z ∈ L} .

We claim that a ≤ b. To show this, it is sufficient to show that

(4) `(w)− p(w − v0) ≤ p(z + v0)− `(z) (w, z ∈ L) ,
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which is equivalent to

`(w + z) ≤ p(w − v0) + p(z + v0) .

But this is easy:

`(w + z) ≤ p(w + z) = p((w − v0) + (z + v0)) ≤ p(w − v0) + p(z + v0) .

Now, by our assumption (1), ±v0 ∈ L + dom(p), and hence there exist w0, z0 ∈ L
such that both w0 − v0 and z0 + v0 belong to dom(p). Then (4) implies that a ≤
p(z0 + v0) − `(z0) < +∞ and b ≥ `(w0) − p(w0 − v0) > −∞. Hence there exists
α ∈ R such that a ≤ α ≤ b, that is, (3) is satisfied.
(b) Now, the case when L has a finite codimension in X follows easily by repeated
application of (a).
(c) For the proof of the general case, we shall need the Zorn’s Lemma. Let E be the
set of all couples (M, h) where M is a subspace of X containing L, and h : M → R
is a linear extension of `. This set is nonempty (since it contains the couple (L, `))
and is partially ordered by the following relation “≤”:

(M1, h1) ≤ (M2, h2)
def⇐⇒ M1 ⊂ M2 and h2|M1 = h1.

Let C ⊂ E be a (nonempty) chain. Then N :=
⋃

M∈C M is a subspace containing L,
and there exists a unique (necessarily linear) functional g : N → R that extends each
h such that (M, h) ∈ C. Thus (N, g) is an upper bound for C. By Zorn’s Lemma, E

has a maximal element (L̂, ˆ̀). If L̂ is a proper subset of X, we can apply the first
part of this proof to extend it one dimension more, but this contradicts maximality.
Thus we must have L̂, and we are done. ¤
Corollary 0.2 (Norm-preserving extension). Let L be a subspace of a normed space
X. Then every functional ` ∈ L∗ has an extension x∗ ∈ X∗ such that ‖x∗‖X∗ =
‖`‖L∗.

Proof. The functional p(x) = ‖`‖ ‖x‖ is sublinear on X, and ` ≤ p on L. By
Theorem 0.1, there exists a linear extension ˆ̀: X → R of `, such that ˆ̀≤ p. Then

‖`‖ ≤ ‖ˆ̀‖ = sup
‖x‖=1

ˆ̀(x) ≤ sup
‖x‖=1

p(x) = ‖`‖ .

Thus ˆ̀∈ X∗ and ‖ˆ̀‖ = ‖`‖, hence we can put x∗ = ˆ̀. ¤
Recall that ‖x∗‖ = sup‖x‖=1 x∗(x); it is well-known that the “sup” is not nec-

essarily attained. The next corollary shows that we have the symmetric formula
‖x‖ = max‖x∗‖=1 x∗(x) with, in addition, “max” instead of only “sup”.

Corollary 0.3. Let X be a normed space, x0 ∈ X. Then

‖x0‖ = max
x∗∈X∗
‖x∗‖=1

x∗(x0) .

Proof. The formula is trivial for x0 = 0. Let x0 6= 0. Consider the one-dimensional
subspace L = span{x0} = Rx0, and define ` : L → R by `(tx0) = t‖x0‖. Then
` ∈ L∗. By Corollary 0.2, there exists a norm-preserving extension x∗ ∈ X∗ of `.
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Then x∗(x0) = `(x0) = ‖x0‖. Now, the formula follows from the fact that, for any
‖y∗‖ = 1, we have y∗(x0) ≤ ‖x0‖. ¤
Corollary 0.4. Let X be a normed space. Then X∗ separates the points of X, i.e.,

∀x, y ∈ X, x 6= y ∃x∗ ∈ X∗ : x∗(x) 6= x∗(y) .

Proof. By linearity, it suffices to show that if v 6= 0 then there exists x∗ ∈ X∗ such
that x∗(v) 6= 0. But this follows immediately from Corollary 0.3. ¤

Notice that the proof of the following theorem is almost the same as that of
Corollary 0.2: we just use the Minkowski functional of A in place of the norm
(which is the Minkowski functional of the unit ball).

Theorem 0.5. Let L be a subspace of a t.v.s. X, and A ⊂ X a convex absorbing
set. Let ` : L → R be a linear functional, and m ∈ R be such that `(y) ≤ m on
A ∩ L. Then there exists a linear extension ˆ̀: X → R of ` such that ˆ̀≤ m on A.
If, moreover, X is a t.v.s. and A is a neighborhood of 0, then ˆ̀ is continuous.

Proof. Let pA be the Minkowski functional of A. Then pA is sublinear and real-
valued, and {pA < 1} ⊂ A ⊂ {pA ≤ 1}. We claim that

(5) `(y) ≤ m pA(y) whenever y ∈ L.

Indeed, for each α > pA(y), we have u
α ∈ A and hence `(y) = α`( y

α) ≤ mα. Pass to
the limit α ↘ pA(y).

Now, by Theorem 0.1, there exists a linear extension ˆ̀: X → R of `, such that
ˆ̀≤ mpA. Hence ˆ̀≤ m on A. The last part of the statement follows immediately
from the fact that a linear functional (on a t.v.s.) is continuous if and only if it is
bounded above on a neighborhood of 0. ¤

Hahn-Banach separation theorems. Recall that a hyperplane in a vector space
X is a set of the form H = `−1(α) where α ∈ R and ` : X → R is a nontrivial linear
functional. Let us consider the corresponding two algebraically closed halfspaces

H+ := {`(x) ≥ α} , H− = {`(x) ≤ α}
determined by H. We shall say that H+ is opposite to H−, and vice-versa. We
already know that, if X is also a topological vector space, then the hyperplane H is
closed if and only if the functional ` is continuous.

Recall also that a point x belongs to the algebraic interior of a set E ⊂ X
(notation x ∈ a-int(E)) if x ∈ intL(E ∩ L) for every line L ⊂ X containing x.

Definition 0.6. Let A, B be nonempty sets in a vector space X. We say that a
nontrivial linear functional ` : X → R:

(a) separates A and B if if either sup `(A) ≤ inf `(B) or sup `(B) ≤ inf `(A)
(equivalently, in the above notation, if A and B are contained in opposite
algebraically closed halfspaces determined by a hyperplane H = `−1(α)).

(b) strongly separates A and B if either sup `(A) < inf `(B) or sup `(B) <
inf `(A). (In this case, A,B can be “separated by a strip between two
distinct parallel hyperplanes given by `”.)
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We shall say that A,B can be (strongly) separated by a hyperplane if there exists a
nontrivial linear functional ` on X that (strongly) separates A,B.

Observation 0.7. Let A be a subset of a vector space X, such that a-int(A) 6= ∅.
Let ` : X → R be a nontrivial linear functional, α ∈ R. The following assertions are
equivalent:

(i) A ⊂ {` ≤ α};
(ii) a-int(A) ⊂ {` ≤ α};
(iii) a-int(A) ⊂ {` < α}.

Proof. The implication (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii). If (iii) is false, there exists a ∈ a-int(A) such that `(a) = α. Take a
vector v ∈ X such that `(v) > 0. There exists t > 0 with a + tv ∈ A, but then
necessarily a + t

2v ∈ a-int(A) and `(a + t
2v) > α; thus (ii) is false.

(iii) ⇒ (i). Assume that (iii) holds while (i) is false. Fix a ∈ a-int(A) and x ∈ A
with `(x) > α. Then the relatively open segment (a, x) is contained in a-int(A) and
intersects the hyperplane `−1(α), which contradicts (iii). ¤
Remark 0.8. Let two sets A,B be separated by a linear functional `. Then, for
each v ∈ X, the sets A + v and B + v are separated by `. (And an analogous
statement holds with “strongly separated” instead of “separated”.)

Let us start with a weak version of a separation theorem, in which we separate a
point from a convex set.

Proposition 0.9. Let C be a convex set in a vector space X. If a-int(C) 6= ∅
and x0 ∈ X \ a-int(C), then {x0} and C can be separated by a hyperplane. If,
moreover, X is a t.v.s. and int(C) 6= ∅, then {x0} and C can be separated by a
closed hyperplane.

Proof. By Remark 0.8, we can suppose that 0 ∈ a-int(C). In this case, C is absorbing
and x0 6= 0. Consider the subspace L = Rx0. It is easy to see that the algebraic
interior of the interval L ∩ C contains 0 but not x0 (otherwise x0 would belong to
a-int(C)). Thus the linear functional ` : L → R, `(tx0) = t, satisfies `(y) ≤ `(x0)
whenever y ∈ C ∩ L. By Theorem 0.5, there exists a linear extension ˆ̀: X → R
of ` such that sup ˆ̀(C) ≤ `(x0), which is what we needed. Moreover, in the “t.v.s.
case”, if we start with 0 ∈ int(C), the functional ˆ̀ is also continuous. ¤
Theorem 0.10 (H-B Separation Theorem). Let A and B be two nonempty convex
sets in a vector space X. If a-int(A) 6= ∅ and B ∩ a-int(A) = ∅, then A,B can be
separated by a hyperplane. If, moreover, X is a t.v.s., int(A) 6= ∅ and B∩int(A) = ∅,
then A and B can be separated by a closed hyperplane.

Proof. The set A0 = a-int(A) is convex, nonempty and disjoint from B. Then the
convex set C = A0 − B has a nonempty algebraic interior and does not contain
0. By Proposition 0.9, there exists a nontrivial linear functional ` on X such that
sup `(C) ≤ `(0) = 0. It follows that

`(a) ≤ `(b) whenever a ∈ A0, b ∈ B.
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Thus sup `(A0) ≤ inf `(B). By Observation 0.7, sup `(A) ≤ inf `(B). The proof of
the second part proceedes in the same way, with “int” in place of “a-int”. ¤

Remark 0.11. Let A,B be as in the previous theorem. If a nontrivial linear
functional ` separates A and B, then it “separates strictly” a-int(A) (or int(A)) and
B in the following sense:

`(a) < inf `(B) whenever a ∈ a-int(A) (or a ∈ int(A), respectively).

This follows immediately from Observation 0.7.

Hahn-Banach strong separation theorem. Let us start with the following tech-
nical lemma which can be viewed as a generalization of the fact that any two disjoint
closed sets, one of which is compact, have a positive distance.

Lemma 0.12. Let A and B be two nonempty disjoint closed sets such that A is
compact. Then there exists a neighborhood V of 0 such that (A + V ) ∩B = ∅.
Proof. For each a ∈ A, fix Ua ∈ U(0) such that (a + Ua) ∩ B = ∅, and an open
Va ∈ U(0) with Va + Va ⊂ Ua. Since the sets a + Va (a ∈ A) form an open covering
of the compact set A, there exists a1, . . . , an ∈ A such that A ⊂ ⋃n

i=1(an + Vai).
The set

V =
n⋂

i=1

Vai

is a neighborhood of 0, and A + V ⊂ ⋃n
i=1(ai + Vai + V ) ⊂ ⋃n

i=1(ai + Vai + Vai) ⊂⋃n
i=1(ai + Uai). Then (A + V ) ∩B ⊂ ⋃n

i=1(ai + Uai) ∩B = ∅. ¤

Recall that a topological vector space is locally convex if it admits a base of
neighborhoods of 0 consisting of convex sets.

Theorem 0.13 (H-B Strong Separation Theorem). Let X be a locally convex t.v.s.,
and A, B ⊂ X two disjoint nonempty closed convex sets one of which is compact.
Then A and B can be strongly separated by a closed hyperplane.

Proof. By Lemma 0.12, there exists an open convex V ∈ U(0) such that (A+V )∩B =
∅. Since the set A + V is open and convex, we can apply Theorem 0.10 to get
x∗ ∈ X∗ \ {0} such that supx∗(A+V ) ≤ inf x∗(B). Since A ⊂ A +V = int(A+V ),
Observation 0.7 implies that

x∗(a) < inf x∗(B) whenever a ∈ A.

Thus supx∗(A) = maxx∗(A) < inf x∗(B). ¤

Corollary 0.14. Let C be a nonempty closed convex set in a locally convex t.v.s.
X, and x0 ∈ X \C. Then x0 and C can be strongly separated by a closed hyperplane.
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Separation of functions. Let us denote by X] the algebraic dual of a vector space
X, that is

X] = {` : ` is a linear functional on X} .

It is an easy exercise to show that (X ×R)] is algebraically isomorphic with X]×R
and the isomorphism

(X × R)] 3 Φ ←→ (`, α) ∈ X] × R
is given by the formula

Φ(x, t) = `(x) + αt .

In the same way, for topological vector spaces, we have an algebraic isomorphism
of (X × R)∗ and X∗ × R. (This isomorphism is even topological in all reasonable
situations, for instance, for normed spaces.)

Lemma 0.15. Let X be a vector space, and Φ ∈ (X × R)]. If Φ separates two
vertically situated points (in the sense that, for some x0 ∈ X and t1, t2 ∈ R,
Φ(x0, t1) 6= Φ(x0, t2)), then each hyperplane of the type Φ−1(β) is the graph of an
affine function on X. If, moreover, X is a t.v.s. and Φ ∈ (X ×R)∗, then the affine
function is continuous.

Proof. Let ` ∈ X] and α ∈ R be such that

Φ(x, t) = `(x) + αt (x ∈ X, t ∈ R).

Since 0 6= Φ(x0, t1) − Φ(x0, t2) = α(t1 − t2), we have α 6= 0. Then the following
conditions are clearly equivalent:

• (x, t) ∈ Φ−1(β);
• `(x) + αt = β;
• t = − 1

α`(x) + β
α ;

• (x, t) ∈ graph(a), where a(x) = − 1
α`(x) + β

α .
The proof is complete since a is an affine function which is continuous whenever Φ
is. ¤
Theorem 0.16 (Separation of functions). Let X be a real vector space, f : X →
(−∞,+∞] a convex function, and g : X → [−∞, +∞) a concave function such that
g ≤ f . Assume that

a-int(dom(f)) ∩ dom(g) 6= ∅ .

Then there exists an affine function a : X → R such that g ≤ a ≤ f . If, moreover,
f is continuous at some point of dom(f), then also a is continuous.

Proof. The epigraph

epi(f) = {(x, t) ∈ X × R : t ≥ f(x)}
and the hypograph

hypo(g) = {(x, t) ∈ X × R : t ≤ g(x)}
are convex sets in X×R. Clearly, the algebraic interior of epi(f) is contained in the
“strict epigraph” {(x, t) : t > f(x)}. Thus

a-int(epi(f)) ∩ hypo(g) 6= ∅ .
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Let us show that a-int(epi(f)) 6= ∅. Fix x0 ∈ a-int(dom(f)) and t0 > f(x0). We
claim that (x0, t0) ∈ a-int(epi(f)). To show this, we have to show that, for each
(v, s) ∈ X × R, there exists λ > 0 such that (x0, t0) + λ(v, s) = (x0 + λv, t0 + λs) ∈
epi(f), that is,

t0 + λs ≥ f(x0 + λv) .

This is trivial for v = 0 from the choice of (x0, t0). For v 6= 0, it follows from the
continuity of the (convex) function λ 7→ f(x0 + λv) on a neighborhood of 0.

By the H-B Separation Theorem (Theorem 0.10), there exists a nonzero Φ ∈
(X×R)] such that supΦ(epi(f)) ≤ inf Φ(hypo(g)). By Observation 0.7, Φ(x0, t0) <
inf Φ(hypo(g)) ≤ Φ(x0, g(x0)), which means that Φ separates two vertically situated
points (x0, t0) and (x0, g(x0)). By Lemma 0.15, a separating hyperplane Φ−1(α)
(with supΦ(epi(f)) ≤ α ≤ inf Φ(hypo(g))) is the graph of an affine function a : X →
R, which necessarily satisfies g ≤ a ≤ f .

In the second part of the statement, a is continuous since it is bounded above by
f which is bounded above on an open set. ¤
Remark 0.17. Notice that the assumption that f is continuous at some point of
dom(f) implies that dom(f) has a nonempty interior, and hence int(dom(f)) =
a-int(dom(f)).

As an example of an application of the above theorem, we present the following
useful corollary.

Corollary 0.18. Let X be a normed space, f : X → (−∞, +∞] a convex function,
A ⊂ X an affine set, and a : A → R a continuous affine function such that a ≤ f
on A. Assume that

int(dom(f)) ∩A 6= ∅ ,

and either f is continuous at some point of dom(f), or f is l.s.c. and X is a Banach
space. Then there exists a continuous affine extension â : X → R of a, such that
â ≤ f .

Proof. The function g : X → [−∞, +∞), defined by

g(x) =

{
a(x) for x ∈ A

−∞ otherwise
,

is concave and satisfies g ≤ f . Apply Theorem 0.16 to get an affine function
b : X → R such that b|A = a and g ≤ b ≤ f . Using Remark 0.17 and known
facts about continuity of convex functions on open convex sets, it is easy to see
that our assumptions imply that f is continuous on int(dom(f)). Thus b is contin-
uous. Since a ≤ b on A, there exists a constant β ≥ 0 such that a = (b|A) − β.
Consequently, we can put â = b− β. ¤


