CHAPTER
1

TOPOLOGICAL
VECTOR
SPACES

Introduction

1.1 Many problems that analysts study are not primarily concerned with
a single object such as a function, a measure, or an operator, but they deal
instead with large classes of such objects. Most of the interesting classes
that occur in this way turn out to be vector spaces, either with real scalars
or with complex ones. Since limit processes play a role in every analytic
problem (explicitly or implicitly), it should be no surprise that these vector
spaces are supplied with metrics, or at least with topologies, that bear some
natural relation to the objects of which the spaces are made up. The sim-
plest and most important way of doing this is to introduce a norm. The
resulting structure (defined below) is called a normed vector space, or a
normed linear space, or simply a normed space.

Throughout this book, the term vector space will refer to a vector
Space over the complex field € or over the real field R. For the sake of
completeness, detailed definitions are given in Section 1.4,

1.2 Normed spaces A vector space X is said to be a hormed space if to
every x € X there is associated a nonnegative real number |x||, called the
norm of x, in such a way that
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@ lx+yl < x| + |yl for all x and y in X,
(b) llaxl = el ||x]l if x € X and « is a scalar,
(¢ x| >01fx#0.

The word “norm” 1s also used to denote the function that maps x
to [{x]|.

Every normed space may be regarded as a metric space, in which the
distance d(x, y) between x and y 1s || x — y|. The relevant properties of d are

() 0<d(x,y) < oo forall xand y,
(i) d(x,y)=0ifand only if x = y,
(iii) d(x,y) =d(y, x) for all x and y,
(iv) d(x,z) <d(x, y)+ d(y, z) for all x, y, z.

In any metric space, the open ball with center at x and radius r is
the set

B(x)={y:d(x, y) <r}.
In particular, if X is a normed space, the sets
B,0)={x: x| <1} and  B,©0)={x: |x| <1}

are the open unit ball and the closed unit ball of X, respectively.

By declaring a subset of a metric space to be open if and only if it is a
(possibly empty) union of open balls, a topology is obtained. (See Section
1.5)) It is quite easy to verify that the vector space operations (addition and
scalar multiplication) are continuous in this topology, if the metric is
derived from a norm, as above.

A Banach space is a normed space which is complete in the metric
defined by its norm; this means that every Cauchy sequence is required to
converge.

1.3 Many of the best-known function spaces are Banach spaces. Let us
mention just a few types: spaces of continuous functions on compact
spaces; the familiar IP-spaces that occur in integration theory; Hilbert
spaces — the closest relatives of euclidean spaces; certain spaces of differen-
tiable functions; spaces of continuous linear mappings from one Banach
space into another; Banach algebras. All of these will occur later on in the
text.

But there are also many important spaces that do not fit into this
framework. Here are some examples:

(@) C(Q), the space of all continuous complex functions on some open set
Q in a euclidean space R”".
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(b) H(Q), the space of all holomorphic functions in some open set Q in the
complex plane.

() Cg, the space of all infinitely differentiable complex functions on R”
that vanish outside some fixed compact set K with nonempty interior.

(d) The test function spaces used in the theory of distributions, and the
distributions themselves.

These spaces carry natural topologies that cannot be induced by
norms, as we shall see later. They, as well as the normed spaces, are exam-
ples of topological vector spaces, a concept that pervades all of functional
analysis.

After this brief attempt at motivation, here are the detailed definitions,
followed (in Section 1.9) by a preview of some of the results of Chapter 1.

1.4 Vector spaces The letters R and ¢ will always denote the field of
real numbers and the field of complex numbers, respectively. For the
moment, let @ stand for either R or . A scalar is a member of the scalar
field ®. A vector space over @ is a set X, whose elements are called vectors,
and in which two operations, addition and scalar multiplication, are defined,
with the following familiar algebraic properties:

(@ To every pair of vectors x and y corresponds a vector x + y, in such a
way that

x+y=y+x and x+(y+2)=x+y +z;

X contains a unique vector 0 (the zero vector or origin of X) such that
x + 0= x for every x € X; and to each x € X corresponds a unique
vector — x such that x + (—x) = 0.

(b) To every pair (a, x) with « € ® and x € X corresponds a vector ax, in
such a way that

Ix=x,  afx) = (xf)x,
and such that the two distributive laws
a(x + y) = ax + ay, (¢ + f)x = ax + fix
hold.

The symbol 0 will of course also be used for the zero element of the
scalar field.

A real vector space is one for which ® = R; a complex vector space is
one for which ® = ¢. Any statement about vector spaces in which the
scalar field is not explicitly mentioned is to be understood to apply to both
of these cases,
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If X is a vector space, 4 =« X, Bc X, x € X, and A € @, the following
notations will be used:

x+A={x+aae A},

x—A={x—aae A},

A+B={a+b:aecA beB}
AA = {Aa: a € A}.

In particular (taking A = — 1), — 4 denotes the set of all additive inverses of

A word of warning: With these conventions, it may happen that 24 #
A + A (Exercise 1).

A set Y < X is called a subspace of X if Y is itself a vector space (with
respect to the same operations, of course). One checks easily that this
happens if and only if 0 € Y and

oY + fY < Y

for all scalars « and .
A set C < X is said to be convex if

t(C+(1—-CcC (O<t<l)

In other words, i1t i1s required that C should contain tx + (1 — )y if x € C,
yeC,and0 <t < 1.

A set B« X is said to be balanced if aB < B for every a € ® with
la| < 1.

A vector space X has dimension n (dim X =n) if X has a basis
fu 1) Thic means that everv x € ¥ hag a uniaue renresentation of the
(H1y -9 Hypo 1115 TREAINS NAL CVETY X € A 11AS 2 UNIJUC TEPIeseniallon ol tnce
form

X =o,u + -+ a,u, (o; € @)

If dim X = n for some n, X is said to have finite dimension. If X = {0}, then
dim X = 0.

Example. If X = ¢ (a one-dimensional vector space over the scalar
field €), the balanced sets are ¢, the empty set (%, and every circular
disc (open or closed) centered at 0. If X = R? (a two-dimensional
vector space over the scalar field R), there are many more balanced
sets; any line segment with midpoint at (0, 0) will do. The point is
that, in spite of the well-known and obvious identification of € with
R?, these two are entirely different as far as their vector space struc-
ture is concerned.

L5 Topological spaces A topological space is a set S in which a collec-
tion t of subsets (called open sets) has been specified, with the following
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properties: S is open, & is open, the intersection of any two open sets is
open, and the union of every collection of open sets is open. Such a collec-
tion 7 1s called a topology on S. When clarity seems to demand it, the topo-
logical space corresponding to the topology t will be written (S, 7) rather
than S.

Here is some of the standard vocabulary that will be used, if S and t
are as above.

A set E « S is closed if and only if its complement is open. The closure
E of E is the intersection of all closed sets that contain E. The interior E° of
E is the union of all open sets that are subsets of E. A neighborhood of a
point p € S is any open set that contains p. (S, 7) is a Hausdorff space, and t
is a Hausdorff topology, if distinct points of S have disjoint neighborhoods.
A set K « S is compact if every open cover of K has a finite subcover. A
collection 17" < 7 is a base for 7 if every member of 7 (that is, every open set)
is a union of members of 7. A collection y of neighborhoods of a point
p € S is a local base at p if every neighborhood of p contains a member of 7.

If Ec S and if ¢ is the collection of all intersections E n V, with
V € 1, then o is a topology on E, as is easily verified; we call this the topol-
ogy that E inherits from §.

If a topology 7 is induced by a metric d (see Section 1.2) we say that d
and 7 are compatible with each other.

A sequence {x,} in a Hausdorff space X converges to a point x € X
(or lim,, , x, = x) if every neighborhood of x contains all but finitely many
of the points x,,.

1.6 Topological vector spaces Suppose 7 is a topology on a vector
space X such that

(@) every point of X is a closed set, and
(b) the vector space operations are continuous with respect to 1.

Under these conditions, 7 is said to be a vector topology on X, and X
is a topological vector space.

Here is a more precise way of stating (a): For every x € X, the set {x}
which has x as its only member is a closed set.

In many texts, (a) is omitted from the definition of a topological
vector space. Since (a) is satisfied in almost every application, and since
most theorems of interest require (a) in their hypotheses, it seems best to
include it in the axioms. [Theorem 1.12 will show that (a) and (b) together
imply that 7 is a Hausdorff topology.]

To say that addition is continuous means, by definition, that the
mapping

(x. V= x4+ v
s V) X =

b2 J
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of the cartesian product X x X into X is continuous: If x; € X fori =1, 2,
and if V is a neighborhood of x; + x,, there should exist neighborhoods ¥,
of x; such that

Vi+V,cV.

Similarly, the assumption that scalar multiplication is continuous means
that the mapping

(o, x) = ax

of ® x X into X is continuous: If x € X, « is a scalar, and V 1s a neighbor-
hood of ax, then for some r > 0 and some neighborhood W of x we have
W < V whenever | — a| <.

A subset E of a topological vector space is said to be bounded if to
every neighborhood V of 0 in X corresponds a number s > 0 such that
E « tV for every t > s.

1.7 Invariance Let X be a topological vector space. Associate to each
a € X and to each scalar A # 0 the translation operator T, and the multipli-
cation operator M ;, by the formulas

T(x)=a+ x, M (x) = Ax (x € X).

The following simple proposition is very important:

Proposition. T, and M ; are homeomorphisms of X onto X.

PROOF. The vector space axioms alone imply that 7, and M, are
one-to-one, that they map X onto X, and that their inverses are 7_,
and M,,;, respectively. The assumed continuity of the vector space
operations implies that these four mappings are continuous. Hence
each of them is a homeomorphism (a continuous mapping whose
inverse is also continuous). /1

One consequence of this proposition is that every vector topology 7 is
translation-invariant (or simply invariant, for brevity): A set E < X is open if
and only if each of its translates a + E is open. Thus 7 is completely deter-
mined by any local base.

In the vector space context, the term local base will always mean a
local base at 0. A local base of a topological vector space X is thus a
collection # of neighborhoods of 0 such that every neighborhood of 0 con-
tains a member of %. The open sets of X are then precisely those that are
unions of translates of members of 4.
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A metric d on a vector space X will be called invariant if
dx+ 2z, y+z)=d(x, y)

forall x, y, z1in X.

1.8 Types of topological vector spaces In the following definitions, X
always denotes a topological vector space, with topology 1.

(@@ X 1s locally convex if there is a local base # whose members are
convex.

(b) X is locally bounded if 0 has a bounded neighborhood.
() X is locally compact if 0 has a neighborhood whose closure is compact.
(d) X is metrizable if 7 is compatible with some metric d.

(e) X is an F-space if its topology 7 is induced by a complete invariant
metric d. (Compare Section 1.25.)

(f) X is a Frechet space if X is a locally convex F-space.

(99 X 1s normable if a norm exists on X such that the metric induced by
the norm is compatible with 1.

(h) Normed spaces and Banach spaces have already been defined (Section
1.2).

() X has the Heine-Borel property if every closed and bounded subset of
X 1s compact.

The terminology of (¢) and (f) is not universally agreed upon: In
some texts, local convexity is omitted from the definition of a Fréchet space,

whereas others use F-space to describe what we have called Fréchet space.

1.9 Here is a list of some relations between these properties of a topologi-
cal vector space X.

(@) If X is locally bounded, then X has a countable local base [part (¢) of
Theorem 1.15].

(b) X is metrizable if and only if X has a countable local base (Theorem
1.24).

() X is normable if and only if X is locally convex and locally bounded
(Theorem 1.39).

(d) X has finite dimension if and only if X is locally compact (Theorems
1.21, 1.22).

(e) If a locally bounded space X has the Heine-Borel property, then X has
finite dimension (Theorem 1.23).
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The spaces H(Q) and Cg mentioned in Section 1.3 are infinite-
dimensional Fréchet spaces with the Heine-Borel property (Sections 1.45,
1.46). They are therefore not locally bounded, hence not normable; they
also show that the converse of (a) is false.

On the other hand, there exist locally bounded F-spaces that are not
locally convex (Section 1.47).

Separation Properties

110 Thoanrase Cassvannon L aumd 7 pep csshonto nf 2 tnmnlanainal ssontnr onsoo
L.V L IIvuUiliil DHPPUDC IN UFIUW O T SUUdcL) J “ Luyutuyu,ut veLtuUr spuie
X, K is compact, C is closed, and K n C = . Then 0 has a neighborhood V

such that
K+WMn(C+V)=.

Note that K + V is a union of translates x + V of V (x € K). Thus
K + V is an open set that contains K. The theorem thus implies the exis-
tence of disjoint open sets that contain K and C, respectively.

PROOF. We begin with the following proposition, which will be useful
in other contexts as well:

If W is a neighborhood of 0 in X, then there is a neighborhood U
of 0 which is symmetric (in the sense that U = — U) and which satisfies
U+ UcW.

To see this, note that 0 + 0 = 0, that addition is continuous, and
that O therefore has neighborhoods V, V, such that V, + V, « W.If
U=V, nVon(=V)n(=V)

then U has the required properties.
The proposition can now be applied to U in place of W and
yields a new symmetric neighborhood U of O such that

U+ U+ U+ UcW.

It is clear how this can be continued.

If K =, then K + V = ¢, and the conclusion of the theorem
is obvious. We therefore assume that K # ¢, and consider a point
x € K. Since C is closed, since x is not in C, and since the topology of
X is invariant under translations, the preceding proposition shows
that 0 has a symmetric neighborhood V, such that x + V, + V, + V,
does not intersect C; the symmetry of V, shows then that

(1) (x+ Vit V)N (C+ V)=
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Since K is compact, there are finitely many points x, ..., x, in K such
that

Kc(x,+V)u vulx,+ V)
PutV="V,n - nV,Then

K+VeJxi+Va+ Ve i+ V,+ V)
i=1 i=1
and no term in this last union intersects C + V, by (1), This completes
the proof. /1]

Since C + V is open, it is even true that the closure of K + V does not
intersect C + V; in particular, the closure of K + V does not intersect C.
The following special case of this, obtained by taking K = {0}, is of con-
siderable interest.

1.11 Theorem If % is a local base for a topological vector space X, then
every member of % contains the closure of some member of 8.

So far we have not used the assumption that every point of X is a
closed set. We now use it and apply Theorem 1.10 to a pair of distinct
points in place of K and C. The conclusion is that these points have disjoint
neighborhoods. In other words, the Hausdorff separation axiom holds:

1.12 Theorem Every topological vector space is a

We now derive some simple properties of closures and interiors in a
topological vector space. See Section 1.5 for the notations E and E°.

Observe that a point p belongs to E if and only if every neighborhood of p
intersects E.

1.13  Theorem Let X be a topological vector space.

@ IfAc X then 4= () (A + V), where V runs through all neighborhoods
of 0.

b)) IfAcXandBc X,thenA+ B< A + B.

(€©) IfY isa subspace of X, sois Y.

(d) If Cis a convex subset of X, so are C and C°.

(€ If Bis a balanced subset of X, so is B; if also O € B° then B° is balanced.
(f) IfE is a bounded subset of X, so is E.




12 PART I: GENERAL THEORY

PROOF. (a) x € A if and only if (x + V) n A # J for every neighbor-
hood V of 0, and this happens if and only if x € A — V for every such
V. Since — V is a neighborhood of O if and only if V is one, the proof
is complete.

(b) Take ae A, b e B; let W be a neighborhood of a + b. There
are neighborhoods W, and W, of a and b such that W, + W, < W.
There exist xe A » W, and ye B n W,,since a € A and b € B. Then
x + ylies in (4 + B) n W, so that this intersection is not empty. Con-
sequently,a + b e A + B.

(¢) Suppose o and B are scalars. By the proposition in Section
AT/ rr r o r r

1.7, a¥ = aY if a #£0; if & = 0, these two sets are obviously equal.
Hence it follows from (b) that

a7+ﬁ}_’:ﬁ+ﬁ_fcaY+ﬁYc7;

the assumption that Y is a subspace was used in the last inclusion.

The proofs that convex sets have convex closures and that bal-
anced sets have balanced closures are so similar to this proof of (¢}
that we shall omit them from (d) and (e).

(d) Since C° « C and C is convex, we have
tiC°+(1—-nCc°<=C

if 0 <t < 1. The two sets on the left are open; hence so is their sum.
Since every open subset of C is a subset of C°, 1t follows that C° is
convex.

(e) If 0 < || <1, then aB° = («B)°, since x — ax is a homeo-
morphism. Hence «B° = «B < B, since B is balanced. But aB° is open.
So aB° < B°. If B° contains the origin, then «B° < B° even for a = 0.

(f) Let V be a neighborhood of 0. By Theorem 1.11, W< V for
some neighborhood W of 0. Since E is bounded, E < tW for all suffi-
ciently large t. For these t, we have E < tW < tV, /1l

1.14 Theorem In a topological vector space X,

(a) every neighborhood of O contains a balanced neighborhood of 0, and

(b) every convex neighborhood of O contains a balanced convex neighbor-
hood of 0.

PROOF. (a) Suppose U is a neighborhood of 0 in X. Since scalar multi-
plication is continuous, there is a d > 0 and there is a neighborhood
V of 0 in X such that aV < U whenever |x| < §. Let W be the union
of all these sets V. Then W is a neighborhood of 0, W is balanced,
and W < U.
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(b) Suppose U i1s a convex neighborhood of 0 in X. Let
A=) «U, where « ranges over the scalars of absolute value 1.
Choose W as in part (a). Since W is balanced, o'W = W when
|| = 1; hence W < aU. Thus W < A4, which implies that the interior
A° of A is a neighborhood of 0. Clearly 4° = U. Being an intersection
of convex sets, A is convex; hence so is A°. To prove that 4° is a
neighborhood with the desired properties, we have to show that 4° is
balanced; for this it suffices to prove that A4 is balanced. Choose r and
Bsothat0 <r <1,|B|=1.Then

|
rpAa

Since aU 1s a convex set that contains O, we have relU < «U. Thus
rBA < A, which completes the proof. 111/

Theorem 1.14 can be restated in terms of local bases. Let us say that a

local base # is balanced if its members are balanced sets, and let us call #
convex If its members are convex sets.

Corcllary

(@) Every topological vector space has a balanced local base.
(b) Every locally convex space has a balanced convex local base.

Recall also that Theorem 1.11 holds for each of these local bases.

1.15 Theorem Suppose V is a neighborhood of O in a topological vector
space X.

(@

If0<r <r,<- - andr,— o0 asn— oo, then

X=1)rV.

n=1
Every compact subset K of X is bounded.
If6,>6,>--- and 5,0 as n—> oo, and if V is bounded, then the
collection
{6,Vin=1,23 ..}

is a local base for X.

PROOF. (a) Fix x € X. Since a — ax is a continuous mapping of the
scalar field into X, the set of all « with ax € V is open, contains 0,
hence contains 1/r, for all large n. Thus (1/r,)x € V, or x e r, V, for
large n.
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(b) Let W be a balanced neighborhood of 0 such that W < V.
By (a),

Since K is compact, there are integers n; < :-+ < n,such that
KcnWu--runW=nW.

The equality holds because W is balanced. If ¢t > n,, it follows that

KctWctV.

(¢) Let U be a neighborhood of 0 in X. If V is bounded, there
exists s > 0 such that V < tU for all t > s. If n is so large that 56, < 1,
it follows that V < (1/6,)U. Hence U actually contains all but finitely

many of the sets 8, V. /1]
Linear Mappings
1.16 Definitions When X and Y are sets, the symbol
fi XY

will mean that fis a mapping of X into Y. If 4 « X and B = Y, the image
f(A) of A and the inverse image or preimage f ~'(B) of B are defined by

fA)={ftx):xed}, [T (B)={x:f(x)eB}.

Suppose now that X and Y are vector spaces over the same scalar
field. A mapping A: X — Y is said to be linear if

Alax + By) = aAx + Ay

for all x and y in X and all scalars a and . Note that one often writes Ax,
rather than A(x), when A is linear.

Linear mappings of X into its scalar field are called linear functionals.

For example, the multiplication operators M, of Section 1.7 are linear,
but the translation operators T, are not, except when a = 0.

Here are some properties of linear mappings A: X — Y whose proofs
are so easy that we omit them; it is assumed that A « X and Bc Y.

(@@ A0=0.
(b) If A is a subspace (or a convex set, or a balanced set) the same is true
of A(A).

(c) If B is a subspace (or a convex set, or a balanced set) the same is true
of A~!(B).
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(d) In particular, the set
AT 0D = {x € X: Ax = 0} = #(A)

is a subspace of X, called the null space of A.

We now turn to continuity properties of linear mappings.

1.17 Theorem Let X and Y be topological vector spaces. If A: X - Y is
linear and continuous at 0, then A is continuous. In fact, A is uniformly contin-
uous, in the following sense: To each neighborhood W of 0 in Y corresponds a
neighborhood V of 0 in X such that

y—x €V implies Ay — Ax e W.

PROOF. Once W is chosen, the continuity of A at 0 shows that
AV < W for some neighborhood V of 0. If now y — x € V, the linear-
ity of A shows that Ay — Ax = A(y — x) € W. Thus A maps the
neighborhood x + V of x into the preassigned neighborhood Ax + W
of Ax, which says that A is continuous at x. /17

1.18 Theorem Let A be a linear functional on a topological vector space
X. Assume Ax # 0 for some x € X. Then each of the following four properties
implies the other three:

(@) A is continuous.

(b) The null space A"(A)is closed.

(&) . A(A)is not dense in X.

(d) A is bounded in some neighborhood V of 0.

PROOF. Since A4 (A) = A~ '({0}) and {0} is a closed subset of the scalar
field @, (a) implies (b). By hypothesis, .4"(A) # X. Hence (b) implies (c).

Assume (¢) holds; i.e., assume that the complement of .47(A) has
nonempty interior. By Theorem 1.14,

(1) x+V)n VA=

for some x € X and some balanced neighborhood V of 0. Then AV is
a balanced subset of the field ®. Thus either AV is bounded, in which
case (d) holds, or AV = @. In the latter case, there exists y € V such
that Ay = —Ax, and so x + y € #(A), in contradiction to (1). Thus
(¢) implies (d).

Finally, if (d) holds then | Ax| < M for all x in V and for some
M < oo Ifr >0and if W = (r/M)V, then | Ax| < r for every x in W,
Hence A is continuous at the origin. By Theorem 1.17, this implies (a).

it
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Finite-Dimensional Spaces

1.19 Among the simplest Banach spaces are R" and ¢”", the standarc
n-dimensional vector spaces over R and ¢, respectively, normed by mean
of the usual euclidean metric: If, for example,

Z:(le---azn) (zie¢)
is a vector in ", then

Izl =z, > + - + |z, 1DV

Izl = |z, + -+ +|z,] or |z|| = max (|z;|: 1 <i<n)

These norms correspond, of course, to different metrics on " (when n > 1)
but one can see very easily that they all induce the same topology on €".
Actually, more is true.

If X is a topological vector space over ¢, and dim X = n, then every
basis of X induces an isomorphism of X onto ¢". Theorem 1.21 will prove
that this isomorphism must be a homeomorphism. In other words, this says
that the topology of €" is the only vector topology that an n-dimensional
complex topological vector space can have.

We shall also see that finite-dimensional subspaces are always closed
and that no infinite-dimensional topological vector space is locally
compact.

Everything in the preceding discussion remains true with real scalars
in place of complex ones.

1.20 Lemma If X is a complex topological vector space and f- " — X is
linear, then f is continuous.

PROOF. Let {ey, ..., ¢,} be the standard basis of ¢": The kth coordi-
nate of ¢, is 1, the others are 0. Put u, = f(¢,), for k =1, ..., n. Then
f(z)=zu; +++ + z,u, for every z=1(z,, ..., z,) in ¢". Every z, i1s a
continuous function of z. The continuity of f is therefore an immediate
consequence of the fact that addition and scalar multiplication are
continuous in X. /11

121 Theorem If n is a positive integer and Y is an n-dimensional sub-
space of a complex topological vector space X, then

(a) every isomorphism of €" onto Y is a homeomorphism, and
(b) Y is closed.
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PROOF, Let S be the sphere which bounds the open unit ball B of
¢" Thus ze S if and only if £|z;|* =1, and z € B if and only if
Tz < L.

Suppose f: ¢"— Y is an isomorphism. This means that f is
linear, one-to-one, and f(€") = Y. Put K = f(S). Since f is continuous
(Lemma 1.20), K is compact. Since f(0) = 0 and fis one-to-one, 0 ¢ K,
and therefore there is a balanced neighborhood V of 0 in X which
does not intersect K. The set

E=f"'"M=f""(VnY)

is therefore disjoint from S. Since f is linear, E is balanced, and hence
connected. Thus E < B, because 0 € E, and this implies that the linear
map f~! takes V' ~ Y into B. Since f ~! is an n-tuple of linear func-
tionals on Y, the implication (d) — (@) in Theorem 1.18 shows that f ™!
is continuous. Thus fis a homeomorphism.

To prove (b), choose p € ¥, and let f and V be as above. For
some t > 0, p € tV, so that p lies in the closure of

Y n (tV) < f(tB) < f(tB).

Being compact, f(tB) is closed in X. Hence p € f(tB) = Y, and this
proves that Y=Y, 11/

Theorem Every locally compact topological vector space X has
dimension.

PROOF. The origin of X has a neighborhood V whose closure is
compact. By Theorem 1.15, V is bounded, and the sets 2 "V (n =1, 2,
3,...) form a local base for X.

The compactness of V shows that there exist x,, ..., x, in X
such that

Ve (x, + %V) Ut U (x,, + %’V)
Let Y be the vector space spanned by x,, ..., x,,. Then dim ¥ < m.
By Theorem 1.21, Y is a closed subspace of X.

Since V < Y + 3V and since AY = Y for every scalar 1 # 0, it
follows that

VoY +4v
so that
VeY+iVac Y+ Y +LV=Y41V.
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If we continue in this way, we see that

Ve (Y +27")
1

n=

Since {27 "V} is a local base, it now follows from (a) of Theorem 1.13
that V < Y. But Y= Y. Thus V < Y, which implies that kV < Y for
k=1,2,3,.... Hence Y = X, by (a) of Theorem 1.15, and consequent-
ly dim X < m. /1]

1.23 Theorem If X is a locally bounded topological vector space with the
Heine-Borel property, then X has finite dimension.

PROOF. By assumption, the origin of X has a bounded neighborhood
V. Statement (f) of Theorem 1.13 shows that Vis also bounded. Thus
Vis compact, by the Heine-Borel property. This says that X is locally
compact, hence finite-dimensional, by Theorem 1.22.

Metrization

We recall that a topology t on a set X is said to be metrizable if there is a
metric d on X which is compatible with 7. In that case, the balls with radius
1/n centered at x form a local base at x. This gives a necessary condition
for metrizability which, for topological vector spaces, turns out to be also
sufficient.

1.24 Theorem If X is a topological vector space with a countable local
base, then there is a metric d on X such that

(a) dis compatible with the topology of X,
(b) the open balls centered at 0 are balanced, and
(¢) disinvariant: d(x + z,y + z) = d(x, y) for x, y, z € X.

If, in addition, X is locally convex, then d can be chosen so as to satisfy
(a), (b), (¢), and also

(d) all open balls are convex.

PROOF. By Theorem 1.14, X has a balanced local base {V,} such that
(1) Viei 4 Vorr v Vo + VooV, (n+1,2,3..);

when X is locally convex, this local base can be chosen so that each ¥,
is also convex.
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Let D be the set of all rational numbers r of the form

a0

(2) r= > ¢(N2 "
n=1
where each of the “digits” ¢,(r) is 0 or 1 and only finitely many are 1.
Thus each r € D satisfies the inequalities 0 < r < 1.
Put A(r) = X ifr > 1; for any r € D, define

(3) A(r) = c,(n)V] + c,(n)Vy, + c3(1)V; + -+
Note that each of these sums is actually finite. Define
(4) f(x) =inf {r: x € A(r)} (x € X)
and

(5) dix,y)=f(x—y) (xeX, yeX)

The proof that this d has the desired properties depends on the
inclusions

(6) A(r) + A(s) < A(r + 3) (reD,seD)

Before proving (6), let us see how the theorem follows from it.
Since every A(s) contains 0, (6) imples

(7) A(r) = A(r) + A(t — r) < A1) if r<t.
Thus { A(r)} is totally ordered by set inclusion. We claim that
(8) fx+yn=fx)+fy) (xeX, yeX)

In the proof of (8) we may, of course, assume that the right side is < 1.
Fix ¢ > 0. There exist r and s in D such that

fx)y<r,  fly<s, r4+s<fx)+fy)+e

Thus x € A(r), y € A(s), and (6) implies x + y € A(r + 5). Now (8)
follows, because

fx+p<r+s<fx)+f(y +e

and ¢ was arbitrary.

Since each A(r) is balanced, f(x) =f(—x). It is obvious that
fO)=0. If x+#0, then x¢V,=A2 " for some n, and so
fx)=2"">0.

These properties of f show that (5) defines a translation-invariant
metric d on X. The open balls centered at O are the open sets
9 By(0) = {x: f(x) < &6} = [ A().

r<é
If 8 < 27", then B,(0) = V,. Hence { B,(0)} is a local base for the topol-
ogy of X. This proves (a). Since each A(r) is balanced, so is each B,(0).



20 PART I GENERAL THEORY

If each V, is convex, so is each A(r), and (9) implies that the same is
true of each B,(0), hence also of each translate of B,(0).

We turn to the proof of (6). If r + s > 1, then A(r + s) = X and
(6) is obvious. We may therefore assume that r + s < 1, and we will
use the following simple proposition about addition in the binary
system of notation:

Ifr,s, and r + s are in D and c,(r) + c,(s) # c(r + s) for some n,
then at the smallest n where this happens we have c,(r) = c(s) =0,
c(r +35)=1.

Put o, = c(r), B,=cu5), v, =c(r +5). If a0, + B, =7y, for all n
then (3) shows that A(r) + A(s) = A(r + s). In the other case, let N be
the smallest integer for which ay + 8y # vyx. Then, as mentioned
above, ay = fiy = 0,7y = 1. Hence

Anc o Vi + - +ay_ My 1+ Vosr + Vs +0°
co, Vi +-+ay Vg + Vesr + Vasrr
Likewise
Ay = B Vi 4+ + By Vvoo + Ve + Vaar
Since «, + B, = v, for all n < N, (1) now leads to
AN+ Ay, Vi+ - +yy Voot + Vy < A(r +5)

because yy = 1. 11/

1.25 Cauchy sequences (a) Suppose d is a metric on a set X. A
sequence {x,} in X is a Cauchy sequence if to every ¢ > 0 there corresponds
an integer N such that d(x,, x,) <& whenever m > N and n > N. If every
Cauchy sequence in X converges to a point of X, then d is said to be a
complete metric on X,

(b) Let t be the topology of a topological vector space X. The notion
of Cauchy sequence can be defined in this setting without reference to any
metric: Fix a local base # for 1. A sequence {x,} in X is then said to be a
Cauchy sequence if to every V € % corresponds an N such that x, — x,, € V
ifn>Nandm> N.

It is clear that different local bases for the same t give rise to the same
class of Cauchy sequences.

(¢) Suppose now that X is a topological vector space whose topology
7 is compatible with an invariant metric d. Let us temporarily use the terms
d-Cauchy sequence and 7-Cauchy sequence for the concepts defined in (a)
and (b), respectively. Since

d(xne xm) = d(xn - Xm> 0)’
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and since the d-balls centered at the origin form a local base for 7, we
conclude:

A sequence {x,} in X is a d-Cauchy sequence if and only if it is a
t-Cauchy sequence.

Consequently, any two invariant metrics on X that are compatible
with 7 have the same Cauchy sequences. They clearly also have the same
convergent sequences (namely, the z-convergent ones). These remarks prove
the following fact:

If d, and d, are invariant metrics on a vector space X which induce the
same topology on X, then

(@) d, and d, have the same Cauchy sequences, and
(b) d, is complete if and only if d, is complete.

Invariance is needed in the hypothesis (Exercise 12).
The following “ dilation principle” will be used several times.

1.26 'Theorem Suppose that (X, d,) and (Y, d,) are metric spaces, and
(X, d,) is complete. If E is a closed set in X, f: E— Y is continuous, and

dy(f (X)), f(x") = dy(x', x)
for all x', x" € E, then f(E) is closed.

PROOF. Pick y € f(E). There exist points x, € E so that y = lim f(x,).
Thus {f(x,)} is Cauchy in Y. Our hypothesis implies therefore that
{x,} is Cauchy in X. Being a closed subset of a complete metric space,
E is complete; hence there exists x = lim x, in E. Since f is contin-
uous,

f(x) =lim f(x,)=y.
Thus y € f(E). 11/

1.27 Theorem Suppose Y is a subspace of a topological vector space X,
and Y is an F-space (in the topology inherited from X). Then Y is a closed
subspace of X.

PROOF. Choose an invariant metric d on Y, compatible with its topol-
ogy. Let

1
B, = {y € Y:rdy, 0) < ;}»
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let U, be a neighborhood of 0 in X such that Y n U, = B,,,, and
choose symmetric neighborhoods ¥, of 0 in X such that V, + ¥V, c U _
and V,,, < V,.

Suppose x € Y, and define

E,=YnNn(x+V) n=1,2,3,...)

If y, e E,and y, € E,, then y, — y, liesin Y and also in V, + V, =
U,, hence in B, . The diameters of the sets E, therefore tend to O.
Since each E, is nonempty and since Y is complete, it follows that the
Y-closures of the sets E, have exactly one point y, in common.

Let W be a neighborhood of 0 in X, and define

F,.=Yn({x+WnV)

The preceding argument shows that the Y-closures of the sets F, have
one common point yu. But F, < E,. Hence yy = y,. Since F, =
x + W, it follows that y, lies in the X-closure of x + W, for every W~
This implies y, = x. Thus x € Y. This proves that Y= Y. 1/

The following simple facts are sometimes useful.

1.28 Theorem

(@) Ifdis a translation-invariant metric on a vector space X then
d(nx, 0) < nd(x, 0)

for every x e X andforn=1,23,....

(b) If {x,} is a sequence in a metrizable topological vector space X and if
x, — 0 as n— oo, then there are positive scalars y, such that y, — oo and
‘))n xn - O'

PROOF. Statement (a) follows from
d(nx, 0) < > d(kx, (k — 1)x) = nd(x, 0).
k=1

To prove (b), let d be a metric as in (a4), compatible with the
topology of X. Since d(x,, 0) — 0, there is an increasing sequence of
positive integers n, such that d(x,, 0) < k=2 if n>n,. Put y, =1 if
n<n;puty,=kifn, <n<n,,,. Forsuchn,

d(y,x,, 0) = d(kx,, 0) < kd(x,, 0) < k ..

x. —s0asn— oo, 17
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goundedness and Centinuity

129 Bounded sets The notion of a bounded subset of a topological
sector space X was defined in Section 1.6 and has been encountered several
times since then. When X is metrizable, there is a possibility of misunder-
standing, since another very familiar notion of boundedness exists in metric
spaces.

If d is a metric on a set X, a set £ — X is said to be d-bounded if there
's a number M << co such that d(z, y) < M for all x and y in E.

If X is a topological vector space with a compatible metric d, the

and tha /J hAanndad Anae naad mnt lha tha avan f A ig
DOUHUUU DULS Al v -o0unaca O1ics IIUUU ot o€ inc acuuu, wYLEL UL O D

invariant. For instance, if d is a metric such as the one constructed in
Theorem 1.24, then X itself is d-bounded (with M = 1) but, as we shall see
presently, X cannot be bounded, unless X = {0}. If X is a normed space
and d is the metric induced by the norm, then the two notions of
boundedness coincide; but if d is replaced by d, = d/(1 + d) (an invariant
metric which induces the same topology) they do not.

Whenever bounded subsets of a topological vector space are dis-
cussed, it will be understood that the definition is as in Section 1.6: A set F is
bounded if, for every neighborhood V of 0, we have E < ¢V for all suffi-
ciently large ¢.

We already saw (Theorem 1.15) that compact sets are bounded. To see
another type of example, let us prove that Cauchy sequences are bounded
(hence convergent sequences are bounded): If {x,} is a Cauchy sequence in X,
and V and W are balanced neighborhoods of 0 with V + V < W, then
[part (b) of Section 1.25] there exists N such that x, € x, + V for all n > N.
Take s > 1 so that xy € sV. Then

X, €sV + VsV +sV csW (n = N).

Hence x, = tW for all n > 1, if ¢ is sufficiently large.

Also, closures of bounded sets are bounded (Theorem 1.13).

On the other hand, if x # 0 and E={nx: n=1, 2, 3, ...}, then E is
not bounded, because there is a neighborhood V of O that does not contain
X; hence nx is not in nV; it follows that no nV contains E.

Consequently, no subspace of X (other than {0}) can be bounded.

The next theorem characterizes boundedness in terms of sequences.

1.30 Theorem The following two properties of a set E in a topological
vector space are equivalent :

@ Eis bounded.

®) If {x,} is a sequence in E and {a,} is a sequence of scalars such that
a,—>0asn— oo, thena,x, —0asn— oo.
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PROOF. Suppose E is bounded. Let V be a balanced neighborhood
of 0 in X. Then E — tV for some ¢t. If x, € E and o, — 0, there exists
N such that |a, |t <1 if n> N. Since t 'E = V and V is balanced,
a,x, € Vforalln > N. Thus «,x, - 0.

Conversely, if E is not bounded, there is a neighborhood V of 0
and a sequence r, — oo such that no r, V contains E. Choose x, € E
such that x, ¢ r,V. Then no r, 'x, is in V, so that {r, 'x,} does not
converge to 0. i

1.31 Bounded linear transformations Suppose X and Y are topologi-
cal vector spaces and A: X — Y is linear. A is said to be bounded if A maps
bounded sets into bounded sets, i.e., if A(E) is a bounded subset of Y for
every bounded set E < X. ,

This definition conflicts with the usual notion of a bounded function
as being one whose range is a bounded set. In that sense, no linear function
(other than 0) could ever be bounded. Thus when bounded linear mappings
(or transformations) are discussed, it is to be understood that the definition
is in terms of bounded sets, as above.

1.32 Theorem Suppose X and Y are topological vector spaces and
A: X — Y is linear. Among the following four properties of A, the implications

(@ —(b) = (o)
hold. If X is metrizable, then also

(€)= (d) — (a),
so that all four properties are equivalent.

(@) A is continuous.
(b) A is bounded.

(¢ Ifx,—>O0then {Ax,:n=1,2,3,...} is bounded.
d Ifx,— 0then Ax,— 0.

Exercise 13 contains an example in which (b) holds but (a) does not.

PROOF. Assume (a), let £ be a bounded set in X, and let W be a
neighborhood of 0 in Y. Since A is continuous (and AQ = 0) there is a
neighborhood V of 0 in X such that A(V) = W. Since E is bounded,
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E <tV for all large ¢, so that
AE) c A(tV) = tA(V) < tW.

This shows that A(E) is a bounded set in Y,

Thus (a)— (b). Since convergent sequences are bounded,
(B) = ()

Assume now that X is metrizable, that A satisfies (c), and that
x,— 0. By Theorem 1.28, there are positive scalars y, — oo such that
vnX, = 0. Hence {A(y,x,)} is a bounded set in Y, and now Theorem
1.30 implies that

Ax, =77 AGax) >0 as n-co.

Finally, assume that (a) fails. Then there is a neighborhood W of
0 in Y such that A~!(W) contains no neighborhood of 0 in X. If X
has a countable local base, there is therefore a sequence {x,} in X so
that x, — 0 but Ax, ¢ W. Thus (d) fails. /11

Seminorms and Local Convexity

1.33 Definitions A seminorm on a vector space X is a real-valued func-
tion p on X such that

(@ p(x+ y) < p(x) + p(y) and
(b) plax) = |a|p(x)

for all x and y in X and all scalars a.

Property (a) is called subadditivity. Theorem 1.34 will show that a semi-
norm p is a norm if it satisfies

(© p(x)#£0ifx #£0,

A family # of seminorms on X is said to be separating if to each x # 0
corresponds at least one p € # with p(x) # 0.

Next, consider a convex set 4 = X which is absorbing, in the sense
that every x € X lies in tA for some t = t(x) > 0. [For example, (a) of
Theorem 1.15 implies that every neighborhood of 0 in a topological vector
Space is absorbing. Every absorbing set obviously contains 0.] The
Minkowski functional u, of A is defined by

pax)=inf {t > 0:t 'x e A} (x € X).

Note that p,(x) < oo for all x € X, since A4 is absorbing. The seminorms on
will turn out to be precisely the Minkowski functionals of balanced
Convex absorbing sets.
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Seminorms are closely related to local convexity, in two ways: In

every locally convex space there exists a separating family of continuous
seminorms. Conversely, if 2 is a separating family of seminorms on a vector
space X, then 2 can be used to define a locally convex topology on X with
the property that every p € # is continuous. This is a frequently used
method of introducing a topology. The details are contained in Theorems
1.36 and 1.37.

1.34 Theorem Suppose p is a seminorm on a vector space X. Then

(@)
()
(©)
(@)
()

p(0) = 0.

|p(x) — p(Y)| < p(x — ).

p(x) = 0.

{x: p(x) = 0} is a subspace of X.

The set B = {x: p(x) < 1} is convex, balanced, absorbing, and p = ug.

PROOF. Statement (a) follows from p(ax) = |a|p(x), with a = 0. The
subadditivity of p shows that

p(x)=px —y+y) < px —y)+ p(y)

so that p(x) — p(y) < p(x — y). This also holds with x and y inter-
changed. Since p(x — y) = p(y — x), (b) follows. With y = 0, (b) implies
(¢). If p(x) = p(y) = 0 and a, f are scalars, (¢) implies

0 < plax + By) < lalp(x) + | B|p(y) = 0.

This proves (d).
As to (¢), it is clear that B is balanced. If x € B, y € B, and
0 <t <1,then

p(tx + (1 — )y) < tp(x) + (1 — Hp(y) < 1.

Thus B is convex. If x € X and s > p(x) then p(s 'x) = s !p(x) < L.
This shows that B is absorbing and also that ug(x) < s. Hence ug < p.
But if 0 <t < p(x) then p(t 'x) > 1, and so t 'x is not in B. This
implies p(x) < pug(x) and completes the proof. /11!

1.35 Theorem Suppose A is a convex absorbing set in a vector space X.
Then

(@ palx + y) < pg(x) + pa(y).
(b)  pa(tx) = tu (x) if t > 0.
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(€) p4isaseminorm if A is balanced.
d If B={x: pyx) <1} and C = {x:pu,x) <1}, then Bc A< C and
Hp=ly = U¢.

PROOE If t = p4(x) + e and s = u4(y) + &, for some ¢ > 0, then x/t and
y/sarein A; hence so is their convex combination

xX+y X s )

proved.

Property (b) is clear, and (c¢) follows from (a) and (b).

When we turn to (d), the inclusions B « 4 < C show that u, <
#4 < pp. To prove equality, fix x € X, and choose s, t so that uq(x) <
s<t Then x/s € C, py(x/s) < 1, px/t) < s/t <1; hence x/t € B, so
that ux) < t. This holds for every t > u(x). Hence ug(x) < pe(x). ////

136 Theorem Suppose # is a convex balanced local base in a topologi-

cal vector space X. Associate to every V € # its Minkowski functional u, .
Then

(@ V={xeX:p,x)<1),for every V € &, and
by {uy:Ve A} is a separating family of continuous seminorms on X.

PROOE, If x € V, then x/t € V for some t < 1, because V is open;
hen(‘f- gdxV =1 T v V then v/t ¢ IV imnlieg
had FV\J\'} e S Y'Y 4l Cad ‘f— F s (S LYYV} J\v/b L r Allll_lj.l\/\)
balanced ; hence p,(x) = 1. This proves (a).
Theorem 1.35 shows that each u, is a seminorm. If r > 0, it

follows from (a) and Theorem 1.34 that

.
t > 1 hecancee V ic
Lo Al U ld VoW r p el

| up(x) — (Y| < pp(x —y)y <r

if x - ye rV. Hence u, is continuous. If x € X and x # 0, then x ¢ V
for some V' € 4. For this V, u,(x) > 1. Thus {u, } is separating. /1]

137 Theorem Suppose 2 is a separating family of seminorms on a vector
Pace X. Associate to each p € P and to each positive integer n the set

V(p, n) = {x: p(x) < %}

Let % be the collection of all finite intersections of the sets V(p, n). Then % is
? Convex balanced local base for a topology t on X, which turns X into a
Ocally convex space such that
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Seminorms are closely related to local convexity, in two ways: In

every locally convex space there exists a separating family of continuous
seminorms. Conversely, if 2 is a separating family of seminorms on a vector
space X, then 2 can be used to define a locally convex topology on X with
the property that every p € 2 is continuous. This is a frequently used
method of introducing a topology. The details are contained in Theorems
1.36 and 1.37.

1.34 Theorem Suppose p is a seminorm on a vector space X. Then

(@)
(b)
()
()
()

p(0) = 0.

|p(x) — P(y)| < p(x — y).

p(x) = 0.

{x:p(x) = 0} is a subspace of X.

The set B = {x: p(x) < 1} is convex, balanced, absorbing, and p = ug.

PROOF. Statement (a) follows from p(ax) = |a|p(x), with o« = 0. The
subadditivity of p shows that

p(x) = plx —y + y) < p(x — y) + p(y)

so that p(x) — p(y) < p(x — y). This also holds with x and y inter-
changed. Since p(x — y) = p(y — x), (b) follows. With y = 0, (b) implies
(o). If p(x) = p(y) = 0 and o, § are scalars, (c) implies

0 < plax + By) <lalp(x) +|8|p(y) =0.

This proves (d).
As to (¢), it is clear that B is balanced. If x € B, y € B, and
0 <t <1,then

pltx + (1 = 1y) < tp(x) + (1 — Op(y) < L.

Thus B is convex. If x € X and s > p(x) then p(s™'x) = s~ 'p(x) < 1.
This shows that B is absorbing and also that ug(x) < s. Hence uz < p.
But if 0 <t < p(x) then p(t”'x) > 1, and so ¢ 'x is not in B. This
implies p(x) < ug(x) and completes the proof. /11

1.35 Theorem Suppose A is a convex absorbing set in a vector space X.
Then

(@) pgx + ) < pax) + pay).
(b)) paltx) = tuy(x)if t > 0.
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() Mais aseminorm if A is balanced.
(d If B={x: pux)<1} and C={x:p,x)<1}, then Bc A< C and
Hp = Ha = He-

PROOF. If t = p,(x) + ¢ and s = py(y) + ¢, for some ¢ > O, then x/t and
y/s are in A; hence so is their convex combination

x+y_w

t X 5 y
s+t s+t t s+t s

This shows that g (x + y) <s 4+t = pux)+ uy) + 2¢
proved.
Property (b) is clear, and (c) follows from (a) and (b).
When we turn to (d), the inclusions B < A < C show that u, <
p4 < pg. To prove equality, fix x € X, and choose s, t so that p(x) <
s <t Then x/s € C, py(x/s) <1, p,(x/t) < s/t <1; hence x/t € B, so

that ug(x) < t. This holds for every t > udx). Hence ug(x) < uq(x). ////

136 Theorem Suppose % is a convex balanced local base in a topologi-
cal vector space X. Associate to every V € # its Minkowski functional pu, .
Then

@ V={xeX:ux)<1},foreveryV € B, and
(b)) {uy: V € B} is a separating family of continuous seminorms on X.

PROOF. If x € V, then x/t € V for some t < 1, because V is open;
hence p{x) < 1. If x ¢ V, then x/t € V implies t > 1, because V is
balanced; hence u,{x) > 1. This proves (a).

Theorem 1.35 shows that each u, is a seminorm. If r > 0, it

follows from (a) and Theorem 1.34 that

| up(x) — (V)| S pplx — y) <r

if x — y e rV. Hence u, is continuous. If x € X and x # 0, then x ¢ V
for some V € 4. For this V, u,(x) > 1. Thus {u,} is separating.  ////

L37 Theorem Suppose P is a separating family of seminorms on a vector
Space X. Associate to each p € 2 and to each positive integer n the set

Vip, n) = {x: p(x) < %}

Let # be the collection of all finite intersections of the sets V(p, n). Then & is
a convex balanced local base for a topology t on X, which turns X into a
locally convex space such that
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every p € & is continuous, and
aset E < X is bounded if and only if every p € 2 is bounded on E.

PROOF. Declare a set A — X to be open if and only if 4 is a (possibly
empty) union of translates of members of #. This clearly defines a
translation-invariant topology 7 on X; each member of # is convex
and balanced, and 4 is a local base for .

Suppose x € X, x # 0. Then p(x) > 0 for some p € 2. Since x is
not in V(p, n) if np(x) > 1, we see that 0 is not in the neighborhood
x — V(p, n) of x, so that x is not in the closure of {0}. Thus {0} is a
closed set, and since 7 is translation-invariant, every point of X is a
closed set.

Next we show that addition and scalar multiplication are con-
tinuous. Let U be a neighborhood of 0 in X. Then

(1) U:)V(pla nl)ﬁ”.ﬁ V(prrwnm)
for some p,, ..., p,, € # and some positive integers n, ..., n,. Pui
() V=Vpy,2n)o -0 Vip,, 2n,).

Since every p € £ is subadditive, V + V < U. This proves th:’ addi-
tion is continuous.

Suppose now that x € X, o is a scalar, and U and V ure as
above. Then x € sV for some s > 0. Put t = s/l + |a|s). Ify e ¢ -tV
and | — a| < 1/s, then

By —ax = By — x) + (8 — a)x
which lies in
|1tV +|f—a|sVcecV+VcU

since ||t < 1 and V is balanced. This proves that scalar mul' clica-
tion is continuous.

Thus X is a locally convex space. The definition of V(p, n' shows
that every p € # is continuous at 0. Hence p is continuous or X, by
(b) of Theorem 1.34,

Finally, suppose E < X is bounded. Fix p € #. Since V(p ':is a
neighborhood of 0, E — kV(p, 1) for some k < oco. Hence p(x) -. k for
every x € E. It follows that every p € 2 is bounded on E.

Conversely, suppose E satisfies this condition, U is a neiy:bor-
hood of 0, and (1) holds. There are numbers M, < oo such tha: p, <
M, on E (1<i<m) If n>M;n for 1 <i<m, it follows that
E < nU, so that E is bounded. /1

1.38 Remarks (a) It was necessary to take finite intersections of the sets
V(p, n) in Theorem 1.37; the sets V(p, n) themselves need not form a local
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base. (They do form what is usually called a subbase for the constructed
topology.) To see an example of this, take X = R?, and let 2 consist of the
seminorms p, and p, defined by p{x) = | x;|; here x = (x,, x,). Exercise 8
develops this comment further.

(b) Theorems 1.36 and 1.37 raise a natural problem: If # is a convex
balanced local base for the topology 7 of a locally convex space X, then %
generates a separating family # of continuous seminorms on X, as in
Theorem 1.36. This £ in turn induces a topology 7, on X, by the process
described in Theorem 1.37. Ist = 7, ?

The answer is affirmative. To see this, note that every pe 2 is 1-
continuous, so that the sets V(p, n) of Theorem 1.37 are in 7. Hence 7, < 1.
Conversely, if W € 4 and p = uy, then

W= {x: uy(x) < 1} = V(p, 1).

Thus W € 7, for every W € 4; this implies that 1 < 1,.

(o0 f2={p:i=1,2 3,...} is a countable separating family of semi-
norms on X, Theorem 1.37 shows that 2 induces a topology t with a
countable local base. By Theorem 1.24, 7 is metrizable. In the present situ-
ation, a compatible translation-invariant metric can be defined directly in
terms of {p;} by setting

¢ pdx — y)
(1} d(x, y) = max ,
i 1+plx—y
where {¢;} is some fixed sequence of positive numbers which converges to 0
asi-- oo,
[t is easy to verify that d is a metric on X.
We claim that the balls

2) B, = {x: d(0, x) < r} 0 <r< o)

form a convex balanced local base for t.

Fix r. If ¢; < r (which holds for all but finitely many i, since ¢; — 0),
then ¢, p,/(1 + p;) < r. Hence B, is the intersection of finitely many sets of
the form

. frto <)

Ci_"r

namely those for which ¢; > r. These sets are open, since each p; is contin-
uous (Theorem 1.37). Thus B, is open, and, by Theorem 1.34, is also convex
and balanced.

Next, let W be a neighborhood of 0 in X. The definition of ¢ shows
that W contains the intersection of appropriately chosen sets

(4) Vip:, 6) = {x:pdx) <6, <1} (1<i<h).



30 PART I GENERAL THEORY

If 2r < min {¢,d,,..., ¢, 9} and x € B,, then
D, 5,
(5) apld G gy
1 + pdx) 2

which implies p(x) < é;. Thus B, c W.
This proves our claim and also shows that d is compatible with 7.

1.39 Theorem A topological vector space X is normable if and only if its
origin has a convex bounded neighborhood.

PROOF. If X is normable, and if || - | is a norm that is compatible with
the topology of X, then the open unit ball {x: ||x|| < 1} is convex and
bounded.

For the converse, assume V is a convex bounded neighborhood
of 0. By Theorem 1.14, V' contains a convex balanced neighborhood
U of 0; of course, U 1s also bounded. Define

(D Ixl = u(x)  (x € X)

where u is the Minkowski functional of U.

By (c¢) of Theorem 1.15, the sets rU (r > 0) form a local base for
the topology of X. If x #£ 0, then x ¢ rU for some r > 0; hence
x]| = r. It now follows from Theorem 1.35 that (1) defines a norm.
The definition of the Minkowski functional, together with the fact that
U is open, implies that

@) (x: x| <r} =rU

for every r > 0. The norm topology coincides therefore with the given

one. /17

Quotient Spaces

1.40 Definitions Let N be a subspace of a vector space X. For every
x € X, let n(x) be the coset of N that contains x; thus

n(x) = x + N.

These cosets are the elements of a vector space X/N, called the quotient
space of X modulo N, in which addition and scalar multiplication are
defined by

(N n(x) + n(y) = n(x + y), an(x) = m(ax).

[Note that now an(x) = N when a = 0. This differs from the usual notation,
as introduced in Section 1.4.] Since N is a vector space, the operations (1)
are well defined. This means that if n(x) = n(x’) (that is, X' — x € N) and
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n(y) = n(y’) then
(2) a(x) + m(y) = n(x") + n(y), an(x") = on(x).

The origin of X/N is 7(0) = N. By (1), = is a linear mapping of X onto
X/N with N as its null space; = is often called the quotient map of X onto
X/N.

Suppose now that 7 is a vector topology on X and that N is a closed
subspace of X. Let 1y be the collection of all sets E < X/N for which
n~Y(E) € 1. Then 1y turns out to be a topology on X/N, called the quotient
ropology. Some of its properties are listed in the next theorem. Recall that
an open mapping is one that maps open sets to open sets.

1.41 Theorem Let N be a closed subspace of a topological vector space
X. Let T be the topology of X and define 15 as above.

(@) 1ty is a vector topology on X/N; the quotient map n. X — X/N is linear,
continuous, and open.

(b) If # is a local base for t, then the collection of all sets n(V) with V € #
is a local base for 1.

(¢) Each of the following properties of X is inherited by X/N: local convex-
ity, local boundedness, metrizability, normabilit y.

(d) If X is an F-space, or a Fréchet space, or a Banach space, so is X/N.

PROOF. Since 7 (A n By =n"'(A4) n n7(B) and
U E)=U a7 B,
Ty is a topology. A set F < X/N is ty-closed if and only if =~ '(F) is
1-closed. In particular, every point of X/N is closed, since
- (n(x)) =N + x

and N was assumed to be closed.
The continuity of n follows directly from the definition of 7.
Next, suppose V' € 1. Since

(V) = N+ V

and N + V € 1, it follows that (V) € 7y. Thus 7 is an open mapping.
If now W is a neighborhood of 0 in X/N, there is a neighbor-
hood V of 0 in X such that
V+Vcrn Y{W).

Hence 7(V) + (V) < W. Since = is open, n(}) is a neighborhood of 0
in X/N. Addition is therefore continuous in X/N.
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The continuity of scalar multiplication in X/N is proved in the
same manner. This establishes (a).

It is clear that (a) implies (b). With the aid of Theorems 1.32,
1.24, and 1.39, it is just as easy to see that (b) implies (¢).

Suppose next that d is an invariant metric on X, compatible
with 7. Define p by

p(r(x), n(y)) = inf {d(x — y, z): z € N}.

This may be interpreted as the distance from x — y to N. We omit the
verifications that are now needed to show that p is well defined and
that it is an invariant metric on X/N. Since

m({x: d(x, 0) < r}) = {u: p(u, 0) < r},

it follows from (b) that p is compatible with 7.
If X is normed, this definition of p specializes to yield what is
usually called the quotient norm of X/N:

|m(x)|| = inf {|x — z||: z € N}.

To prove (d) we have to show that p is a complete metric when-
ever d is complete.

Suppose {u,} is a Cauchy sequence in X/N, relative to p. There
is a subsequence {u,} with p(u,., u,. )< 2 % One can then induc-
tively choose x; € X such that n(x;) = u, and d(x;, x;+,) <2 " If d is
complete, the Cauchy sequence {x;} converges to some x € X. The
continuity of n implies that u, — 7(x) as i— oc. But if a Cauchy
sequence has a convergent subsequence then the full sequence must
converge. Hence p 1s complete, and so is the proof of Theorem 1.41.

/117

Here is an easy application of these concepts:

Theorem Suppose N and F are subspaces of a topological vector

space X, N is closed, and F has finite dimension. Then N + F is closed.

PROOF. Let 7 be the quotient map of X onto X/N, and give X/N its
quotient topology. Then n(F) is a finite-dimensional subspace of X/N;
since X/N is a topological vector space, Theorem 1.21 implies that
n(F) is closed in X/N. Since N + F = n~ (n(F)) and 7 is continuous,
we conclude that N + F is closed. (Compare Exercise 20.) /11

1.43 Seminorms and quotient spaces Suppose p is a seminorm on a
vector space X and

N = {x: p(x) = 0}.
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Then N is a subspace of X (Theorem 1.34). Let n be the quotient map of X
onto X/N, and define

p(r(x)) = p(x).
If n(x) = n(y), then p(x — y) = 0, and since

[p(x) ~ p(»)| < p(x — y)

it follows that p(n(x)) = p(n(y)). Thus p is well defined on X/N, and it is now
easy to verify that p is a norm on X/N,

Here is a familiar example of this. Fix r, 1 <r < o0, let I’ be the space
of all Lebesgue measurabile functions on [0, 1] for which

1 1/r
=11l = {J. RGN dt} < 0.

This defines a seminorm on [f, not a norm, since || f|/, = 0 whenever f = 0
almost everywhere. Let N be the set of these “null functions.” Then /N is
the Banach space that is usually called If. The norm of I is obtained by the
above passage from p to p.

Examples

1.44 The spaces ((£2) If Q is a nonempty open set in some euclidean
space, then Q is the union of countably many compact sets K, # ¢ which
can be chosen so that K, lies in the interior of K, , (n =1, 2,3, ...). C(Q) is
the vector space of all complex-valued continuous functions on £, topol-
ogized by the separating family of seminorms

(1) pf)=sup {| f(x)|: x € K,},

in accordance with Theorem 1.37. Since p, < p, < -*-, the sets
1

(2) Vn={f€ C(Q)fpn(f)<;} (n=123..)

form a convex local base for C(Q). According to remark (c) of Section 1.38,
the topology of C(Q) is compatible with the metric

(3) d(f, g) = max 2 "l = 9) :
n 1L+ p(f—9)
If {f} is a Cauchy sequence relative to this metric, then p,(f; — f}) — 0 for
every n, as i, j — co, so that { f;} converges uniformly on K,, to a function
/€ C(Q). An easy computation then shows d(, f)— 0. Thus d is a complete
metric. We have now proved that C(Q) is a Fréchet space.

By (b) of Theorem 1.37, a set E = C(Q) is bounded if and only if there
are numbers M, < oo such that p,(f) < M, for all f € E; explicitly,

(4) | f)| < M, iffe Eand x € K,,.
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Since every V, contains an f for which p,, ,(f) is as large as we please, it
follows that no V, is bounded. Thus C(Q) is not locally bounded, hence is not
normable.

1.45 The spaces H(£2) Let Q now be a nonempty open subset of the
complex plane, define C(Q2) as in Section 1.44, and let H(Q) be the subspace
of C(Q) that consists of the holomorphic functions in Q. Since sequences of
holomorphic functions that converge uniformly on compact sets have holo-
morphic limits, H(Q2) is a closed subspace of.C(Q). Hence H(Q) is a Fréchet
space.

We shall now prove that H(Q) has the Heine-Borel property. It will
then follow from Theorem 1.23 that H(Q) is not locally bounded, hence is not
normable.

Let E be a closed and bounded subset of H(Q). Then E satisfies
inequalities such as (4) of Section 1.44. Montel’s classical theorem about
normal families (Th. 14.6 of [23]!) implies therefore that every sequence
{f;} © E has a subsequence that converges uniformly on compact subsets of
Q [hence in the topology of H(Q)] to some f € H(Q). Since E is closed, f € E.
This proves that E is compact.

1.46 The spaces C*(€2) and Zx We begin this section by introducing
some terminology that will be used in our later work with distributions.

In any discussion of functions of n variables, the term multi-index
denotes an ordered n-tuple

(1) o ={ay ..., &)

of nonnegative integers ;. With each multi-index a is associated the differ-
ential operator

a_ (2N (2
» »=() ()

whose order i1s
(3) o] =ay + - + o,

If|a] =0,Df =/ ‘
A complex function f defined in some nonempty open set Q < R" 18
said to belong to C*(Q) if D*f € C{Q) for every multi-index «.

! Numbers in brackets refer to sources listed in the bibliography.
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The support of a complex function f (on any topological space) is the
closure of {x: f(x) # 0}.

If K is a compact set in R", then &, denotes the space of all
fe C*(R") whose support lies in K. (The letter & has been used for these
spaces ever since Schwartz published his work on distributions.) If K < Q,
then &, may be identified with a subspace of C*(Q).

We now define a topology on C™{Q) which makes C*(Q) into a Fréchet
space with the Heine-Borel property, such that %y is a closed subspace of
C*(Q) whenever K < Q.

To do this, choose compact sets K, (i = 1, 2, 3, ...) such that K; lies in
the interior of K;, , and Q = ) K;. Define seminorms py on C*(Q), N = 1,
2, 3,..., by setting

(4) p{f) = max {|D*f(x)]: x € Ky, |a] < N}.

They define a metrizable locally convex topology on C®(Q); see Theorem
1.37 and remark {c) of Section 1.38. For each x € {}, the functional f— f{(x)
is continuous in this topology. Since &/ is the intersection of the null spaces
of these functionals, as x ranges over the complement of K, it follows that
%y 1s closed in C*{Q).

A local base is given by the sets

(5) Vy = {fe C2(Q): pulf) < i} (N=1,2,3..)

N

If {f;} is a Cauchy sequence in C*(Q) (see Section 1.25) and if N is fixed,
then f, — f, € ¥, if i and j are sufficiently large. Thus | D*; — D*f;| < 1/N on
Ky, if || < N. Tt follows that each D% converges (uniformly on compact
subsets of Q) to a function g,. In particular, f{x) — g,(x). It is now evident
that g, € C*(Q), that g, = D%g,, and that f; — g in the topology of C*(Q).

Thus C*(Q) is a Fréchet space. The same is true of each of its closed
subspaces 7, .

Suppose next that E = C*(Q) is closed and bounded. By Theorem
[.37, the boundedness of E is equivalent to the existence of numbers
My < oo such that py(f) < My for N=1, 2, 3, ... and for all fe E. The
inequalities | D% | < My, valid on K, when |a| < N, imply the equicon-
tinuity of {D’f:fe E} on Ky_,, if |f| <N — 1. It now follows from
Ascoli’s theorem (proved in Appendix A) and Cantor’s diagonal process
that every sequence in E contains a subsequence {f;} for which {D?/} con-
verges, uniformly on compact subsets of Q, for each multi-index 5. Hence
i} Converges in the topology of C*(). This proves that E is compact.

Hence C*(Q) has the Heine-Borel property. It follows from Theorem
123 that C ®(Q) is not locally bounded, hence not normable. The same con-
clusion holds for #, whenever K has nonempty interior (otherwise Zy =
0}), because dim 2 x = o0 in that case. This last statement is a consequence
of the following proposition:
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If B, and B, are concentric closed balls in R", with B, in the interior of
B,, then there exists ¢ € C*(R") such that ¢{x) =1 for every x € By,
¢(x) = 0 for every x outside B,, and 0 < ¢ < 1 on R".

To find such a ¢, we construct g € C*(R") such that g{x) = 0 for
x < a, g(x) = 1for x > b (where 0 < a < b < o are preassigned) and put

(6) (X1 o X)) =1 —g(x] + - + x5).
The following construction of g has the advantage that suitable choices of
S Y man laad to fiincticane with ~thar daciread nranartiac

]\U )’ Ldadll 1vaul LU munclions wilil Utlivi Uwollivag Pl Upvl uavs,
Suppose 0 < a < b < co. Choose positive numbers d,, 6,, J,, ...
with 20, = b — a; put

7 = — =1
(7 me=sy (=023

n

let f, be a continuous monotonic function such that f,(x) = 0 when x < a,
fox) = 1 when x > a + d,; and define

X

1
(8) fn(x) = ‘SP J‘ f;:—l(t) dt (n= 1, 2,3,.. )

x— dn

Differentiation of this integral shows, by induction, that f, has n continuous
derivatives and that | D"f, | < m,. If n > r, then

t[*

©) D) = = f (D, )x — ) dt,
n JO

so that

(10) DS <m,. (nr),

again by induction on n. The mean value theorem, applied to (9), shows
that

(i1) | Df, — Dfy_ | <my 8, (nzr+2).

Since X0, < oo, each {D'f,} converges, uniformly on (— oo, o), as n— .
Hence {f,} converges to a function g, with |D'g| <m_forr=1, 2, 3, ...,
such that g(x) = 0 for x < a and g(x) = 1 for x > b.

1.47 The spaces L? with 0 < p <1 Consider a fixed p in this range.

The elements of I7 are those Lebesgue measurable functions f on [0, 1] for
which

(1) A(f) = [ | f(2)|P dt < o,
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with the usual identification of functions that coincide almost everywhere.
Since 0 < p < 1, the inequality

) (a+ b)? < aP + b?
holds when a > 0 and b > 0. This gives

(3) A(f + 9) < Af) + Alg),
so that

@ d(f, 9) = A(f - g)

defines an invariant metric on I¥. That this d is complete is proved in the
same way as in the familiar case p > 1. The balls

(5) B, ={fe I’ A(f) <r}
form a local base for the topology of I?. Since B, = r " */?B_, for all r > 0,
B, is bounded.

Thus I? is a locally bounded F-space.

We claim that I7 contains no convex open sets, other than (5 and I7.

To prove this, suppose V # (J is open and convex in [7. Assume
0 € V, without loss of generality. Then V = B,, for some r > 0. Pick fe I/
Since p < 1, there is a positive integer n such that n* ! A(f) <r. By the
continuity of the indefinite integral of | f |7, there are points

OD=x,<x;, < " <x,=1

such that
X
©) ‘[IfMszn”AU) (1=izn)
Xi—1
Define g.(t) = nfi() if x <t < v ity =0 ntharwice Then 7 « V cines
(6) shows
() Ag)=n"""Af)<r (I<i<n

and V = B, . Since V is convex and
t
(8) f=_1g,+ "+ 3.

it follows that f € V. Hence V = I”.

This lack of convex open sets has a curious consequence.

Suppose A: I - Y is a continuous linear mapping of I7 into some
locally convex space Y. Let # be a convex local base for Y. If W € 4, then
ATYW) is convex, open, not empty. Hence A~ Y(W) = IZ. Consequently,
AI?) = W for every W e . We conclude that Af = 0 for every f e If.

Thus 0 is the only continuous linear mapping of IF into any locally

Convex space Y, if 0 < p < 1. In particular, O is the only continuous linear
Junctional on these IP-spaces.

This is, of course, in violent contrast to the familiar case p > 1.

- I
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Exercises

1.

=2

Suppose X is a vector space. All sets mentioned below are understood to be
subsets of X. Prove the following statements from the axioms as given in
Section 1.4, (Some of these are tacitly used in the text.)
(@ Ifx e X and y € X there is a unique z € X such that x + z = y.
() Ox =0 =a0if x € X and « is a scalar.
(¢) 24 = A+ A;it may happen that 24 # A + A.
(d) Ais convex if and only if (s + )4 = sA + tA for all positive scalars s and ¢.
(¢) Every union (and intersection) of balanced sets is balanced.
{ /) Every intersection of convex sets is convex.
(g) U T is a collection of convex sets that is totally ordered by set inclusion,

then the union of all members of I is convex.
(h) i A and B are convex,sois A + B.
() If A and B are balanced, sois A + B.
(/) Show that parts (f), (g), and (h) hold with subspaces in place of convex sets.
The convex hull of a set A in a vector space X is the set of all convex com-
binations of members of A, that is, the set of all sums

Lyxy+ - -+1,Xx,

in which x; € 4,1, >0, t,=1; n is arbitrary. Prove that the convex hull of 4
is convex and that it is the intersection of all convex sets that contain A.

. Let X be a topological vector space. All sets mentioned below are understood to

be the subsets of X. Prove the following statements.

{a) The convex hull of every open set is open.

{#) If X is locally convex then the convex hull of every bounded set is bounded.
(This is false without local convexity; see Section 1.47.)

{c) If A and B are bounded, so is A + B.

{d) If A and B are compact,sois A + B.

(e) If A is compact and B is closed, then 4 + B is closed.

{(f) The sum of two closed sets may fail to be closed. [The inclusion in (b) of
Theorem 1.13 may therefore be strict.]

. Let B={(z,, z,) e €*:|z,{ <|z,|}. Show that B is balanced but that its inte-

rior is not. [Compare with (e) of Theorem 1.13.]

. Consider the definition of “bounded set™ given in Section 1.6. Would the

content of this definition be altered if it were required merely that to every
neighborhood V of 0 corresponds some t > 0 such that E < tV?

. Prove that a set E in a topological vector space is bounded if and only if every

countable subset of E is bounded.

Let X be the vector space of all complex functions on the unit interval [0, 1],
topologized by the family of seminorms

pf) =1/ O<x<.

This topology is called the topology of pointwise convergence. Justify this ter-
minology.

Show that there is a sequence { f,} in X such that (a) {f,} converges to O
as n — oo, but (b) if {y,} is any sequence of scalars such that y, — oo then {y, £}
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11,

12

13.
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does not converge to 0. (Use the fact that the collection of all complex sequences
converging to 0 has the same cardinality as [0, 1].)
This shows that metrizability cannot be omitted in (b) of Theorem 1.28.

. (@) Suppose # is a separating family of seminorms on a vector space X. Let 2

be the smallest family of seminorms on X that contains & and is closed
under max. [This means: If p, € 4, p, € 2, and p = max (p,, p,), then
p € 2.1 If the construction of Theorem 1.37 is applied to £ and to 2, show
that the two resulting topologies coincide. The main difference is that 2
leads directly to a base, rather than to a subbase. | See Remark (a) of Section
1.38.]

{b) Suppose 2 is as in part {a@) and A is a linear functional on X. Show that A is
continuous if and only if there exists a p € 2 such that | Ax| < Mp(x) for all
x € X and some constant M < ooc.

Suppose

(@) X and Y are topological vector spaces,

() A: X = Y is linear,

(¢) N is a closed subspace of X,

(@) m: X —» X/N is the quotient map, and

(e) Ax =Oforevery x e N.

Prove that there is a unique f: X/N — Y which satisfies A =f o 7, that is,

Ax = f(n(x)) for all x € X. Prove that this fis linear and that A is continuous if

and only if fis continuous. Also, A is open if and only if fis open.

Suppose X and Y are topological vector spaces, dimY < o0, A: X =Y is

linear, and A(X) =

(a) Prove that A is an open mapping.

{(b) Assume, in addition, that the null space of A is closed. and prove that A is
then continuous.

If N is a subspace of a vector space X, the codimension of N in X is, by defini-

tion, the dimension of the quotient space X/N.

Suppose 0 < p < 1 and prove that every subspace of finite codimension is

dense in I?. (See Section 1.47.)

Suppose dy(x, y) =[x — y[, dy(x, y) = | @(x) — ¢(y)}. where ¢{x} = x/1 + |x]).

Prove that d, and d, are metrics on R which induce the same topology,

although d, is complete and 4, is not.

Let C be the vector space of all complex continuous functions on [0, 1]. Define

) = glx)]
d(f’g)‘fo 141700 — 90|

Let (C, o) be C with the topology induced by this metric. Let (C, 7) be the
topological vector space defined by the seminorms

Pf)=1/f(x) O<x <,

in accordance with Theorem 1.37.
(a) Prove that every t-bounded set in C is also o-bounded and that the identity
map id: (C, 1) — (C, o) therefore carries bounded sets into bounded sets.

(b) Prove that id: (C, 1) - (C, ¢) is nevertheless not continuous, although it is
sequentially continuous (by Lebesgue’s dominated convergence theorem),

ulitia 1 Lot i AL 2 33 e
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14.

15.

17.

18.

19.

20.

PART I: GENERAL THEORY

Hence (C, 1) is not metrizable. (See Appendix A6, or Theorem 1.32,) Show
also directly that (C, 1) has no countable local base.
() Prove that every continuous linear functional on (C, 7) is of the form

H

S Zcif(xi)

i=1
for some choice of x,, ..., x,in [0, 1] and some c; € €.

(d) Prove that (C, o) contains no convex open sets other than ¢ and C.

(e) Prove that id: (C, o) — (C, ) is not continuous.

Put K = [0, 1] and define & as in Section 1.46. Show that the following three

families of seminorms (where n = (, 1, 2, ...) define the same topology on %, if

D = d/dx:

@ D", = sup { | Df ()] : =20 < x < ).

&) 1D, = J | D"f(x) | dx.

1 /2
© 1D, = U D () |? dx} |
0

Prove that the spaces C(Q) (Section 1.44) do not have the Heine-Borel property.

Prove that the topology of C(Q) does not depend on the particular choice of

{K,}, as long as this sequence satisfies the conditions specified in Section 1.44.

Do the same for C*(Q) (Section 1.46).

In the setting of Section 1.46, prove that f— D?f is a continuous mapping of

C*(Q)) into C*(Q) and also of 2 into &, for every multi-index «.

Prove the proposition concerning addition in the binary system which was used

at the end of the proof of Theorem 1.24.

Suppose M is a dense subspace of a topological vector space X, Y is an F-space,

and A: M — Y is continuous (relative to the topology that M inherits from X)

and linear. Prove that A has a continuous linear extension A: X — Y.
Suggestion: Let V, be balanced neighborhoods of 0 in X such that

V,+ V, < V,., and such that d0, Ax) <2™"if xe M n V,. If xe X and x, €

(x + V) n M, show that {Ax,} is a Cauchy sequence in Y, and define Ax to be

its limit. Show that A is well defined, that Ax = Ax if x € M, and that A is linear

and continuous.

For each real number ¢ and each integer n, define e,(t) = ¢™, and define

fi=e_.,+ ne, (n=1,2,3,..).

Regard these functions as members of I’(—n, n). Let X, be the smallest closed
subspace of [? that contains e,, e,, e,, ..., and let X, be the smallest closed
subspace of I2 that contains f,, f,, 5, .... Show that X, + X, is dense in [* but
not closed. For instance, the vector

isin I? but not in X, + X,. (Compare with Theorem 1.42,)
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22.

23.

24.
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Let V be a neighborhood of 0 in a topological vector space X. Prove that there
is a real continuous function fon X such that f(0) = 0 and f(x) = 1 outside V.
(Thus X is a completely regular topological space.) Suggestion: Let V, be bal-
anced neighborhoods of 0 such that V, + V,cVand V., + V,,, = V,. Con-
struct f as in the proof of Theorem 1.24. Show that fis continuous at 0 and that

| ()~ S < f(x — y).

If fis a complex function defined on the compact interval I = [0, 1] = R, define

- o) =sup {|f)~fW|:|x—y|<d xel,yel}.
If 0 < a < 1, the corresponding Lipschitz space Lip « consists of all ffor which

L1l =1 f(O)] + sup {8 “wy(f): 6 > 0}

is fin:e. $efine

lip & = {fe Lip a: lim 6 *wyf) = 0}.
50

Prove that Lip o is a Banach space and that lip « is a closed subspace of Lip «.
Let X be the vector space of all continuous functions on the open segment (0, 1).
For fe X and r > 0, let V(/, r) consist of all g € X such that | g(x) — f{x)| <r
for all x € (0, 1). Let = be the topology on X that these sets V(f, r) generate.
Show that addition is t-continuous but scalar multiplication is not.

Show that the set W that occurs in the proof of Theorem 1.14 need not be
convex, and that 4 need not be balanced unless U is convex.



