CHAPTER 11
CHAPTER 12

Fourier Series, Integrals, and Transforms
Partial Differential Equations (PDEs)

Fourier analysis concerns periodic phenomena, as they occur quite frequently in
engineering and elsewhere—think of rotating parts of machines, alternating electric
currents, or the motion of planets. Related periodic functions may be complicated. This
situation poses the important practical task of representing these complicated functions in
terms of simple periodic functions, namely, cosines and sines. These representations will
be infinite-series, called Fourier series.

The creation of these series was one of the most path-breaking events in applied
mathematics, and we mention that it also had considerable influence on mathematics as
a whole, on the concept of a function, on integration theory, on convergence theory for
series, and so on (see Ref. [GR7] in App. 1).

Chapter 11 is concerned mainly with Fourier series. However, the underlying ideas can
also be extended to nomperiodic phenomena. This leads to Fourier integrals and
transforms. A common name for the whole area is Fourier analysis.

Chapter 12 deals with the most important partial differential equations (PDEs) of physics
and engineering. This is the area in which Fourier analysis has its most basic applications,
related to boundary and initial value problems of mechanics, heat flow, electrostatics, and
other fields.

LJEAN-BAPTISTE JOSEPH FOURIER (1768-1830), French physicist and mathematician, lived and taught
in Paris, accompanied Napoléon in the Egyptian War, and was later made prefect of Grenoble. The beginnings
on Fourier series can be found in works by Euler and by Daniel Bernoulli, but it was Fourier who employed
them in a systematic and general manner in his main work, Théorie analytique de la chaleur (Analytic Theory
of Heat, Paris, 1822), in which he developed the theory of heat conduction (heat equation; see Sec. 12.5), making
these series a most important tool in applied mathematics.
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Fourier Series, Integrals,

and Transforms

Fourier series (Sec. 11.1) are infinite series designed to represent general periodic
functions in terms of simple ones, namely, cosines and sines. They constitute a very
important tool, in particular in solving problems that involve ODEs and PDEs.

In this chapter we discuss Fourier series and their engineering use from a practical point
of view, in connection with ODEs and with the approximation of periodic functions.
Application to PDEs follows in Chap. 12.

The theory of Fourier series is complicated, but we shall see that the application of these
series is rather simple. Fourier series are in a certain sense more universal than the familiar
Taylor series in calculus because many discontinuous periodic functions of practical interest
can be developed in Fourier series but, of course, do not have Taylor series representations.

In the last sections (11.7-11.9) we consider Fourier integrals and Fourier transforms,
which extend the ideas and techniques of Fourier series to nonperiodic functions and have
basic applications to PDEs (to be shown in the next chapter).

Prerequisite: Elementary integral calculus (needed for Fourier coefficients)
Sections that may be omitted in a shorter course: 11.4-11.9
" References and Answers to Problems: App. 1 Part C, App. 2.

TE:& Fourier Series-
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Fourier series are the basic tool for representing periodic functions, which play an
important role in applications. A function f(x) is called a periodic function if f(x) is
defined for all real x (perhaps except at some points, such as x = =#/2, =37/2, - - - for
tan x) and if there is some positive number p, called a period of f(x), such that

(1) fix+ p) = fx) for all x.

The graph of such a function is obtained by periodic repetition of its graph in any interval
of length p (Fig. 255).

Familiar periodic functions are the cosine and sine functions. Examples of functions
that are not periodic are x, x*, x*, ¢7, cosh x, and In x, to mention just a few.

If f(x) has period p, it also has the period 2p because (1) implies
fx+2p) = f([x + p] + p) = f(x + p) = f(x), etc.; thus for any integern =1,2,3,- -+,

2) fGx + np) = f(x) for all x.
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Fig. 255. Periodic function

Furthermore if f(x) and g(x) have period p, then af(x) + bg(x) with any constants a and
b also has the period p.

Our problem in the first few sections of this chapter will be the representation of various
Junctions f(x) of period 2 in terms of the simple functions

3) 1, cosx, sinx, cos2x, sin2x, - -, cos nx, sinnx, - - -

All these functions have the period 2. They form the so-called trigonometric system. Figure
256 shows the first few of them (except for the constant 1, which is periodic with any period).
The series to be obtained will be a trigonometric series, that is, a series of the form

ag + ay cosx + by sinx + ay cos 2x + by sin 2x +

“) = ay + 2, (a, cosnx + b,, sin nx).

n=1
g, Ay, by, as, by, - - - are constants, called the coefficients of the series. We see that each
term has the period 27r. Hence if the coefficients are such that the series converges, its
sum will be a function of period 2.

It can be shown that if the series on the left side of (4) converges, then inserting
parentheses on the right gives a series that converges and has the same sum as the series
on the left. This justifies the equality in (4).

Now suppose that f(x) is a given function of period 27 and is such that it can be
represented by a series (4), that is, (4) converges and, moreover, has the sum f(x). Then,
using the equality sign, we write

®)

N A Y AN AN AN/
oWzn 0\/;:\/2::0\/\/\/

COoS X cos 2x cos 3x
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sin x sin 2x sin 3x

Fig. 256. Cosine and sine functions having the period 27
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and call (5) the Fourier series of f(x). We shall prove that in this case the coefficiengg
of (5) are the so-called Fourier coefficients of f(x), given by the Euler formulas

- (a) i _ 2‘7:’ _W f(x) halit
®) - (b) ——j f(x) cos nx dx n=12,---
© b,=— f f(x) sin nx dx n=12--

The name “Fourier series” is sometimes also used in the exceptional case that (5) with
coefficients (6) does not converge or does not have the sum f(x)—this may happen but
is merely of theoretical interest. (For Euler see footnote 4 in Sec. 2.5.)

A Basic Example

Before we derive the Euler formulas (6), let us become familiar with the application of
(5) and (6) in the case of an important example. Since your work for other functions will
be quite similar, try to fully understand every detail of the integrations, which because of
the n involved differ somewhat from what you have practiced in calculus. Do not just
routinely use your software, but make observations: How are continuous functions (cosines
and sines) able to represent a given discontinuous function? How does the quality of the
approximation increase if you take more and more terms of the series? Why are the
approximating functions, called the partial sums of the series, always zero at O and 7?7
Why is the factor 1/z (obtained in the integration) important?

Periodic Rectangular Wave (Fig. 257a)

Find the Fourier coefficients of the periodic function f(x) in Fig. 257a. The formula is

—k if —r<x<0
f(X)=[

Y] and  f(x + 27 = f(x).

¥  O0<x<a

Functions of this kind occur as external forces acting on mechanical systems, electromotive forces in electric
circuits, etc. (The value of f(x) at a single point does not affect the integral; hence we can leave f (x) undefined
atx = 0 and x = *m)

Solution. From (6a) we obtain ag = 0. This can also be seen without integration, since the area under the
curve of f(x) between —r and 7 is zero. From (6b),

- 0 T
1 1
ay = — f f(x) cos nx dx = P [f (—k) cosnxdx + _[] k cos nxdx]

1 sin nx sinnx | ™
= — | —k +k =0
i n —r n 0
because sinnx = 0 at —7, 0, and wforalln = 1,2, - - .. Similarly, from (6c) we obtain

ar 0 T
1 1
b, = :r- J' flx) sinnx dx = ; |:f {(—k)sinnx dx + J’o k sin nx dx:!

-7
]
0

1 [ cos nx |°
= — k —
a n

cos nx

— n
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(a) The given function f(x) (Periodic rectangular wave)
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(b) The first three partial sums of the corresponding Fourier series
Fig. 257. Eample1

Since cos (—a) = cos « and cos 0 = 1, this yields
k 2k
by = — [cos O — cos (—nm) — cosnm + cos 0] = — (I — cos nm).
nar naT

Now, cos 7= ~1,cos 27 = 1, cos 37 = —1, etc.; in general,

—1 for odd n, 2 for odd n,

cosmr={ and thus l—oosmr={

1 for evenn, 0 for even n.

Hence the Fourier coefficients b,, of our function are

4k 4k 4k
b1=‘;, b2=0, 53:_3-_;, b‘i:_(]: b5=?",
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Since the a,, are zero, the Fourier series of f(x) is

8 # (gnx+ & sinde+ - sinsx+
(8) - sinx + sin3x + sin 5x .
The partial sums are
3
4k 4k f | 1.
Sy = —sinx, Sy = — lsinx + - sin3x}, ete.,
T i 3

Their graphs in Fig. 257 seem to indicate that the series is convergent and has the sum f(x), the given function_
We notice that at x = 0 and x = 7, the points of discontinuity of f(x), all partial sums have the value zero, the
arithmetic mean of the limits —k and k of our function, at these points.

Furthermore, assuming that f(x) is the sum of the series and setting x = /2, we have

T 4k 1 1
f(5)=k=?(l‘§+§*+“')-

1_

thus
1
3

This is 2 famous result obtained by Leibniz in 1673 from geometric considerations. It illustrates that the values
of various series with constant terms can be obtained by evaluating Fourier series at specific points. B

Derivation of the Euler Formulas (6)

The key to the Euler formulas (6) is the orthogonality of (3), a concept of basic importance,
as follows.

Orthogonality of the Trigonometric System (3)

The trigonomeiric system (3) is orthogonal on the interval —m =x =T (hence also
on 0 = x = 27 or any other interval of length 27 because of periodicity); that is,
the integral of the product of any two functions in (3) over that interval is 0, so that
for any integers n and m,

(a) cos nx cos mx dx = 0 (n #+ m)
) ® [ sinnxsinmedc=0 (n # m)
(c) j sin nx cos mx dx = 0 (n # morn = m).

This follows simply by transforming the integrands trigonometrically from products into
sums. In (9a) and (9b), by (11) in App. A3.1,

j cosnxcosrnxdx=5f cos(n + m)xdx + EJ- cos (n — m)x dx

J

L 1 (™
sinnxsinmxdx=3f cos(n—m)xdx—aj cos (n + m)x dx.




Since m # n (integer!), the integrals on the right are all 0. Similarly, in (9¢), for all integer
m and n (without exception; do you see why?)

J

mw

1 1
Sinnxcosmxdx-:-if sin (n + m)x dx + Ef sin(n — m)xdx =0 + 0.

-

T

Application of Theorem 1 to the Fourier Series (5)
We prove (6a). Integrating on both sides of (5) from —r to , we get

f fx) dx =f [ao + >, (a, cosnx + b, sinnx)] dx.

-7 n=1

We now assume that termwise integration is allowed. (We shall say in the proof of

Theorem 2 when this is true.) Then we obtain
i foydr=a, [ dx+ Y (anf cos nx dx + b, [ sinnxdx).
- - n=1 —a —-r

The first term on the right equals 27ray. Integration shows that all the other integrals are
0. Hence division by 27 gives (6a).

We prove (6b). Multiplying (5) on both sides by cos mx with any fixed positive integer
m and integrating from — 7 to 7, we have

[vo]

10) [ £0x) cosmx dx = i [ao + (a, cos nx + b, sin nx)] cos mx dx.

n=1

We now integrate term by term. Then on the right we obtain an integral of g, cos mx,
which is 0; an integral of a,, cos nx cos mx, which is a,,, 7 for n = m and 0 for n # m by
(9a); and an integral of b, sin nx cos mx, which is 0 for all z and m by (9c). Hence the
right side of (10) equals a,, 7. Division by 7 gives (6b) (with m instead of 7).

We finally prove (6¢). Multiplying (5) on both sides by sin mx with any fixed positive
integer m and integrating from —ar to 7, we get

(11) f f(x)s'mmxdx=f [a0+2(ancosnx+bnsinnx):| sin mx dx.

n=1

Integrating term by term, we obtain on the right an integral of aq sin mx, which is 0; an
integral of a,, cos nx sin mx, which is 0 by (9¢); and an integral of b,, sin nx sin mx, which
is by, mif n = m and 0 if n # m, by (9b). This implies (6¢) (with n denoted by m). This
completes the proof of the Euler formulas (6) for the Fourier coefficients. B8

[—
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| Convergence and Sum of a Fourier Series

The class of functions that can be represented by Fourier series is surprisingly large apg
general. Sufficient conditions valid in most applications are as follows.

k-1

A THEOREM: 2 Representation by a Fourier Series

Let f(x) be periodic. with period 21 and piecewise CONtinuous (see Sec. 6.1) in the
interval —ir = x = . Furthermore, let f(x) have a left-hand derivative and q
right-hand derivative at each point of that interval. Then the Fourier series (3) of
f(x) [with coefficients (6)] converges. Iis sum is f (x), except at points xo where f(x)
is discontinuous. There the sum of the series is the average of the left- and
right-hand limits® of f(x) at xo.

PROCF We prove convergence in Theorem 2. We prove convergénce for a continuous function
f(x) having continuous first and second derivatives. Integrating (6b) by parts, we obtain.

m

1
a, = — J‘ f(x) cos nx dx =

w

f(x) sin nx

] o
= ——j £ (x) sin nx dx.
nT Y

-

The first term on the right is zero. Another integration by parts gives

T

B f'(x) cos nx

1 w
> - 5 j £"(x) cos nx dx.
n'w nem g

-

The first term on the right is zero because of the periodicity and continuity of ' (x). Since
f" is continuous in the interval of integration, we have

'@l <M

for an appropriate constant M. Furthermore, |cos nx| = 1. It follows that

1 o 1 - 2M
la,) = —— f (x) cos nx dx <——2—_[de=—2.
nea |-y I E— n
flx)
f(1-0) _—
2The left-hand limit of f(x) at xo is defined as the limit of f(x) as x approaches xo from the left
1 / and is commonly denoted by f(xg — 0). Thus
_ ] f+0) flxg — 0) = }If_,mo f(xg — k) as h — 0 through positive values.
4] 1 x
Fig. 258. Left- and The right-hand limit is denoted by f(xp + 0) and
right-hand limits . "
flxg + 0) = AJEO f(xp + h) as h — 0 through positive values.
fi—0) =1,
i1+ 0) = 1 The left- and right-hand derivatives of f(x) at xo are defined as the limits of
)
of the function Flzo =~ B) :hf{xo -0 St h) - fo+0)
x* ifx <1 -
flx) = . respectively, as h — 0 through positive values. Of course if f(x) is continuous at xg, the last term 1
x/2 both numerators is simply f(xp).



e EXAMPLER

1. (Calculus review) Review integration techniques for
integrals as they are likely to arise from the Euler
formulas, for instance, definite integrals of x cos nx,
x® sin nx, e~ cos nx, efc. =T

FUNDAMENTAL PERIOD
The fundamental period is the smallest positive period. Find

it for

2. cosx, sinz,

3. cos nx, sin nx,

27nx
k k]

cos

4. Show that f = const is periodic with any period but 13-24
has no fundamental period.

cos 2x, sin2x, cos 7x, sin Tx,
cos 27x, sin 27x

Fourier Series - B 485

Similarly, |b,| < 2 Min?® for all n. Hence the absolute value of each term of the Fourier
series of f(x) is at most equal to the corresponding term of the series

1 1 1 1
lag| + 2M 1+1+52—+§5+§2_+§2__+...

which is convergent. Hence that Fourier series converges and the proof is complete.
(Readers already familiar with uniform convergence will see that, by the Weierstrass test
mn Sec. 15.5, under our present assumptions the Fourier series converges uniformly, and
our derivation of (6) by integrating term by term is then justified by Theorem 3 of
Sec. 15.5.)

The proof of convergence in the case of a piecewise continuous function f(x) and the

proof that under the assumptions in the theorem the Fourier series (5) with coefficients
(6) represents f(x) are substantially more complicated; see, for instance, Ref. [C12]. E

Convergence at a Jump as Indicated in Theorem 2

The rectangular wave in Example 1 has a jump at x = 0. Its left-hand limit there is —/ and its right-hand limit

is k (Fig. 257). Hence the average of these limits is 0. The Fourier series (8) of the wave does indeed converge
to this value when x = 0 because then all its terms are 0. Similarly for the other jumps. This is in agreement
with Theorem 2. B

Summary. A Fourier series of a given function f(x) of period 247 is a series of the form
(5) with coefficients given by the Euler formulas (6). Theorem 2 gives conditions that are
sufficient for this series to converge and at each x to have the value f(x), except at
discontinuities of f(x), where the series equals the arithmetic mean of the left-hand and
right-hand limits of f(x) at that point.

6. (Change of scale) If f(x) has period p, show that f(ax),
a # 0, and f(x/b), b # 0, are periodic functions of x
of periods p/a and bp, respectively. Give examples.

GRAPHS OF 27-PERIODIC FUNCTIONS
Sketch or graph f(x), of period 247, which for —7 < x < 7
is given as follows.
7. f(x) = x
9. f(x) = m — |

8. f(x) = e
10. F(x) = |sin 2x]

{-—13 if —7<x<0
11. f(x) =
cos 2TE gy 2T 2 if 0<x<a
k-’ k
1 if —mr<x<0
2mnx 12.f(x}=[
k cosix if 0<x<n

FOURIER SERIES
Showing the details of your work, find the Fourier series

[ —

5.If f(x) and g(x) have period p, show that
h(x) = af(x) + bg(x) (a, b, constant) has the period p.
Thus all functions of period p form a vector space.

of the given f(x), which is assumed to have the period 2.
Sketch or graph the partial sums up to that including
cos 5x and sin 5x. :




14. X

15. -

16.

4

]
M=

‘r-,a -

17. 7 ’_

18. 7z}

19. Tk

20. 1

0 1
-7 =7
2 2
L
2L f(x) = X2 (—w < x < %)
22. f(x) = x> (0 < x < 27)
2 if v <x<is

i i fm<x<ix

23. f(x) = [
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24.

—4x if —a<x<0

fix) = [

4 if 0<x< &

25. (Discontinuities) Verify the last statement in Theorer

26.

27.

28.

29,

30.

2 for the discontinuities of f(x) in Prob. 13.

CAS EXPERIMENT. Graphing. Write a program for
graphing partial sums of the following series. Guegg
from the graph what f(x) the series may Tepresent.
Confirm or disprove your guess by using the Eyley
formulas.

(@) 2(sinx + §sin3x + Lsinsx + - - )

— 2(§sin2x + fsindx + Lsin6x - - .
(b) J-+i~(¢-:0:uc—trlccnsSx—F-*—cosﬁx+---
2T 3 5 35 )

(c) 377 + 4(cosx — § cos 2x +  cos 3x — & cos 4x
+ =)

CAS EXPERIMENT. Order of Fourier Coefficients,
The order seems to be 1/n if f is discontinous, and 1/n2
if f is continuous but ' = df/dx is discontinuous, 1/
if f and ' are continuous but " is discontinuous, etc.
Try to verify this for examples. Try to prove it by
integrating the Euler formulas by parts. What is the
practical significance of this?

PROJECT. Euler Formulas in Terms of Jumps
Without Integration. Show that for a function whose
third derivative is identically zero,

1 1
dp = — [_ Z Js sinnxg — — 2]; COs nxg
n

nar

]' M .

+ n—z- 215 §10 71X

1 _ g
bn_;; Ehcoﬁﬂxs“gzjssmﬂ%

1

- =5 Ejgcos nxS:I
n

where n = 1, 2, - - - and we sum over all the jumps j,,
-1 L

JoJs Of f, f', f', respectively, located at x,.

Apply the formulas in Project 28 to the function in
Prob. 21 and compare the results.

CAS EXPERIMENT. Orthogonality. Integrate and
graph the integral of the product cos mx cos nx (with
various integer m and n of your choice) from —a to a
as a function of a and conclude orthogonality of cos
mx and cos nx (m # n) for a = r from the graph. For
what m and n will you get orthogonality for a = /2,
73, 7/47 Other a? Extend the experiment to cos mx
sin nx and sin mx sin nx.
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;]'] 2 Functions of Any Period p = 2L

j ) The functions considered so far had period 27, for the simplicity of the formulas. OFf
course, periodic functidns in applications will generally have other periods. However, we
i now show that the transition from period p = 27 to a period 2L is quite simple. The
I notation p = 2L is practical because L will be the length of a violin string (Sec. 12.2) or
- the length of a rod in heat conduction (Sec. 12.5), and so on.

The idea is simply to find and use a change of scale that gives from a function g() of
| ) period 27 a function of period 2L. Now from (5) and (6) in the last section with g(v)
instead of f(x) we have the Fourier series

‘. €)) gW) = ag + >, (a, cosnv + b, sin nv)

n=1

with coefficients

- L [ ewa
a0 = >~ _ v
l aw
@ a, = — f g(v) cos nv dv
IJT =-ar

1 ™
b, = — f g(v) sin nv dv.
T e

We can now write the change of scale as v = kx with k such that the old period v = 27
gives for the new variable x the new period x = 2L. Thus, 277 = k2L. Hence k = #/L and

3) v = kx = m/L.

This implies dv = (/L) dx, which upon substitution into (2) cancels 1/2r and 1/7 and
gives instead the factors 1/2L and 1/L. Writing

“ &) = f(x),

we thus obtain from (1) the Fourier series of the function f(x) of period 27,

®

(a)
(6) (b) n=1,2,
(c) n=1,2,
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Just as in Sec. 11.1, we continue to call (5) with any coefficients a trigonometric series,
And we can integrate from O to 2L or over any other interval of length p = 2L.

Periodic Rectangular Wave
Find the Fourier series of the function (Fig. 259)

0 if -2<x<-1
fy =4k if ~1<x< 1 p=2L=4 L=2
0 if " 1<x< 2

Solution. From (6a) we obtain ag = k/2 (verify!). From (6b) we obtain

2 1
1 narx 1 nwx 2k . nw
aﬂ':E 2f(x)COSde=5 kCOSde:};S[“T-
- -1

Thus a, = 0if n is even and

a, = 2kinw if n=1529---, ay = ~2kfnmw if n=3,711,---.
From (6¢) we find that b, = O forn =1, 2, - - . Hence the Fourier series is
_ k 2k T 1 ;3_3 +l S . —
flx) = 2 - cos 2; 3 cos 2 x 5 cos 3 x . =
flx)
E
oI
-2 -1 0 1 2 £

Fig. 259. Example 1

Periodic Rectangular Wave

Find the Fourier series of the function (Fig. 260)

—k if —2<x<0
J‘(x)=[ p=2L=4, L=2.
Eoif 0<x<?2

Solution. ag = 0 from (62). From (6b), with I/L = 1/2,

1 0
nwx 3
an——il:‘[_z(—k)cos-z—-dx+.£kc057dx:|
oz om0 2% onm B
=5 mrsm2_z mrsm20*’

so that the Fourier series has no cosine terms. From (6c),

b 1 2k nmx |° 2k nax |2
= = | — — — — cos —
n= o | aw 72 —p nw %7 o
k Aleinar if n=1,3,---
= — (1 —cosnmw —cosnwm + 1) =
nw 0 if n=2,4,---.
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Hence the Fourier series of f(x) is

_ 4 _’ﬂ'+l_3“ﬂ' +l,57r+
f[x)-—q'_ 51n2x 3smzx 5511'12x .

It is interesting that we 8ould have derived this from (8) in Sec. 11.1, namely, by the scale change (3). Indeed,
writing v instead of x, we have in (8), Sec. 11.1,

4k 1 1
— |sinv + — sin3v + — sin50 + ---].
T 3 5

Since the period 277 in v corresponds to 2L = 4, we have k = @/L = /2 and v = kx = m/2 in (3); hence we

obtain the Fourier series of f(x), as before. E
flx)
— R
u(t)
) 5 .
— L /\\l v/-\
-zlo 0 wlw ¢
Fig. 260. Example 2 Fig. 261. Half-wave rectifier
sENAMPLEETS  Half-Wave Rectifier

A sinusoidal voltage E sin w?, where t is time, is passed through a half-wave rectifier that clips the negative
portion of the wave (Fig. 261). Find the Fourier series of the resulting periodic function

0 if —L<t<0, 2ar -
u(t) = p=2L=—, L= —,
E sin wr  if 0<:<L @ @

Solution. Since x = 0 when —L < ¢ < 0, we obtain from (6a), with  instead of x,
e
- f Esinwtdt = —
%0 27 Jy, T
and from (6b), by using formula (11) in App. A3.1 with x = wf and y = not,

] wfe
w - . wE . .
a, = — Esin wtcosnwt dt = — [sin (1 + rywt + sin (1 — n)wi] dt.
ki o 29 )

If n = 1, the integral on the right is zero, and if n = 2, 3, - - -, we readily obtain

_ WE | cos(l + nwt _ cos(l = nwt wles
“” o (1 +ne I-me o

E (—cos(l+n)1'r+1 N “cos(l—n)ar+1)

27 1+n 1-n

If n is odd, this is equal to zero, and for even n we have

_E 2 . 2 a 2E —24,-e0
T 9x \1+n l-n)  (—-1n+Dw (n=24, )

In a similar fashion we find from (6¢) that by = E/2 and by =0forn =2,3, ---. Consequently,

- —£+E' 2 (1 2r+1 dot + B
u(f) = - > sin w? - 13 cos 2w 375 cos 4w .
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FOURIER SERIES FOR PERIOD p = 2L 14. Obtain the series in Prob. 7 from that in Prob. 8.
Find the Fourier series of the function f), of period p = 2L, 15. Obtain the series in Prob. 6 from that in Prob. 5,

and sketch or graph the first three partial sums. (Show the 16, Obtain the series in Prob. 3 from that in Prob. 21 of
details of your work.) Problem Set 11.1.

i
i

L fo) =—-1(-2<x<0),f0)=10<x<2),p=4 .
2 fo)=0(-2<x<0)f@=4Q@<x<2p=4 1 UMEPODIJONBL L i
3. f) =2 (-l<x<1), p=2 273 116 o iz ‘12
4.f(x)=7rx3!2 (-1 <x<1), p=2 18. Showthat 1 + 3 +g5 -+ + -~ =57
5 f(x) =sinmx (0<x<1), p=1 19. CAS PROJECT. Fourier Series of 2L-Periodic §
6. f(x) =cosmx (-i<zxz<d), p=1 Functions. (a) ‘Write_a program for obtaining partial ]
7. &) = I (_1' <x<1), p=2 sums of a Fourier series (1). |
8. f(x) = [1 +xif-1<x<0 b =2 1)) Apgly the program to Probs. 2-5, gapﬁngmeﬁrst E
ke 1—xif 0<x<1, few partial sums of each of the four series on common
9. ) =1—x2 (-1<x<1), p=2 axes. ChoosF the first t?.ve or more partial sums until
10. f@) =0(—2<x<0),fx)=x(O0<x<2),p=4 they approximate the given funcfion reasonably well. I
| 1L fa) = —x (~1<2<0), f@=x @<x<1), Compare and comment.
fy=1 (1<x<3), p=4 ' 20. CAS EXPERIMENT. Gibbs Phenomenon. The
. _ ) . ) partial sums s,,(x) of a Fourier series show oscillations
12. (Rec'tlﬁer) F‘“d_thc Fourier series of the function near a discontinuity point. These oscillations do not
obtained by passing the voltage v(t) = Vo cos 100 disappear as n increases but instead become sharp
through a half-wave rectifier. “spikes.” They were explained mathematically by
13. Show that the familiar identities J. W. Gibbs®. Graph s,,(x) in Prob. 10. When n = 50,
cos®x = % cos x + § cos 3x and say, you will see those oscillations quite distinctly.
sin® x = & sin x — § sin 3x can be interpreted as Consider other Fourier series of your choice in a similar
Fourier series expansions. Develop cos® x. way. Compare.

=113 Even and Odd Functions.
Half-Range Expansions

The function in Example 1, Sec. 11.2, is even, and its Fourier series has only cosine
terms. The function in Example 2, Sec. 11.2, is odd, and its Fourier series has only sine
terms.
Recall that g is even if g(—x) = g(x), so that its graph is symmetric with respect to the
vertical axis (Fig. 262). A function & is odd if h(—x) = —h(x) (Fig. 263).
L Now the cosine terms in the Fourier series (5), Sec. 11.2, are even and the sine terms
' are odd. So it should not be a surprise that an even function is given by a series of
cosine terms and an odd function by a series of sine terms. Indeed, the following holds.

3J0SIAH WILLARD GIBBS (1839-1903), American mathematician, professor of mathematical physics at
Yale from 1871 on, one of the founders of vector calculus [another being Q. Heaviside (see Sec. 6.1)]
mathematical thermodynamics, and statistical mechanics. His work was of great importance to the development
of mathematical physics.
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Fig. 262. Even function Fig. 263. Odd function

=T HEGREM=T Fourier Cosine Series, Fourier Sine Series

The Fourier series of an even function of period 2L is a “Fourier cosine series”

1) (f even)
with coefficients (note: integration from 0 to L only!)
1 fL 2 * narx
@ @=7|f0d =) f@es T d  n=12-

The Fourier series of an odd function of period 2L is a “Fourier sine series”

3) (f odd)

with coefficients

=2 (" sn " 4
€ b, = 2 Of(x) sin 3 dx.

PROOF Since the definite integral of a function gives the area under the curve of the function
between the limits of integration, we have

L L

f gx)dx =2 f g(x) dx for even g
-L 0
L

| hxyax=o0 for odd h
-L

as is obvious from the graphs of g and 4. (Give a formal proof.) Now let f be even. Then
(6a), Sec. 11.2, gives aq in (2). Also, the integrand in (6b), Sec. 11.2, is even (a product
of even functions is even), so that (6b) gives a,, in (2). Furthermore, the integrand in (6c),
Sec. 11.2, is the even f times the odd sine, so that the integrand (the product) is odd, the
integral is zero, and there are no sine terms in (1).
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Similarly, if f is odd, the integrals for a, and a, in (6a) and (6b), Sec. 11.2, are z¢p,
f times the sine in (6¢) is even, (6c) implies (4), and there are no cosine terms in (3), é

The Case of Period 27. If L = a7, then f(x) = gy + E a, cos nx (f even) wig,

coefficients * n=1
) 1 " 2 "
@) w=—[f@dn  a== [ feosnrds, n=1,2
™ ‘o 7 ‘o
and f(x) = 2 b,, sin nx (f odd) with coefficients
n=1
2 .
(4 b= — [ fG) sinnx dr, n=12,-.
T -0

For instance, f(x) in Example 1, Sec. 11.1,'is odd and is represented by ﬁFourier sine
series.

Further simplifications result from the following property, whose very simple proof is
left to the student.

Sum and Scalar Multiple
The Fourier coefficients of a sum fy + fo are the sums of the cowespanding Fourier
coefficients of f1 and fs.

The Fourier coefficients of cf are ¢ times the corresponding Fourier coefficients

of f.

Rectangular Pulse

The function f*(x) in Fig. 264 is the sum of the function f(x) in Example 1 of Sec 11.1 and the constant k.
Hence, from that example and Theorem 2 we conclude that

4 f 1, 1
f¥x) =k + — |sinx+ — sin3x+ — sin5x 4+ ---j. &
T 3 5

Half-Wave Rectifier
The function u(f) in Example 3 of Sec. 11.2 has a Fourier cosine series plus a single term v() = (E/2) sin wt.

We conclude from this and Theorem 2 that u(f) — v(f) must be an even function. Verify this graphically. (Sec
Fig. 265.)

fHx) 0.5+
2k

- 0 7 2% 3r An x - 0 Tt

Fig. 264. Example 1 Fig. 265. u(t) —v(f)withE =10 =1

f

7




=EXAMBEES=3 Sawtooth Wave
Find the Fourier series of the function (Fig. 266)

f=x+a7 f —w<x<w and flx + 2) = F7(x).
flx)
-7 b x
(a) The function f(x)

(b) Partial sums Sy, Sy, 83, Sgp
Fig. 266. Example 3

Solution. Wehave f = f; + fo, where f; = x and fy = 7. The Fourier coefficients of f, are zero, except
for the first one (the constant term), which is . Hence, by Theorem 2, the Fourier coefficients a,,, b,, are those
of f;. except for ag, which is 7. Since fyisodd, 2, =0forrn=1,2,--+, and

o w

2 2
b, = P Lfl[x)si.nnxdx= P J;xsfnnxdx.

Integrating by parts, we obtain

2 [——xcosnx
by=— | ——

- 1 (" 2
+ cosnxdx | = — — COSnT.
T n n

0 n Jg

Hence by = 2, by = —2/2, by = 2/3, by = —2/4, - - -, and the Fourier series of f(x) is

. 1. .
f(x)=1r+2(smx—'ism2x+gsm:h._.{,...)_ =

Half-Range Expansions

Half-range expansions are Fourier series. The idea is simple and useful. Figure 267
explains it. We want to represent f(x) in Fig. 267a by a Fourier series, where f(x) may
be the shape of a distorted violin string or the temperature in a metal bar of length L, for
example. (Corresponding problems will be discussed in Chap. 12.) Now comes the idea.




L =
. (a) The given function f(x)
/\/\‘/fl(ib’\/\/\

; —L L x

(b) f(x) extended as an even periodic function of ;ﬁeriod 2L

. /N - b‘\ AN
< I~ I~ E

(¢) f(x) extended as an odd periodic function of period 2L

Fig. 267. (a) Function f(x) given on an interval 0 = x =L

(b) Even extension to the full “range” (interval) —L = x = L (heavy curve)
and the periodic extension of period 2L to the x-axis

(c) Odd extension to —L = x = L (heavy curve) and the periodic extension
of period 2L to the x-axis

s L L L A R S

We could extend f(x) as a function of period L and develop the extended function into a
Fourier series. But this series would in general contain both cosine and sine terms, We
can do better and get simpler series. Indeed, for our given f we can calculate Fourier
coefficients from (2) or from (4) in Theorem 1. And we have a choice and can take what
seems more practical. If we use (2), we get (1). This is the even periodic extension f,
of f in Fig. 267b. If we choose (4) instead, we get (3), the odd periodic extension f; of
f in Fig. 267c.

Both extensions have period 2L. This motivates the name half-range expansions: f is
given (and of physical interest) only on half the range, half the.interval of periodicity of .
length 2L. . ' o -

Let us illustrate these ideas with an example that we shall also need in Chap. 12.

T

(antiEs el

SENANGPEES4  “Triangle” and Its Half-Range Expansions

Find the two half-range expansions of the function (Fig. 268) .

k
2k . L
r/|\) ?x if (]<x{-i~

0 Li2 L = flx) = % L
Fig. 268. The given A (L—-x if 5 <x< L.

function in Example 4

Solution. (a) Even periodic extension. From (2) we obtain

1 Eme%jLL_ Ll E
% =7 Lox Luz( x) =5

L/2 L
S B e T 2
@=7 |7 oxcosLx T m( x) cos 7 x . -

7=
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We consider g,,. For the first integral we obtain by integration by parts
/2

na Ix | nw |M? L . onw
xcos —xdx= — sin —x - — sin — xdx
o L nw L 0 nw Jg L
s B I nw N 2 n
= opg S __nz = cos == 1].
Similarly, for the second integral we obtain
L - L
’ E L nr

+ — sin — x dx
2 nw Jpyg L

~ (o L L . nw 2 nar
= - > | sin 5.7 \cosnm—cos == ).

‘We insert these two results into the formula for a,,. The sine terms cancel and so does a factor L?. This gives

L
Ua{;—x)cos %xdx= E(wa)sin nTx

4k ) nar .
ay, = 22 cos — cos nr .

Thus,
ag = —16k/(2%7%), ag = —16k/(6> ), ayp = —16K/(10%7%), - - -
and a, = 0if n # 2, 6, 10, 14, - - - . Hence the first half-range expansion of f(x) is (Fig. 2692)
L 16k (1 2 . 1 6 N
flx) = 5 =\ 2 cos 2 x &2 cos 7 x .

This Fourier cosine series represents the even periodic extension of the given function f(x), of period 2L.
(b) Odd periodic extension. Similarly, from (4) we obfain
5 P .
= ——— sin —
( ) T ﬂ.zﬂ'z 2
Hence the other half-range expansion of f(x) is (Fig. 269b)
8k i o7 1 . 3= 1 . 5w
fx) = ;‘5 ?Sm-zx— ?mn?x+ ggsm —L-'x—+--- .

This series represents the odd periodic extension of f(x), of period 2L.
Basic applications of these results will be shown in Secs. 12.3 and 12.5. B

-L 0 L x

{a) Even extension

N
_L\/U L\/ x
(b) Odd extension
- Fig. 269. Periodic extensions of f(x) in Example 4
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f 9| EVEN AND ODD FUNCTIONS 12. f(x) = 2x|x] (-1 <x<1)
| ‘e the following functions even, odd, or neither even nor x if —m/2 < x < 7/2
Ddd? a2 13. f(x) - i /2 < < 32
— oy x 2
|x| x% sinnx, x + x2, e Inx, x cosh x e _l TT
sm(x2) sin® x, x sinh x, [x], €™, xe®, tan 2x, x/(1 + x%) e if —m <x<0
14. f(x) =
Arc the following functions, which are assumed to be re® if 0 <x< o
e e . . >
| rodic of pe;;od 247, even, odd, or neither even nor odd? 2 if -2 < x<0
i) =x (—m<x<m . 15. f(x) =
4. f(x) = x* (=72 < x < 37/2) 0 if 0 =x<2
) =e (mm<x<m 1 — 3x| if —2<x<2
o = 23 g — 16. f(x) = { (p=28
flx) = x smxa( 7 < x< ) 0 " Dy <6 )
7. fx) = xlx| = x® (—w<x<m) ) .
i — 1 3 _ 5 ,_ _ : _
W=l xd e Cr<x<m o [1735]  HALF-RANGE EXPANSIONS
v f) =11 +x2)if —7<x<0, fx) = —1/(1 + x9 - . . . L. .
0 < x < o Find (a) the Fourier cosine series, (b) the Fourier sine series,

i Sketch f(x) and its two periodic extensions. (Show the
1 . PROJECT. Even and Odd Functions. (a) Are the details of your work.) !

following expressions even or odd? Sums and products 17. f(x) =1 (0 < x < ?2) E

. of even functions and of odd functions. Products of — i ’

even times odd functions. Absolute values of odd 18. fx) =x (0 <x=<3)

functions. f(x) + f(—x) and f(x) — f(—x) for arbitrary B f@)=2-x (0<x<2)

<x< E
A 20. f(x) = {0 Oy E
(b) Write €%, 1/(1 — ), sin (x + k), cosh (x + %) as 1 2<x<4)
sums of an even and an odd function. 1 0O<x<1)
(¢) Find all functions that are both even and odd. 21. f(x) = { i
(d) Is cos®x even or odd? sin® x? Find the Fourier 2 A<x<2)
series of these functions. Do you recognize familiar x (0 <x < 7/2)
identities? 22. f(x) = E
‘ : w2 (w2 < x < )
';.‘—16| FOURIER SERIES OF EVEN AND ODD 23. f(x) =x (O<x<UL) i
FUNCTIONS 24. f(x) = x2 (0O<x<L) E
1 the given function even or odd? Find its Fourier series. 25. f(x) = 7 —x O<x< m
Sketch or graph the function and some partial sums. (Show
the details of your work.) 26. Illustrate the formulas in the proof of Theorem 1 with E
1. f@=a—|x (—-m<x<m examples. Prove the formulas.
1.4 Complex Fourier Series. Optional :
; E
In this optional section we show that the Fourier series
§))] fx) = ag + 2 (a,, cos nx + b,, sin nx) E
n=1
can be written in complex form, which sometimes simplifies calculations (see Example 1, E

on page 498). This complex form can be obtained because in complex, the exponential
function €* and cos ¢ and sin ¢ are related by the basic Euler formula (see (11) in Sec. 2.2)

_ {

2) ¢t = cost + i sin t. Thus e ™ = cost —isint.
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Conversely, by adding and subﬁ'acting these two formulas, we obtain

3) () cost= %(e“ + 7, (b) sint= *21—'(3@‘t — %),
L

From (3), using 1/ = —i in sin ¢ and setting ¢ = nx in both formulas, we get

1 . . 1 . .
a,, cos nx + b, sin nx = £y a,(e™ + ") + % b (e™ — e
i

1 . 1 .
= 5 (a, — ib)e™ + > (a, + iby)e™ """

We insert this into (1). Writing g = cg, 3(@n — iby) = ¢y, and  3(a, + ib,) = ky,
we get from (1) -

@) F&x) = co + Dy (€ €™ + ke ™).

n=1

The coefficients ¢y, g, - * * , and ky, ks, * * < are obtained from (6b), (6¢) in Sec. 11.1 and
then (2) above with ¢ = nx, ' :

T

j f(x)(cos nx — i sin nx) dx = L j Fx) e~ di
27 4

1 .
ang(an—lbﬂ):*z“; .

&)
k—“l‘ + b __l__J-w I + i si a.’x—“wl*—J‘17 .
s (a, n) = o _wf(x)(cosnx i sin nx) dx = 2 _wf(x)e .

Finally, we can combine (5) into a single formula by the trick of writing k, = ¢_,. Then .

(4), (5), and ¢y = ag in (6a) of Sec. 11.1 give (summation from —oo!)

(6)

This is the so-called complex form of the Fourier series or, more briefly, the complex
Fourier series, of f(x). The c,, are called the complex Fourier coefficients of f(x).
For a function of period 2L our reasoning gives the complex Fourier series

(7)
n=0,%1,%2 -
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Complex Fourier Series

Find the complex Fourier series of f(x) = ¢” if —# < x < 7 and f(x + 2) = f(x) and obtain from it the st
Fourier series.

Solution. Since sin nw = 0 for integer n, we have
b

'™ = cos nar £ i sinnw = cos nar = (—1)™.

. With this we obtain from (6) by integration

— ! . z_—inz _ 1 1 :z:-im:w — 1
“aT om ) ¢ T 1-in oe—w 2w 1—in

-7

(e™ — & T(~=1"

On the right,

1 1+in 1+ in

= = d 7 —¢"" = 2sinh .
I—in  (Q—ind+in) 1+n2 an e e i

Hence the complex Fourier series is

sinh 7 3 I +in .
(8) &= — > (=D s e&nE (—m<x<m.
n=—00

From this let us derive the real Fourier series. Using (2) with ¢ = nx and i° = —1, we have in (8)
(1 + in)e*™® = (1 + in)(cos nx + i sin nx) = (cos nx — n sin nx) + i(n cos nx + sin nx).

Now (B) also has a corresponding term with —n instead of n. Since cos (—nx) = cos nx and
sin (—nx) = —sin nx, we obtain in this term

(1 — in)e”™F = (1 — in)(cos nx — i sin nx) = (cos nx — n sin nx) — i{n cos nx + sin nx).
If we add these two expressions, the imaginary parts cancel. Hence their sum is

2(cos nx — n sin nx), n=1,2---

" Forn =0 we get 1 (not 2) because there is only one term. Hence the real Fourier series is

9 s Zsmhw il 1 inx) + (cos 2x — 2 sin 2x) — +
9) e = 2 T+ 12 cosx — sin x 112 cos sin 2x) .
In Fig; 270 the poor approximation near the jumps at = is a case of the Gibbs phenomenon (see CAS
Experiment 20 in Problem Set 11.2). &
-

Fig. 270. Partial sum of (9), terms from n = 0 to 50
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1. (Calculus review) Review complex numbers. 10.
2. (Even and odd functions) Show that the complex 11,

Fourier coefficients of an even function are real and 12
w  those of an odd function are pure imaginary.
3, (Fourier coefficients) Show that
Gy = Cg» A, = Cp + Cy, by = i(cy, — Cc_p). 14
« 4, Verify the calculations in Example 1.
5. Find further terms in (9) and graph partial sums with
your CAS. '
6. Obtain the real series in Example 1 directly from the
Euler formulas in Sec. 11.

7-13| COMPLEX FOURIER SERIES
Find the complex Fourier series of the following functions.
(Show the details of your work.)
7. fx) = —1if—7m<x<0,fx)=1if0<x<m
8. Convert the series in Prob. 7 to real form.
9. fx)=x (w7 <x<m)

13.

-11.5 Forced Oscillations

492

Convert the series in Prob. 9 to real form.
fx) =x% (—oa<x<mn)
. Convert the series in Prob. 11 to real form.

fx) =x (0<x<2m

. PROJECT. Complex Fourier Coefficients. It is very

interesting that the c,, in (6) can be derived directly by
a method similar to that for a,, and b,, in Sec. 11.1. For
this, multiply the series in (6) by e ™™ with fixed
integer m, and integrate termwise from —a to 7 on
both sides (allowed, for instance, in the case of uniform
convergence) to get
J- f(x)e—im:c dx = 2 Cn f ei(n-——m)x dx.

Show that the integral on the right equals 27 when
n = m and 0 when n # m [use (3b)], so that you get
the coefficient formula in (6).

Fourier series have important applications in connection with ODEs and PDEs. We show
this for a basic problem modeled by an ODE. Various applications to PDEs will follow
in Chap. 12. This will show the enormous usefulness of Euler’s and Fourier’s ingenious
idea of splitting up periodic functions into the simplest ones possible.

From Sec. 2.8 we know that forced oscillations of a body of mass m on a spring of

modulus & are governed by the ODE

@

where y = y(¢) is the displacement from rest, ¢ the damping constant, k the spring constant
(spring modulus), and r(?) the external force depending on time 7. Figure 271 shows the
mode] and Fig. 272 its electrical analog, an RLC-circuit governed by

External
force r{)

hFig. 271. Vibrating system under
consideration

O o

E(z)

Fig. 272. Electrical analog of the
system in Fig. 271 (RLC-circuit)
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(1%) LI" + RI' + vl I=E@® (Sec. 2.9),

We considey (1). If 7() is a sine or cosine function and if there is damping (¢ > (),
then the steady-state solution is a harmonic oscillation with frequency equal to that of r(y),
However, if r(z) is not a pure sine or cosine function but is any other periodic function,
then the steady-state solution will be a superposition of harmonic oscillations with
frequencies equal to that of r(¢) and integer multiples of the latter. And if one of these
frequencies is close to the (practical) resonant frequency of the vibrating system (see
Sec. 2.3), then the corresponding oscillation may be the dominant part of the response of
the system to the external force. This is what the use of Fourier series will show us. Of
course, this is quite surprising to an observer unfamiliar with Fourier series, which are
highly important in the study of vibrating systems and resonance. Let us discuss the entire
situation in terms of a typical example.

Forced Oscillations under a Nonsinusoidal Periodic Driving Force
In (1), let m = 1 (gm), ¢ = 0.05 (gm/sec), and k = 25 (gm/sec?), so that (1) becomes
@). "+ 005y + 25y = r (1)
where () is measured in gm - cm/sec?. Let (Fig. 273)
ar
t+ 5 if —a7 <<,
r) = r(t + 27 = r().
= if 0<t<m,

o2

Find the steady-state solution y{(1).

r(t)
T2

NN

Fig. 273. Force in Example 1

Solution. We represent r(z) by a Fourier series, finding
(3) ! 4 ( + ! 3t + ! 5t + )
= — st+ —5 - t+ -

r(1) - co 32 cos 52 cos
(take the answer to Prob. 11 in Problem Set 11.3 minus %f.-r and write ¢ for x). Then we consider the ODE

" r 4
() y +005y +25y= —5— cosnt (n=13---)

nmT

whose right side is a single term of the series (3). From Sec. 2.8 we know that the steady-state solution y,,(1)
of (4) is of the form

(3) Yn = Ap, cOs nt + B,, sin nt.

1
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By substituting this into (4) we find that

425 - 02
6 A= (2—'12)- , B, = . where D, = (25 — n?2 + (0.05n)%
n“wD,, nwD,

Since the ODE (2) is linear, yve may expect the steady-state solution to be
M y=ytyty+t-

where y,, is given by (5) and (6). In fact, this follows readily by substituting (7) into (2) and using the Fourier
series of r(f), provided that termwise differentiation of (7) is permissible. (Readers already familiar with the notion
of uniform convergence [Sec. 15.5] may prove that (7) may be differentiated term by term.)

From (6) we find that the amplitude of (5) is (a factor \/D_n cancels out)

Co= Vay + B2 = e
" ™ " nzw'\/D_n

Numeric values are

C; = 0.0331
Cs = 0.0088

C; = 0.0011
Co = 0.0003.

Figure 274 shows the input (multiplied by 0.1) and the output. For n = 5 the quantity D,, is very small, the
denominator of Cj is small, and Cs is so large that ys is the dominating term in (7). Hence the output is almost
a harmonic oscillation of five times the frequency of the driving force, a little distorted due to the term y,, whose
amplitude is about 25% of that of ys. You could make the situation still more extreme by decreasing the damping
constant ¢. Try it.

¥

0.3

2

1 /\
1 1 1
0 1 1 3\ ¢
- Input

- = A E 0‘
PV

Fig. 274. Input and steady-state output in Example 1

1. (Coefficients) Derive the formula for C,, from A,, and B,,. 3. (Damping) In Example 1 change c to 0.02 and discuss

2. (Spring constant) What would happen to the amplitudes how this changes the output.
C,, in Example 1 (and thus to the form of the vibration) 4. (Input) What would happen in Example 1 if we
if we changed the spring constant to the value 97 If we replaced r(f) with its derivative (the rectangular wave)?

took a stiffer spring with £ = 817 First guess. What is the ratio of the new C,, to the old ones?
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GENERAL SCLUTION

Find a general solution of the ODE y” + &y = r(?) with
r(z) as given. (Show the details of your work.)

-5. r(¢) = cos w1, w = 0.5,0.8, 1.1, 1.5, 5.0, 10.0

6. r(t) = cos wyf + cos wat (> #F ©,%, ©,2)

N
7.r(@®) = X, a,cosnt, |o| #1,2,---, N

n=1

8. r(t) = sint + § sin 3¢ + % sin 5¢ + £ sin 7¢

t+ 7 if —ow<1<o0
9.r(r)={
—t+ 7 if O<r<mw
and r(r + 27 =r(1), 0| #0,1,3, -
t if —al2<t< w2
10. () =
a—t if w2 <t < 3uw/2

and r(t + 27) = r(z), |o| #1,3,5,---
1L r(5) = 5 [sine] if —7 < ¢ < 7 and

r(t + 27 = r(t), |o| #0,2,4, -

12. (CAS Program) Write a program for solving the ODE
just considered and for jointly graphing input and
output of an initial value problem involving that ODE.
Apply the program to Probs. 5 and 9 with initial values
of your choice.

13. (Sign of coefficients) Some A,, in Example 1 are positive
and some negative. Is this physically understandable?

STEADY-STATE DAMPED OSCILLATIONS

Find the steady-state oscillation of y" + ¢y’ + y = r(y
with ¢ > 0 and r(¢) as given. (Show the details of yoyr
work.)

14. r(1) = a, cos nt

15. r{z) = sin 3¢

Tt if —w/2< < @w/2

16. r(t) = {
w2 <t <372

a(m — 1) if
and r(z + 2m) = r(z)
N
17. r(t) = >, b, sinnt
n=1
18. CAS EXPERIMENT. Maximum Output Term,
Graph and discuss outputs of y" + ¢y’ + ky = r(y)
. with r(#) as in Example 1 for various ¢ and k with
emphasis on the maximum C, and its ratio to the
second largest |C,y|.

|l9~20] RLC-CIRCUIT

Find the steady-state current 7(f) in the RLC-circuit in
Fig. 272, where R = 100 Q, L = 10 H, C = 10~2 F and
E(#) V as follows and periodic with period 2. Sketch or
graph the first four partial sums. Note that the coefficients
of the solution decrease rapidly.

19. E(r) = 200t(7® — %) (-7 <1< =)

100(7t + %) if —7<t<0

20. E(t) = {
100(7t — ¢2) if

O<t<am

- Approximation by Trigonometric Polynomials

Fourier series play a prominent role in differential equations. Another field in which they
have major applications is approximation theory, which concerns the approximation of
functions by other (usnally simpler) functions. In connection with Fourier series the idea

is as follows.

Let f(x) be a function on the interval —7 = x = r that can be represented on this
interval by a Fourier series. Then the Nth partial sum of the series

N

6} f&x) =~ ag + 2 (a, cos nx + b, sin nx)

n=1

is an approximation of the given f(x). It is natural to ask whether (1) is the “best”
approximation of f by a trigonometric polynomial of degree N, that is, by a function

of the form

(2) F(x) = Ay + >, (A, cos nx + B,, sin nx)

N

(N fixed)

n=1

where “best” means that the “error” of the approximation is as small as possible.
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Of course, we must first define what we mean by the error E of such an approximation.
We could choose the maximum of [f — F|. But in connection with Fourier series it is
better to choose a definition that measures the goodness of agreement between f and
F on the whole interval —a = x = ar. This seems preferable, in particular if f has jumps:
F in Fig. 275 is a govd overall approximation of f, but the maximum of |f — F| (more
precisely, the supremum) is large (it equals at least half the jump of f at xy). We choose

This is called the square error of F relative to the function f on the interval —w=x = 7.

Clearly, E = 0.
N being fixed, we want to determine the coefficients in (2) such that E is minimum.
Since (f — F)? = f2 — 2fF + F? we have

) E=f_wf2dx-2jj3;Fdx+J.jF2dx

‘We square (2), insert it mto the last mtegral in (4), and evaluate the occurring integrals.
This gives integrals of cos® nx and sin® nx (n = 1), which equal 7, and integrals of
cos nx, sin zx, and (cos nx)(sin mx), which are zero (just as in Sec. 11.1). Thus

2
f dex f |:A0+2(A cosnx + B, smnx)] dx
= 7(2AZ + A2+ -+ AP + B2+ - + BYY).

We now insert (2) into the integral of fF in (4). This gives integrals of f cos nx as well
as f sin nx, just as in Euler’s formulas, Sec. 11.1, for a,, and b,, (each multiplied by A,
or B,). Hence

[ 7 dx = w(@hgag + Asay + - - + Ayay + Biby + - - + Bybu),
With these expressions, (4) becomes

E= J. fz dx — 2w |:2Aoao + 2 (Anan + B bn):|

n=1

5
+ 7 [onz_+ > A2+ B,,,?)] .

n=1

el ,
Y
’f* \ f ’/
- \ <
ra

Fig. 275. Error of approximation
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We now take A,, = a,, and B,, = b,, in (2). Then in (5) the second line cancels half of the
integral-free expression in the first line. Hence for this choice of the coefficients of F the
square error, call it E*, is

™

. - N : .
®) e = | fzdxuw[zaozwhz(an“bﬁ)}

n=1

We finally subtract (6) from (5). Then the integrals drop out and we get terms
A% — 24,4, + a,® = (A, — a,)? and similar terms (B, — by

N
E— E*f = «r{z(Ao —ap)® + 2 [(A, — a,)* + (B, — bn)Z]}.
n=1

Since the sum of squares of real numbers on the right cannot be negative,

E— E*=(, thus E = E*

?

and E = E*if and only if Ay = aqg, * - -, Byy = by. This proves the following fundamental
minimum property of the partial sums of Fourier series.

Minimum Square Error

The square error of F in (2) (with fixed N) relative to f on the interval —m = x = 7
is minimum if and only if the coefficients of F in (2) are the Fourier coefficients of
f- This minimum value E* is given by (6).

.From (6) we see that E* cannot increase as N increases, but may decrease. Hence with

increasing N the partial sums of the Fourier series of f yield better and beiter
approximations to f, considered from the viewpoint of the square error.

Since E* = 0 and (6) holds for every N, we obtain from (6) the important Bessel’s
inequality

ke ¢+ S @iveys o [ fara

_n=1_

for the Fourier coefficients of any function f for which integral on the right exists. (For
F. W. Bessel see Sec. 5.5.)

It can be shown (see [C12] in App. 1) that for such a function f, Parseval’s theorem
holds; that is, formula (7) holds with the equality sign, so that it becomes Parseval’s
identity*

® 20 + 3, (a2 + b, ~—-.-q1; [ fooax.

n=1

“MARC ANTOINE PARSEVAL (1755-1 836), French mathematician. A physical interpretation of the identity

follows in the next section.
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Fig. 276. F with
N = 20 in Example 1
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Minimum Square Error for the Sawtooth Wave

Compute the minimum square error E* of F(x) with N =1, 2, - - -, 10, 20, - - -, 100 and 1000 relative to
fy=x+a (—r<x<m

a
on the interval —7 = x = 7.
(_1)N+1

. 1 1
Solution. F(x) = = + 2(sinx — 5 sia2x+ = sin3x — 4+ -+ ———— sin Nx) by Example 3 in
Sec. 11.3. From this and {6),

E*:J- (x+1r)2dx——1r(21r2+42 '"2-).
—ar n=1 T

Numeric values are:

1 81045 6 19295 20 0.6129 70 0.1782
2 49629 7 16730 30 04120 80  0.1561
3 3.5666 8 14767 40 03103 9  0.1389
4 27812 9 13216 50 02488 100 0.1250
5 22786 10 1.1959 60  0.2077 1000 ~ 0.0126

F = 83, Sg, S5 are shown in Fig. 266 in Sec. 11.3, and F = Sgq is shown in Fig. 276. Although [f(x) — F(x)|
is large at 4 (how large?), where f is discontinuous, F approximates f quite well on the whole interval, except
near *77, where “waves” remain owing to the Gibbs phenomenon (sez CAS Experiment 20 in Problem Set
11.2).

Can you think of functions f for which E* decreases more quickly with increasing N? &

This is the end of our discussion of Fourier series, which has emphasized the practical
aspects of these series, as needed in applications. In the last three sections of this chapter
we show how ideas and techniques in Fourier series can be extended to nonperiodic
functions.

MINIMUM SQUARE ERROR

Find the trigonometric polynomial F(x) of the form (2) for o f() = [0
which the square error with respect to the given f(x) on the

x f —jwr<x<iw

if fr<x<ia

m?e%'val —7 = x £ « 15 minimum, and compute the 9. f() =x(x + Mif —w<x<0, f&x) = x(—x + ™)
minimum value for N = 1, 2, - - -, 5 (or also for larger H0 < x< o
values if you have a CAS).
Lix=x(-m<x<m) 10. CAS EXPERIMENT. Size and Decrease of E*.
2. f)=x2(-m<x<m) Compare the size of the minimum square error £* for
L f =lx(—r<x<m functions of your choice. Find experimentally the
4. fx) = x* (—r<x < m factors on which the decrease of E* with N depends.
5 f(x) = |sinx| (—7m<x< @ For each function considered find the smallest N such
6. fx) = e (—m<x < m that B+ < 0.1.
-1 if —m<x<O0 11. (Monotomnicity) Show that the minimum square error
7. f(x) = [ (6) is a2 monotone decreasing function of N. How can
if O<x<m you use this in practice?
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12-16{ PARSEVAL'S IDENTITY 14 1 4 1 + 1 n
Using Parseval’s identity, prove that the series have the To1%e3? 3252 5%-72
‘) indicated sums. Compute the first few partial sums to see - 1
that the convergence is rapid. T 0.11685 0275
. ) 1 1 qr‘r (Use Prob. 3, this set.)
1...1+¥+¥+¥+---m¥—1.0146‘78032 1 1 o
151+ — + = + - = — = 1082323234
(Use Prob. 15 in Sec. 11.1.) 2 3 90 ,
(Use Prob. 21 in Sec. 11.1) i
Bt = ot T 1233700550 L1, 1 m°
i . —_— P T e e I em—— T . 6 I + P — — .
32 52 8 1 36 + 56 + ?6 + - 960 1.00144 7078 :
(Use Prob. 13 in Sec. 11.1.) (Use Prob. 9, this set.) E
===}/ Fourier Integral
_ Fourier series are powerful tools for problems involving functions that are periodic or are of E
; interest on a finite interval only. Sections 11.3 and 11.5 first illustrated this, and various further
applications follow in Chap. 12. Since, of course, many problems involve functions that are E

nonperiodic and are of interest on the whole x-axis, we ask what can be done to extend the
method of Fourier series to such functions. This idea will lead to “Fourier integrals.”

In Example 1 we start from a special function f; of period 2L and see what happens
to its Fourier series if we let L — . Then we do the same for an arbitrary function f
of period 2L. This will motivate and suggest the main result of this section, which is an

v

integral representation given in Theorem 1 (below). %
STENAMPEEST  Rectangular Wave
Consider the periodic rectangular wave f;(x) of period 2L > 2 given by E
- ' 0 if —L<x<-1
fm={1 i —l<z< 1 E
0 if 1<x< L. ‘

The left part of Fig. 277 shows this function for 2L = 4, 8, 16 as well as the nonpcriodéc function f(x), which
we obtain from fr, if we let L — oo, '

1 f-1<x<1
fG) = lim fr() = {0

otherwise.

We now explore what happens to the Fourier coefficients of f;, as L increases. Since f; is even, b, = 0 for
all n. For a,, the Euler formulas (6), Sec. 11.2, give

1 fldx—l _ j mrxdx 2 * n':rxdx__Z_ sin (nar/L)
T i - €08 LT “TL amL

ST

This sequence of Fourier coefficients is called the amplitude spectrum of f; because |a,,| is the maximum
amplitude of the wave a,, cos (nmx/L). Figure 277 shows this spectrum for the periods 2L = 4, 8, 16. We see
that for increasing L these amplitudes become more and more dense on the positive w,,-axis, where w,, = nw/L.
Indeed, for 2L = 4, 8, 16 we have 1,3, 7 amihtudes per “half-wave” of the function (2 sin w,)/(Lw,,) (dashed
in the figure). Hence for 2L = 2* we have 2 - 1 amplitudes per half-wave, so that these amplitudes will
eventually be everywhere dense on the positive w,;-axis (and will decrease to zero).

The outcome of this example gives an intuitive impression of what about to expect if we turn from our speczal
function to an arbitrary one, as we shall do next.

S— dvmTETR

E e AR,
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Fig. 277. Waveforms and amplitude spectra in Example 1

From Fourier Series to Fourier Integral

We now consider any periodic function f(x) of period 2L that can be represented by a
Fourier series

had ) nar
fr(x) = ao + >, (@, c0s Wx + b,, sin w,,x), Wn = 7
n=1

and find out what happens if we let L— . Together with Example 1 the present calculation
will suggest that we should expect an integral (instead of a series) involving cos wx and
sin wx with w no longer restricted to integer multiples w = w,, = nw/L of n/L but taking

all values. We shall also see what form such an integral might have.
If we insert a,, and b,, from the Euler formulas (6), Sec. 11.2, and denote the variable

of integration by v, the Fourier series of f;(x) becomes

oo

_ L
fix) = —2112", J:LLfL(U) dv + % 2 |:cos Wy X LLfL(U) cos w,U dv

n=1

L
+ sin w,x f fr() sinw,v dv:| .
-L

We now set

(n + D n T
h aw:w‘n+1_wn=_ﬂ-——‘—_=

L L L

RS
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Then 1/L = Aw/ar, and we may write the Fourier series in the form

co

1 1
(D frlo = -é-i JLLfL(v) dv + ; 2 [(cos Wwpx) Aw rLfL(v) cos w,U dv
a - n=1 -

L
+ (sinwan) Aw [ F10) sinwo dv:| .
-L

This representation is valid for any fixed L, arbitrarily large, but finite.
We now let L — o and assume that the resulting nonperiodic function

f6) = Jim_ f19)

is absolutely integrable on the x-axis; that is, the following (finite!) limits exist:

0 b o
) Jim f |f(x)|dx+b1£ngo jﬂ |FG)| dx (written f_ [Feo)l dx),

Then 1/L — 0, and the value of the first term on the right side of (1) approaches zero.
Also Aw = a/L — 0 and it seems plausible that the infinite series in (1) becomes an
integral from 0 to o, which represents f(x), namely,

3) f&x= ;1; J; |:cos wx J._mf(v) cos wu du + sin wxf f) sin wo du:l daw.

—

If we introduce the notations

This is called a representation of f(x) by a Fourier integral.

It is clear that our naive approach merely suggests the representation (5), but by o -
means establishes it; in fact, the limit of the series in (1) as Aw approaches zero is nc
the definition of the integral (3). Sufficient conditions for the validity of (5) are as follows.

Fourier Integral |

If f(x) is piecewise continuous (see Sec. 6.1) in every finite interval and has a
right-hand derivative and a left-hand derivative at every point (see Sec 11.1) and
if the integral (2) exists, then f(x) can be represented by a Fourier integral (5) with i
A and B given by (4). At a point where f(x) is discontinuous the value of the Fourier
integral equals the average of the left- and right-hand limits of f(x) at that point
(see Sec. 11.1). (Proof in Ref. [C12]; see App. 1.) |
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Applications of Fourier Integrals

The main application of Fourier integrals is in solving ODEs and PDEs, as we shall see
for PDEs in Sec. 12.6. However, we can also use Fourier integrals in integration and in
discussing functions defined by integrals, as the next examples (2 and 3) illustrate.

Single Pulse, Sine Integral

Find the Fourier integral representation of the function

1 i K<t
& ={ . (Fig. 278).
0 if |4>1
Flx)
l— 1
1 0 1 x

Fig. 278. Example 2

Solution. From (4) we obtain

1o 1t sinwo | 2sinw
Alw) = — flvycoswy dv = — coswu du = =
T J_ T J_q _ W |1 ™
1 1
B(w=—j sinwe dv =0
T
and (5) gives the answer
o0
2 cOs wx Sin w
©) f&x)y = — — dw.
w 0 W

The average of the left- and right-hand limits of f(x) atx = 1 is equal to (1 + 0)/2, that is, 1/2.
Furthermore, from (6) and Theorem 1 we obtain (multiply by m/2)

/2 if 0=x<1,

)] w = { /4 if x =1,

oo *
COs wx sinw
-
0 w

0 if x> 1

We mention that this integral is called Dirichlet’s discontineus factor. (For P. L. Dirichlet see Sec. 10.8.)
The case x = 0 is of particular interest. If x = 0, thea (7) gives

as u — o. The graphs of Si(x) and of the integrand are shown in Fig. 279.

In the case of a Fourier series the graphs of the partial sums are approximation curves of the curve of the
periodic function represented by the series. Similarly, in the case of the Fourier integral (5), approximations are
obtained by replacing = by numbers a. Hence the integral

© - dw

a
2 J’ cos wx sin w
aa o W

approximates the right side in (6) and therefore f(x).
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b
Si(w)
T
N
2 Integrand L. i E i
s i ] 1
BRI
pAsp A b
/ \ i i i
. i X [
L | N y | [Eat| I
47 =23z -2n im0 Ix_.2r 35 -4z u
0.8}
1_
TN / _E
U |2

Fig. 279. Sine integral Si{u) and integrand

Figure 280 shows oscillations near the points of discontinuity of f(x). We might expect that these oscillations
disappear as a approaches infinity. But this is not true; with increasing a, they are shifted closer to the points

= 1. This unexpected behavior, which also occurs in connection with Fourier series, is known as the Gibbs
phenomenon. (See also Problem Set 11.2.) We can explain it by representing (9) in terms of sine integrals as
follows. Using (11) in App. A3.1, we have

2 acos WwI sin w 1 asin (w + wx) 1 asin (w — wx)
- ——dw = — — dw + — —dw
0

w ) W T Jg w

In the first integral on the right we set w + wx = t. Then dwiw = dift, and 0 = w = a corresponds to
0 =t = (x + 1)a. In the last integral we set w — wx = —¢. Then dw/w = dt/t, and 0 = w = a comresponds to

0=1t=(x— 1)a. Since sin (—7) = —sin ¢, we thus obtain
(e} —
2 COS Wx sin w 1 (S % Gny 1 P%ne
= — e = — —_—dt - — — dt.
T Jy w o Jg t x Jy t

Sl ajx + ].t} Sl(ﬂlx I)

and the oscillations in Fig. 280 result from those in Fig. 279. The increase of a amounts to a transformation
of the scale on the axis and causes the shift of the oscillations (the waves) toward the points of discontinui

y y ¥
LN ansannn
a=8 a=16 a=32
[Ty /. 3 iy |vf\u| 'U’\ 1 5, l'.|| n‘ 1
2VY1 o 1Vox -2 41 o 1Y 2x -2 1o 1 2«

Fig. 280. The integral (9) for a = 8, 16, and 32

Leah I8
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Fig. 281. f(x) in
Example 3

L

Fourier Cosine Integral and Fourier Sine Integral

For an even or odd function the Fourier integral becomes simpler. Just as in the case of
Fourier series (Sec. 11.3), this is of practical interest in saving work and avoiding errors.
The simplifications follow immediately from the formulas just obtained.

Indeed, if f(x) is an even function, then B(w) = 0 in (4) and

(10) =2 ey

The Fourier integral (5) then reduces to the Fourier cosine integral

(f even).
(12)
The Fourier integral (5) then reduces to the Fourier sine integral
13) fe) = [ Bow) sinwxdw (f 0dd).

Evaluation of Integrals

Earlier in this section we pointed out that the main application of the Fourier integral is
in differential equations but that Fourier integral representations also help in evaluating
certain integrals. To see this, we show the method for an important case, the Laplace
integrals.

Laplace Integrals

We shall derive the Fourier cosine and Fourier sine integrals of f(x) = e ™ wherex > 0and k> 0 (Fig. 281).
The result will be used to evaluate the so-called Laplace integrals.

ke=}

. 2
Solution. {a) From (10) we have A(w) = ;_— J- 7 cos wo dv. Now, by integration by parts,
i
—kuv k —ku W
e coswvdy = — T3 G — — sinwu + coswu) .
K +w k

If v = 0, the expression on the right equals —kI(E + wP). Ko approaches infinity, that expression approaches
zero because of the exponential factor. Thus

(14) AW = 5 -

By substituting this into (11) we thus obtain the Fourier cosine integral representation

— —M_%J’mﬂ_}?f_dw >0 k;O)
fix)=¢ = A PER . (x A .
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From this representation we see that

1 J- O T >
s o k2+w2_w_ Zke (x 0, k}@)
L]
9 (=2
(b) Similarly, from (12) we have B(w) = i j e sinwv dv. By integration by parts,
. 0
W k
fe"k" sinwv dv = - —S5—— Pl (— sin wv <+ cos wu) .
B+ w w
This equals —w/(k2 + w?) if v = 0, and approaches 0 as v — . Thus
16 Bow) 2wl
w) = .
(16) k2 + wz
From (13) we thus obtain the Fourier sine integral representation
2 m sin
okx_ 2 J' w wx
x) = ¢ = ——5 dw.
f{ ) T Jyg k2 + wz
From this we see that
an m dw x>0 k>0,

2

The integrals {15) and (17) are called the Laplace integrals.

1-6/ EVALUATION OF INTEGRALS a2 if 0=x<1
Show that the given integral represents the indicated f sin w = 4 i _

function. Hint. Use (3), (11), or (13); the integral tells you 4 0 w cos xw aw m x=1
which one, and its value tells you what function to consider. _ ' 0 if x>1

(Show the details of your work.)

0 ¥ x<0 5‘[ cos(‘.'rwa) cos 1w dw
0
dw=14 w2 if x=20

e -
1 J’ cos xw + w sin xw
0 1 + w?

oo,
ZJ‘ sinw — w cosw

0 wz

oo
3J’ cusxw_dw
Ty 1+ w?

e if x>0
0 if x| = 72

. o . . g - = =
sin xw dw sin 7w sin xw gsinx if 0=x=7
6 | —J— 7 dw=
0 1-w 0 if x>7

ax/2  0<x<1
FOURIER COSINE INTEGRAL

=y *=1 REPRESENTATIONS
0o if x>1  Represent f(x) as an integral (11).

- 1if 0<x<a
=‘é“e_"'ifx>0 7.f(x)={0 if x>a

{%cosx if 0<|x]<a/2 ..
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if 0<x<a

2
8 fx) = {0

if x>a

if 0<x<1

if x> 1
x/2 if 0<zx<1

{x
9. f(x) = 0

1—=x/2 if 1<x<2

0 if x> 2

sinx if O0<x<

11. f(x) = {
0

if x> 7

if 0<x<a

e~ =
12. f(x) = {
0

if x> a

13. CAS EXPERIMENT. Approximate Fourier Cosine

Integrals. Graph the integrals in Prob. 7, 9, and 11 as
functions of x. Graph approximations obtained by
replacing o with finite upper limits of your choice.
Compare the quality of the approximations. Write a
short report on your empirical results and observations.

FOURIER SINE INTEGRAL
REPRESENTATIONS

Represent f(x) as an integral (13).

f 0<x<a

1
14-f(x)={
0 if x>a
' sinx if 0<x<ao
lS.f(x)={
0 if x>
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16. f(x) =

17.

(=]

x>=1

if 0<x<m

0 x>

cosx if O<x<

18. f(x) =

19.

20.

i
o= {7
5

x>a

a—x if 0<x<a

f(x)={
0 if

x>a

PROJECT. Properties of Fourier Integrals
(a) Fourier cosine integral. Show that (11) implies

(3-1_) flax) = :Il" J;A(%) cos XW dw

(a > 0) (Scale change)

@ 5@ = [ Bow) sinow aw,

0
dA
Bt = — —

o A as in (10)

(@3) x%*f(x) = f A*(w) cos xw dw,
0

ar = _ 44
dw? "’

(b) Solve Prob. 8 by applying (a3) to the result of
Prob. 7.

(¢) Verify (a2) for f(x) =
fx)=0if x> a.

(d) Fourier sine integral. Find formulas for the
Fourier sine integral similar to those in (a).

1if 0 < x < g and

Fourier Cosine and Sine Transforms

An integral transform is a transformation in the form of an integral that produces from
given functions new functions depending on a different variable. These transformations
are of interest mainly as tools for solving ODEs, PDEs, and integral equations, and they
often also help in handling and applying special functions. The Laplace transform
(Chap. 6) is of this kind and is by far the most important integral transform in

engineering.

The next in order of importance are Fourier transforms. We shall see that these
transforms can be obtained from the Fourier integral in Sec. 11.7 in a rather simple fashion.
In this section we consider two of them, which are real, and in the next section a third

one that is complex.
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Fourier Cosine Transform

For an even function f(x), the Fourier integral is the Fourier cosine integral
3 = 2 =
D @ F0) = [ AW coswrdw, where  (b) A(w) = > [ #@) cos wo ay
0 T Yo

[see (10), (11), Sec. 11.7]. We now set A(w) = V2/xr f.(w), where ¢ suggests “cosine.”
Then from (1b), writing v = x, we have

2 2 () = /me o
@ fon =[5 || s coswran

and from (1a),

® @ \/; J, 00 cos .

ATTENTION! In (2) we integrate with respect to x and in (3) with respect to w. Formula
(2) gives from f(x) a new function fe(w), called the Fourier cosine transform of f(x).
Formula (3) gives us back f(x) from f (w), and we therefore call f(x) the inverse Fourier

A

cosine transform of f,(w). .
The process of obtaining the transform fe from a given f is also called the Fourier
cosine transform or the Fourier cosine transform method.

Fourier Sine Transform

Similarly, for an odd function J (), the Fourier integral is the Fourier sine integral [see
(12), (13), Sec. 11.7]

@ @ f@=[ Bwsinwrdw, where (b) Blw) = —27; [ $) sinwo .
0 (1]

We now set B(w) = V2/x f_.,.(w), where s suggests “sine.” Then from (4b), writing v = x,
we have

5) fsw)y = [—- f f(x) sin wx dx.

\/ 7 0. g BT
This is called the Fourier sine transform of f(x). Similarly, from (4a) we have
®) )= [= [ F.00) sinwx aw.

This is called the inverse Fourier sine transform of fs(w). The process of obtaining fs(w)
from f(x) is also called the Fourier sine transform or the Fourier sine transform method.
Other notations are

FMN=F o FPH=F

and F_;* and % for the inverses of &, and F, respectively.
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Fig. 282 f(x)in
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Fourier Cosine and Fourier Sine Transforms

Find the Fourier cosine and Fourier sine transforms of the function

k ifl<x<a

flx) = [ (Fig. 282).
0 ifx>a

A ]

Solution. From the definitions (2) and (5) we obtain by integration

’2 ¢ }2 sin aw

fc(w)= __kJ’ COSdex: --k( )
- 0 av W

f z a. _ 2 1 — cos aw

Jsw) = f;kj;smwxdx— ’-‘;k(m“w )

This agrees with formulas 1 in the first two tables in Sec. 11.10 (where k = 1).
Note that for f(x) = k = const (0 < x < =), these transforms do not exist. (Why?) B

Fourier Cosine Transform of the Exponential Function
Find F (™).

Solution. By integration by parts and recursion,

— 2 . —z 2 e-I R * V2/m
Fele™ = _[— e “coswxdr= | — (—cos wx + w sin wx) = .
c 2 2

7 Jg T 1+ w o 1+ w

This agrees with formula 3 in Table I, Sec. 11.10, with 2 = 1. See also the next example. B

What did we do to introduce the two integral transforms under consideration? Actually

not much: We changed the notations A and B to get a “symmetric” distribution of the

constant 2/7 in the original formulas (10)—(13), Sec. 11.7. This redistribution is a standard
convenience, but it is not essential. One could do without it.

What have we gained? We show next that these transforms have operational properties
that permit them to convert differentiations into algebraic operations (just as the Laplace
transform does). This is the key to their application in solving differential equations.

Linearity, Transforms of Derivatives

If f(x) is absolutely integrable (see Sec. 11.7) on the positive x-axis and piecewise
continuous (see Sec. 6.1) on every finite interval, then the Fourier cosine and sine
transforms of f exist.

Furthermore, if f and g have Fourier cosine and sine transforms, so does af + bg for
any constants @ and b, and by (2),

F (af + bg) = /% fo [af () + bg(x)] cos wx dx

a /%J;f(x)coswx.dx+b }%Lg(x)coswxdx.

The right side is a%F (f) + bF(g). Similarly for F, by (5). This shows that the Fourier
cosine and sine transforms are linear operations, '

(@) Flaf + bg) = aF (f) + bF(g),
(b) Flaf + bg) = aZF(f) + bF(g).

M
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= THEOREM:A Cosine and Sine Transforms of Derivatives

Let f(x) be continuous and absolutely integrable on the x-axis, let f ' (%) be piecewise
continuous on every finite interval, and let let f(x) — 0 as x — . Then

2
() FAf' @} = wF{f()} — \/; £(0),
(b) FAF D) = —wFAFO)).

®)

PROOF This follows from the definitions by integration by parts, namely,

2 (e =]
FAf' ()} = \/; J;' f'(x) cos wx dx

= ,/3 !:f(x) COS WX +wj f(x) sinwxdx:I
™ 0 0
2
== = fO + wFF®)
T

_f (x) sin wx dx

= a]

and similarly,

ﬁm

Fo(f' (0}

o"'--w

i: (x)sinwx | —w f f(x) cos wx d.r:l
w

AfO}. 5

II

Formula (8a) with f~ instead of f gives (when f', f" satisfy the respective assumptions
for f, f' in Theorem 1)

" ! 2 !
F A )} =wF(f @} — 1/“’; O
hence by (8b)

(9a) Ff'@} = ~wFAf@)} - J; F1(0). -
Similarly,
(9b) CFAF D) = —wWF(F) + \/; wf(Q). .

A basic application of (9) to PDEs will be given in Sec. 12.6. For the time being we
show how (9) can be used for deriving transforms.
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—=EXAMPLEEZ3 An Application of the Operational Formula (9)

1-10
L

10.

- 11.

. Let f(x)
. Does the Fourier cosine transform of x*

Find the Fourier cosine transform % (e~ ®") of f(x) = ¢~ %%

, where a > 0.

Solution. By differentiation, (¢~%)" = a%e ™%, thus

b

a?*f@x) = ).

From this, (9&_1}, and the linearity (7a),

Hence

The answer is (see Table I, Sec. 11.10)

() = g;c(f")

= —w?F(f) - \/_ F(0)

[2°

Fele™™) = \/

Tables of Fourier cosine and sine transforms are included in Sec. 11.10.

FOURIER COSINE TRANSFORM

Let f(x) = —1if0<x<1,f(x) =1if 1 <x <2,
F) = 0if x > 2. Find f.(w).

- Let f(x) = xif 0 <x <k, f(x) = 0 if x > k. Find
Fe(w).
- Derive formula 3 in Table 1 of Sec. 11.10 by integration.

. Find the inverse Fourier cosine transform f(x) from the

answer to Prob. 1. Hint. Use Prob. 4 in Sec. 11.7.

. Obtain Z;1(1/(1 + w?)) from Prob. 3 in Sec. 11.7.
. Obtain ¥, 1(e~%) by integration.
. Find F((1 — x®~* cos (wx/2)). Hint. Use Prob. 5 in

Sec. 11.7.
=x2if0<x<1and0ifx>1.Find9-*c(f).

sin x exist?
Of x~1

f(x) = 1 (0 < x < =) has no Fourier cosine or sine
transform. Give reasons.

FOURIER SINE TRANSFORM
F(e~™) by integration.

cos x? Give reasons.

Find %

12.
13.

14.

15.

16.

17.

18.

19.

ar

—w295c(f) +a
‘\I T

@® + wHF(f) = aValm.

a
(757) w0

Find the answer to Prob. 11 from (9b).

Obtain formula 8 in Table II of Sec. 11.11 from (8b)
and a suitable formula in Table L.

Let f(x) = sinx if 0 < x < srand 0 if x > . Find
F4(f). Compare with Prob. 6 in Sec. 11.7. Comment.
In Table I of Sec. 11.10 obtain formula 2 from formula
4, using T@) = V7 [(30) in App. 3.1].

Show that F(x~ V%) = w12 by setting wx = r2 and
using S(0) = V #/8 in (38) of App. 3.1.

Obtain F (e~ **) from (82) and formula 3 in Table I of
Sec. 11.10.

Show that F,(x~3%) = 2w1"2 Hint. Set wx = 12,
integrate by parts, and use C(m) Va8 in (38) of
App. 3.1

(Scale change) Using the notation of (5), show that
f(ax) has the Fourier sine transform (1/a)f,(w/a).

. WRITING PROJECT. Obtaining Fourier Cosine

and Sine Transforms. Write a short report on ways
of obtaining these transforms, giving illustrations with
examples of your own.
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-1L9: Fourier Transform.
Discrete and Fast Fourier Transforms

The two transforms in the last section are real. We now consider a third one, called the
Fourier transform, which is complex. We shall obtain this transform from the complex
Fourier integral, which we explain first. '

The (real) Fourier integral is [see (4), (5), Sec. 11.7]

fx)y = j [A(w) cos wx + B(w) sin wx] dw
0

where

[
Complex Form of the Fourier Integral E
[
E

1 = 1 ™
Alw) = — f f() cos wu du, Bw) = — J- f(v) sin wv dv.
T ~—c0 T “—ca
Substituting A and B into the integral for f, we have
1 [=a] oo ) ) E
fx) = — f f f(v) [cos wu cos wx + sin wo sin wx] dv dw.
T 0 “—w

By the addition formula for the cosine [(6) in App. A3.1] the expression in the brackets E
[ - -] equals cos (wv — wx) or, since the cosine is even, cos (wx — wv). We thus obtain '

(1#) fx) = -l— j I:J’ f(@) cos (wx — wuv) du] dw. E
- a -0 —co

The integral in brackets is an even function of w, call it F(w), because cos (wx — wv) is E
an even function of w, the function f does not depend on w, and we integrate with respect
to v (not w). Hence the integral of F(w) from w = 0 to % is 1/2 times the integral of F(w)
from —oe to . Thus (note the change of the integration limit!) ' E

N o [ P

We claim that the integral of the form (1) with sin instead of cos is zero:

@ % j_ [ f_ ) sin (wx — wo) dvil dw = 0.

This is true since sin (wx — wv) is an odd function of w, which makes the integral in

brackets an odd function of w, call it G(w). Hence the integral of G(w) from —o° to © is

zero, as claimed. : E
‘We now take the integrand of (1) plus i (= \/——1) times the integrand of (2) and use

the Euler formula [(11) in Sec. 2.2]

3) e = cosx + i sin x.
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Taking wx — wo instead of x in (3) and multiplying by f(v) gives
F(v) cos (wx — wo) + if(v) sin (wx — wv) = f(v) W=D,

Hence the result of adding (1) plus i times (2), called the complex Fourier integral, is

C)) E=V-D.

It is now only a very short step to our present goal, the Fourier transform.

Fourier Transform and Its Inverse

Writing the exponential function in (4) as a product of exponential functions, we have

1 < 1 m ~iwuv jwx
G) &) = 7= Ln [? f_mf(v)e dv:' % i,

The expression in brackets is a function of w, is denoted by F(w), and is called the Fourier
transform of f; writing v = x, we have

v i == [ fee

With this, (5) becomes

)

and is called the inverse Fourier transform of f(w).
Another notation for the Fourier transform is

f =%,
so that
f=%.

The process of obtaining the Fourier transform F(f) = f from a given f is also called
the Fourier transform or the Fourier transform method.

Conditions sufficient for the existence of the Fourier transform (involving concepts
defined in Secs. 6.1 and 11.7) are as follows, as we state without proof.

Existence of the Fourier Transform

If f(x) is absolutely integrable on the x-axis and piecewise continuous on every finite
interval, then the Fourier transform f(w) of f(x) given by (6) exists.
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TEXAMPLEST  Fourier Transform
Find the Fourier transform of f(x) = 1 if [x| < 1 and f(x) = 0 otherwise.
Solution. Using (6) and integrating, we obtain

1 —iwr |1
B, 1 _a 1 [ 1 s .
Fow) = T g . : _ . (e — &),
V2m 43 Vig TW g —iwV2amr
As in (3) we have ¢ = cos w + i sinw, e = cosw — i sinw, and by subtraction
&2 — 7™ = 2isinw.

Substituting this in the previous formula on the right, we see that i drops out and we obtain the answer

N _ w sin w
fwmy =5 — -
SECENAMPEES?  Fourier Transform
Find the Fourier transform %F(e” ™) of f(x) = ¢  **ifx > 0 and f(x) = 0if x < 0; herea > 0.

Solution. From the definition (6) we obtain by integration

1 [ :
Fle™ ™) = ,—J. e T gy
( ) 52 o
1 e-(a+iw)x =) B 1
Var —(@+iw) ;g V2x(a+iw)

This proves formula 5 of Table Il in Sec. 11.10. i

Physical Interpretation: Spectrum

The nature of the representation (7) of f(x) becomes clear if we think of it as a superposition
of sinusoidal oscillations of all possible frequencies, called a spectral representatio~
This name is suggested by optics, where light is such a superposition of colo
(frequencies). In (7), the “spectral density” f(w) measures the intensity of f(x) in the
frequency interval between w and w + Aw (Aw small, ﬁxed) We claim that in connectic~
with vibrations, the integral

[ ifoue aw

can be interpreted as the total energy of the physical system. Hence an integral of | HO
from a to b gives the contribution of the frequencies w between a and b to the total energ

To make this plausible, we begin with a mechanical system giving a single frequenc_
namely, the harmonic oscillator (mass on a spring, Sec. 2.4)

my" + ky = 0.
Here we denote time ¢ by x. Multiplication by y gives my'y” + ky'y = 0. By integration
%mv2 + %kyz = Ey = const

where v = y' is the velocity. The first term is the kinetic energy, the second the potenti
energy, and E, the total energy of the system. Now a general solution is (use (3) .-
Sec. 11.4 with t = x)
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Y = a3 cos wox + by sin wox = ¢;™% + c_je”™7, wo® = kim
where ¢; = (a; — iby)/2, c.;, = T = (a; + iby)/2. We write simply A = "%,

B = c_je""" Theny = A + B. By differentiation, v =y’ = A’ + B’ = iws(4 — B).
Substitution of v and' y on the left side of the equation for E, gives

Eq = 3mv® + 3ky® = §m(iwg)(A — B)? + Lk(A + BY%.
Here wy® = k/m, as just stated; hence mw,> = k. Also i> = —1, so that
Ey = 3k[—(A — B + (A + B)?] = 2kAB = 2kc,™0%c_,e~% = 2kcic_y = 2klcy |

Hence the energy is proportional to the square of the amplitude |c,).

As the next step, if a more complicated system leads to a periodic solution y = f(x)
that can be represented by a Fourier series, then instead of the single energy term |c,|*> we
get a series of squares [c,,|* of Fourier coefficients c,, given by (6), Sec. 11.4. In this case
we have a “discrete spectrum” (or “point spectrum™) consisting of countably many
isolated frequencies (infinitely many, in general), the corresponding |c,|> being the
contributions to the total energy.

Finally, a system whose solution can be represented by an integral (7) leads to the above
integral for the energy, as is plausible from the cases just discussed.

Linearity. Fourier Transform of Derivatives
New transforms can be obtained from given ones by

T THECREMZ2 Linearity of the Fourier Transform

The Fourier transform is a linear operation; that is, for any functions f(x) and g(x)
whose Fourier transforms exist and any constants a and b, the Fourier transform
of af + bg exists, and

)

PROOF This is true because integration is a linear operation, so that (6) gives

oo

1 ;
Flaf() + be() = == [ lafe) + be)e = x

—o0

oo

1 = . 1 .
Vo f fx)e ™™ dx + b *—-\/ﬁ f g(x)e™ " dx

= aF{f(0)} + bF{gn)}.

=da

In applying the Fourier transform to differential equations, the key property is that
differentiation of functions corresponds to multiplication of transforms by iw:

——
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Fourier Transform of the Derivative of f(x)

Let f(x) be continuous on the x-axis and f(x) — 0 as lx{ — . Furthermore, let
f'(x) be absolutely integrable on the x-axis. Then

a

©) F(f (1)) = WF(FD}.

PROOF From the definition of the Fourier transform we have

! 1 “ ! —4
F W) = = | _f@edn

Integrating by parts, we obtain

oo

= (—iw) f_m fl)e™ ™= dx] :

1 .
Flfm) = oo [f(x)e_‘w"

Since f(x) — 0 as |x| — oo, the desired result follows, namely,
F{f' @)} =0+ wF(f(n}. &
Two successive applications of (9) give
F(") = iwF (") = (W) F ().

Since (iw)®> = —w?, we have for the transform of the second derivative of f

AFE)

Similarly for higher derivatives.
An application of (10) to differential equations will be given in Sec. 12.6. For the time
being we show how (9) can be used to derive transforms.

CESETITITREXOCMEPEESS  Application of the Operational Formula (9)
' Find the Fourier transform of xe~> from Table III, Sec 11.10.
Solution. We use (9). By formula 9 in Table IIL.



SEC. 1.9 Fourier Transform. Discrete and Fast Fourier Transforms ... 523

o THEOREMSE
PROOF

Convolution
The convolution f * g of functions f and g is defined by

= Geom = | ieee-p =] 5
The purpose is the same as in the case of Laplace transforms (Sec. 6.5): taking fhe

convolution of two functions and then taking the transform of the convolution is the same
as multiplying the transforms of these functions (and multiplying them by V2m):

Convolution Theorem

Suppose that f(x) and g(x) are piecewise continuous, bounded, and absolutely
integrable on the x-axis. Then

12) _ @(f*g) o

By the definition,

o 0o

G+ 9= =] _| ot~ pdp e
An interchange of the order of integration gives
Feg) = = | [ #outx — pre ax .
27 oo o _
Instead of x we now take x — p = q as a new variable of integration. Then x = p + g and
F(fg) = —\J/z*—; f_ _ f_ _f(Plelg)e™®*® dg dp.

This double integral can be written as a product of two integrals and gives the desired
result

1 o . e )
F(frg=—= | f(pe™Pdp | glge ™ dg
21'1' —co -0

1 Ofa — Ui, fered
== (V27 FH][V2m F ()] = V2r F(H)F(g).

By taking the inverse Fourier transform on both sides of (12), writing F= F(f) and
& = F(g) as before, and noting that V27 and 1/V27r in (12) and (7) cancel each other,
we obtain

13)

a formula that will help us in solving partial differential equations (Sec. 12.6).
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Discrete Fourier Transform (DFT),
Fast Fourier Transform (FFT)

In using Fourier series, Fourier transforms, and trigonometric approximations (Sec. 11.6)
we have to issume that a function f(x), to be developed or transformed, is given on some
interval, over which we integrate in the Euler formulas, etc. Now very often a functiop
f(x) is given only in terms of values at finitely many points, and one is interested ip
extending Fourier analysis to this case. The main application of such a “discrete Fourier
analysis” concemns large amounts of equally spaced data, as they occur in
telecommunication, time series analysis, and various simulation problems. In these
sitmations, dealing with sampled values rather than with functions, we can replace the
Fourier transform by the so-called discrete Fourier transform (DFT) as follows.

Let f(x) be periodic, for simplicity of period 277. We assume that N measurements of
f(x) are taken over the interval 0 = x = 2 at regularly spaced points

B 27k

(14) n=

k=0,1,---,N— 1,

We also say that f(x) is being sampled at these points. We now want to determine a
complex trigonometric polynomial

N-1 .
15) gx) = >, ce "
=0

that interpolates f(x) at the nodes (14), that is, g(x;) = f(x;), written out, with f;, denoting
a0,

N~-1
(16) Fo=fn) =q) = > cne ¥, k=0,1,---,N—-1L
n=0

Hence we must determine the coefficients ¢, * « * , cy—y such that (16) holds. We do this
by an idea similar to that in Sec. 11.1 for deriving the Fourier coefficients by using the
orthogonality of the trigonometric system. Instead of integrals we now take sums. Namely,
we multiply (16) by e~ (note the minus!) and sum over k from O to N — 1. Then we
interchange the order of the two summations and insert x from (14). This gives

N-1 N-1N-1 -1 N-1
—im, i(n—m)x; i(rn—m)2ak/N
(17) 2 fre = 2 > cpe k= an e .
k=0 k=0 n=0 n=0 k=0

Now
Gn—m2akiN — [ ei(n«-m)zrrfN]k.

We donote [- - -] by r. For n = m we have r = ¢® = 1. The sum of these terms over k
equals N, the number of these terms. For n # m we have r # 1 and by the formula for a
geometric sum [(6) in Sec. 15.1 withg = r andn = N — 1]

N

1—r
1 —

N-1
S -

k=0 r
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because ¥

= 1; indeed, since k, m, and n are integers,

N = g2k = cos Qmk(n — m) + isin2mk(n —m) =1+ 0 = 1.
This shows that the right side of (17) equals c,,N. Writing n for m and dividing by N, we
thus obtain the desired coefficient formula

(18%) fo=f(x), n=0,1,---,N— 1.

Since computation of the ¢, (by the fast Fourier transform, below) involves successive

halfing of the problem size ¥, it is practical to drop the factor 1/N from c,, and define the
discrete Fourier transform of the given signal f = [f, --- fy_,]" to be the vector
f=[fo -+ fwy-a) with components '

(18) fe=f), n=0,---,N— 1.

This is the frequency spectrum of the signal.
In vector notation, f = Fyf, where the N X N Fourier matrix Fy, = [e,,] has the
entries [given in (18)]

(19) Cne = e—z'n;ck — e—Zvrinka — Wﬂ.k W= wy = e-—eri."N

L}

where n, k=0, , N — 1.

Discrete Fourier Transform (DFT). Sample of N = 4 Values

Let N = 4 measurements (sample values) be given. Then w = e~ 27 = o= 742 = _; 304 thus w™ = (—i yE,
Let the sample values be, say f = [0 1 4 9]". Then by (18) and (19),

w?  w® W% WP 11 1 1|0 14
. w? w! w2 w 1 —-i -1 i 1 —4 + 8i

GO = Fat= w? w? w? w® = 1 -1 1 -1 4 - -6
wl o W Wt We 1 i -1 —i]|o9 -4 — 8

From the first matrix in (20) it is easy to infer what Fyy looks like for arbitrary N, which in practice may be
1000 or more, for reasons given below.
From the DFT (the frequency spectrum) f = Fyf we can recreate the given signal

— 1
f = Fy 1f, as we shall now prove. Here Fy and its complex conjugate Fy = v [Tv“k] satisfy
(21a) FyFy = FyFy = NI

where I is the N X N unit matrix; hence Fy has the inverse

1 —
(21b) Fyl= F Fy.
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We prove (21). By the multiplication rule (row times column) the product matry
Gy = FyFy = [g;] in (21a) has the entries gj = Row j of Fyn rzme.s' Column k of By,
That is, writing W = w/w", we prove that
. G = @WO? + I + - -+ IR
if j#Fk
=Wo+ W+ + W=
N i j=k

Indeed, when j = k, then w*w" = (w)¢ = (2™/Ne 27Nyt = 1% = 1, 50 that the sum
of these N terms equals: N; these are the diagonal entries of Gy. Also, when j # £, then
W # 1 and we have a geometric sum (whose value is given by (6) in Sec. 15.1 with
g=Wandn =N —1)

1— Wy

WO+ W+ s+ W= —— =0
1-W

because WY = (iwF)N = (2m)i(e 2"k = 1. 1% = 1, &

‘We have seen that £ is the frequency spectrum of the signal f(x). Thus the components
Fr O f give a resolution of the 27-periodic function f(x) into simple (complex) harmonics.
Here one should use only 7’s that are much smaller than N/2, to avoid aliasing. By this we
mean the effect caused by sampling at too few (equally spaced) points, so that, for instance,
in a motion picture, rotating wheels appear as rotating too slowly or even in the wrong sense.
Hence in applications, N is usually large. But this poses a problem. Eq. (18) requires O(N)
operations for any particular z, hence O(N 2) operations for, say, all n < N/2. Thus, already
for 1000 sample points the straightforward calculation would involve millions of operations.
However, this difficulty can be overcome by the so called fast Fourier transform (FFT),
for which codes are readily available (e.g. in Maple). The FFT is a computational method
for the DFT that needs only O(N) log, N operations instead of O(N®). It makes the DFT a

 practical tool for large N. Here one chooses N = 2% (p integer) and uses the special form

of the Fourier matrix to break down the given problem into smaller problems. For instance,
when N = 1000, those operations are reduced by a factor 1000/log, 1000 ~ 100.

The breakdown produces two problems of size M = N/2. This breakdown is possible
because for N = 2M we have in (19) B

Wil = Wy = (6727INY2 = o4mil@ID — =2 =

The given vector f = [fo -+ f n—1]" is split into two vectors with M components
each, namely, f., = [fo fz ' fw_s] containing the even components of f, and
f.4=1[f1 fa *** Fy-1]' containing the odd components of f. For f, and fq we
determine the DFTs

fev = [fev,(‘.l Jsev,2 et fev,N—2]T = FMfev
and

Py 2 2 2 T
foa = [fod.1 foazs fad,N—1] = Fyfoa

involving the same M X M matrix Fj. From these vectors we obtain the components of
the DFT of the given vector f by the formulas

(a) f =fevn+wanod.n n:O,-‘*zM-l
(b) fn+M fevn wNnJEod,n n=0,-, M- I

(22)
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For N = 27 this breakdown can be repeated p — 1 times in order to finally arrive at N/2
problems of size 2 each, so that the number of multiplications is reduced as indicated
above.

We show the reduction from N = 4 to M = N/2 = 2 and then prove (22).

]

Fast Fourier Transform (FFT). Sample of N = 4 Values

When N = 4;thenw = wy = —i as in Example 4 and M = N2 = 2, hence w = wy; = ¢ 2772 = "7t = ],
Consequently,
. o 1 1] [fo] [fo+fz
o= | | =Ff,= =
f2 1 —11|fs fo~ fa
. f1 I 11Th fit+ 1
foa=| ., | =Fafea = = .
fa 1 —11|fs fi—fs

From this and (22a) we obtain

|
&y
E

fo=TFevo + wnfoao=Uo+ fo) + (f1 + fa) = fo + f1 + fo + f3
F1 = Feva + wn'Foar = o — fo) — ilfy + fa) = fo — ify — fa + ifs.

brgiel g

. Similarly, by (22b),

fo=Ffevo— wn'foao=Uo+f)—(F1+fs) =fo—Fi+tfo—Ffa
3 Fs = feva — wn'Foar = Go — f2) — (—)(f1 — F3) = fo + ify — fz — ifs.

This agrees with Example 4, as can be seen by replacing 0, 1, 4, 9 with fo, f1, fa, fa- 7]

We prove (22). From (18) and (19) we have for the components of the DFT
N-1
f n = 2 lefm f k-
k=0

Splitting into two sums of M = N/2 terms each gives

M-1 M-1
2 2kn @k+1m
Fo=2 wn fzk“"E Wn 2%+1-
k=0 k=0

We now use wy> = wy, and pull out wy™ from under the second sum, obtaining

M-1 M-1
A kn kn
(23) fn= 2 Wi fevie T Wi > Wi fod-
k=0 k=0

The two sums are f..,, and f,q ., the components of the “half-size” transforms F f, and
Ff,q
Formula (22a) is the same as (23). In (22b) we have n + M instead of n. This causes
a sign change in (23), namely —wy™ before the second sum because
WM = p—2miMIN

4

= 8—2111."2 =g~ 7t = —].

This gives the minus in (22b) and completes the proof. =
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3. fx) = {
4. f(x) = {
5. fo) =
6. f(x) = {

7. fx) = {

L. (Beview) Show that 1/i = —i, &% + ¢~ = 2 cos x,
eF — &~ = 2/ sin x.

Ll

FOURIER TRANSFORMS BY INTEGRATION

Find the Fourier transform of f(x) (without using Table I
in Sec. 11.10). Show the details.

= ifx<0 (k>0)
2. f(x)={

0 iifx>0

E f0<x<b

0 otherwise

& if -1 < x<1
0 otherwise

{k f-1<x<1

0 otherwise

x if—-1<x<1

0 otherwise

fo<x<1

x
0 otherwise

8.

9.

xe”® f-1<x<0
f&x) =
0 otherwise
-1 Ff-1<x<0
flx) = 1 if 0<x<1

0 otherwise

OTHER METHODS

10.

11.
12.
13.
14.

Find the Fourier transform of f(x) = xe *if x > 0 and
-0 if x < 0 from formula 5 in Table III and (9) in the

text. Hint: Consider xe™* and ™~

Obtain (e~ "2) from formula 9 in Table IIL.

Obtain formula 7 in Table III from formula 8.
Obtain formula 1 in Table III from formula 2.
TEAM PROJECT. Shifting. (a) Show that if f(x)
has a Fourier Uansfonn, so does f(x — a), and
Flfx — a)) = e F{f(0)}.

(b) Using (a), obtain formula 1 in Table I, Sec. 11.10,
from formula 2.

(c) Shifting on the w-Axis. Show that if f(w) is the
Fourier transform of f(x), then f(w — «) is the Fourier
transform of €%%f(x).

(d) Using (c), obtain formula 7 in Table III from 1 and
formula 8 from 2.
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- Tables of Transforms
Table I. Fourier Cosine Transforms

L]

See (2) in Sec. 11.8.

{1 if0<x<a

0 otherwise

3| e (a>0)

ae1 2 Ia) am
2 x OD<a<l) — e cos — (T'(a) see App- A3.1)
2
aw

4 g_zz 12 e~ w22

1
5 e (a>0) P

n! Re =

V2a
/2 !
o A% P — syl
6 | x"e (@a>0) v @ T Wi Re (a + iw) Real part
1
V2
1

[siua(l — w) N sina(l + w)]

cosx f0<x<a
I—w 1+ w

0 otherwise

8 | cos(ax®) (a>0)

2
9 | sin(ax?) (a>0) \/1___ cos (w_ + ;)

0| 22 >0 /% a - uw — a)) (See Sec. 63.)
1 e T ginx 1 an i
X \ 2ar are w2
[2 1
12 | Joa) (@>0) \/? T (4w = @) (See Secs. 55,63)




—x2/2

9 xe™% (a>0)

sinx if0<x<a
10
0  otherwise
COSs dx
11 (@ > 0)
2a
12 | actan —  (a>0)

V7 @

—ap2
wewm

Y
(2a)*”?

—w?da

50 CHAP.N Fourier Series, Integrals, and Transforms
Table Il. Fourier Sine Transforms
See (5) in Sec. 11.8.
{1 Hfo0<x<a 2 Iil_‘COSaW:|
1 J— S —
0 otherwise N 7 w
2 | WVax UVw
3 | 1432 2Vw
/7 ') . am :
4 | xo*t 0<a<1l) \/ — —~ sin - (T'(a) see App. A3.1)
T W 2
5| e >0 2 i
€ @=>0) 7 \a?+ w?
e 2 w
6 (a > 0) | — arctan —
X v a
2 n!
7 | "%  (a>0) 5 Im (a + iw)**?

Im =
Imaginary part

1 [sina(l — W) _ sina(l + w)

V2 1—w 1+w
ar

\ —2~ uwlw — a)

N sinh aw e

|

(See Sec. 6.3.)

1
3
i
i
I
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Table lll. Fourier Transforms

See (6) in Sec. 11.9.

{1 - if-b<x<b

0 otherwise

{I ifb<x<c

0 otherwise

(a>0)

x ifo0<x<b
4 2x— b ifb<x<2b
0 otherwise

e = ifx>0
(a>0)

0 otherwise

{em‘ ifb<x<c

0 otherwise

{e’*’“” if -b<x<b
0

otherwise

[e"‘”’ fb<x<c

0 otherwise
9 Pl (a>0)

sin ax
10

(a>0)

/_1; g~ ol
2

\

—1 + 26177 — g7

\ 27 w?

1
V2mr(a + iw)

e(a—-zw)c — e(a—-aw)b

V2m(a — iw)

3 sin b(w — a)
ar w—a

eé.b(cr. —uw) __ e‘ic(a. —u)

Sk
3

a— w

b

1 9

ifw<a 0iflw>a

<
Y




1. What is a Fourier series? A Fourier sine series? A
half-range expansion? .

2. Can a discontinuous function have a Fourier series? A
Taylor series? Explain.

3. Why did we start with period 27? How did we proceed
to functions of any period p?

4. What is the trigonometric system? Its main property by
which we obtained the Euler formulas?

5. What do you know about the convergence of a Fourier
series?

6. What is the Gibbs phenomenon?

7. What is approximation by trigonometric polynomials?
The minimum square error?

8. What is remarkable about the response of a vibrating
system to an arbitrary periodic force?

9. What do you know about the Fourier integral? Its
applications?

10. What is the Fourier sine transform? Give examples.

11-20| FOURIER SERIES

Find the Fourier series of f(x) as given over one period.
Sketch f(x). (Show the details of your work.)

—k if—-1<x<0
11. f(x) =
k if 0<x<1
0 if —7/2 < x < w2
12. f(x) =
1 if /2 <x<3w/2
13. f(x) = x (=2 <x<2m
14. f(x) = |x| (=2 <x<?2)
x if—-1<x<1
15. f(x) =
2 —x if 1 <x<3
-1 —x if -1 <x<0
16. f(x) =
1 —x if 0<x<1

17. f(x) = |sin 8wx| (—1/8 < x < 1/8)
18. f(x) = e (—7 <x < 7)

19, f(x) = x2 (—w/2 < x < 7/2)

20. f(x) = x (0 < x < 2)

21-23 Using the answers to suitable odd-numbered
problems, find the sum of

2.1 -3+ -%5+----

LI S S
" 1.3 5-7

w

-5
23,1 +3+%+---

24. (Parseval’s identity) Obtain the result of Prob. 23 by
applying Parseval’s identity to Prob. 12.

25. What are the sum of the cosine terms and the sum of
- thé sine terms in a Fourier series whose sum is f(x)?
Give two examples.

26. (Half-range expansion) Find the half-range sine series
of f) =0if0<x<7/2, flx) =172 <x<m
Compare with Prob. 12.

27. (Half-range cosine series) Find the half-range cosine
series of f(x) = x (0 < x < 2). Compare with
Prob. 20.

28-29 MINIMUM SQUARE ERROR

Compute the minimum square errors for the trigonometric
polynomials of degree N =1, -- -, &

28. For f(x) in Prob. 12.

29, For f(x) = x (—7 < x < 7).

30-31| GENERAL SOLUTION

Solve y" + w?y = r(f), where |w| # 0, 1,2, - - -, r(t)
is 27r-periodic and:

30. r(t) = t(7* — %)
31 r(r) = #2

(—m <t<m)

(—m<t<m)

[32-37]  FOURIER INTEGRALS AND
TRANSFORMS

Sketch the given function and represent it as indicated. If

you have a CAS, graph approximate curves obtained by

replacing © with finite limits; also look for Gibbs

phenomena.

32. f(x) = 1if 1 < x < 2 and 0 otherwise, by a Fourier
integral

3B f@) =xif0<x<1 and 0 otherwise, by a Fourier

integral
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M fM=1+x/2if —2<x<0,f(x) =1—x/2if 37 f(x) = 4 — x%if -2 <x < 2, f(x) = O otherwise, by

0 < x < 2, f(x) = 0 otherwise, by a Fourier cosine a Fourier cosine integral
- integral _ 38, Find the Fourier transform of f(x) = k if
35, f() = —1 —x/2if -2 <x <0, f(x) =1 —x/2if a < x < b, f(x) = 0 otherwise.

0 < x < 2, f(x) = 0 otherwise, by a-Fourier sine
integral

36 fxX) = —4 + 2P if -2 <x <0, fx) = 4 — X2 if
0 < x < 2, f(x) = 0 otherwise, by a Fourier sine 40. Find F (¢~ and F,(e2%) by formulas involving
integral second derivatives.

39. Find the Fourier cosine transform of f(x) = e~ 2% if
x>0, fx) =0ifx < 0.

Jm s

T A e 1 M by

£ A E g o ey

Fourier series concern periodic functions f(x) of period p = 2L, that is, by definition
f(x + p) = f(x) for all x and some fixed p > 0; thus, f(x + np) = f(x) for any
integer n. These series are of the form

) o) =ap + S (an cos -"Li x + b, sin % x) (Sec. 11.2)
n=1
with coefficients, called the Fourier coefficients of f(x), given by the Euler formulas
(Sec. 11.2)
L (" fg ax L[ ) con "™
= — ; = — C
o 4 = o7 wLx an =7 wLx 0s —
b= [ 00 sin T
=T, x) sin —
where n = 1, 2, - - - . For period 27 we simply have (Sec. 11.1)
(1% fx) = ag + E (a,, cos nx + b, sin nx)

n=1

with the Fourier coefficients of f(x) (Sec. 11.1)

ag = % J;wf(x) dx, a,= -:; j_wf(x) cosnx dx, b, = *:; f_wf(x) sin nx dx.

- Fourier series are fundamental in connection with periodic phenomena,
particularly in models involving differential equations (Sec. 11.5, Chap. 12). If f(x)
is even [f(—x) = f(x)] or odd [f(—x) = —f(x)], they reduce to Fourier cosine or
Fourier sine series, respectively (Sec. 11.3). If f(x) is given for 0 = x = L only,
it has two half-range expansions of period 2L, namely, a cosine and a sine series
(Sec. 11.3).




B S

(CHAP.TI _ Fourier Series, Integrals, and Transforms.

The set of cosine and sine functions in (1) is called the trigonometric system,
Its most basic property is its orthogonality on an interval of length 2L; that is, for
all integers m and n # m we have

J’L max nmdx{) J’L_mm_nmdxo
cos cos — dx = 0, sin sin — dx =
-L L L -L L L

and for all integers m and n,

L

J’ max | ATX dr = 0
COSs s = u.
LT

This orthogonality was crucial in deriving the Euler formulas (2).

Partial sums of Fourier series minimize the square error (Sec. 11.6).

Ideas and techniques of Fourier series extend to nonperiodic functions f(x) defined
on the entire real line; this leads to the Fourier integral

3) fx) = f [A(w) cos wx + B(w) sin wx] dw (Sec. 11.7)
0
where
1~ 1 .
4 Aw) = — J f(v) cos wu du, Bw) = — j f() sin wu dv
T “—co T Y—co

or, in complex form (Sec. 11.9),

(==

) fo = = [ _fone= aw @ = V=D
|' where
- © ey e
V27 o

Formula (6) transforms f(x) into its Fourier transform f(w), and (5) is the inverse
transform.
Related to this are the Fourier cosine transform (Sec. 11.8)

N 2 =
Q) Fuw) = /-; J’o £(x) cos wx dx

and the Fourier sine transform (Sec. 11.8)

. [2 =
(8) fdw) = |— f f(x) sin wx dx.
]

The discrete Fourier transform (DFT) and a practical method of computing it,
called the fast Fourier transform (FFT), are discussed in Sec. 11.9.




Partial Differential Equations

PDESs are models of various physical and geometrical problems, arising when the unknown
functions (the solutions) depend on two or more variables, usually on time  and one or
several space variables. It is fair to say that only the simplest physical systems can be
modeled by ODEs, whereas most problems in dynamics, elasticity, heat transfer,
electromagnetic theory, and quantum mechanics require PDEs. Indeed, the range of
applications of PDEs is enormous, compared to that of ODEs.

In this chapter we concentrate on the most important PDEs of applied mathematics, the
wave equations governing the vibrating string (Sec. 12.2) and the vibrating membrane
(Sec. 12.7), the heat equation (Sec. 12.5), and the Laplace equation (Secs. 12.5, 12.10).
We derive these PDEs from physics and consider methods for solving imitial and
boundary value problems, that is, methods of obtaining solutions satisfying conditions
that are given by the physical situation.

In Secs. 12.6 and 12.11 we show that PDESs can also be solved by Fourier and Laplace
transform methods.

COMMENT. Numerics for PDEs is explained in Secs. 21.4-21.7.

Prerequisites: Linear ODEs (Chap. 2), Fourier series (Chap. 11)
Sections that may be omitted in a shorter course: 12.6, 12.9-12.11
References and Answers to Problems: App. 1 Part C, App. 2

—12.]: Basic Concepts

A partial differential equation (PDE) is an equation involving one or more partial
derivatives of an (unknown) function, call it u, that depends on two or more variables,
often time 7 and one or several variables in space. The order of the highest derivative is
called the order of the PDE. As for ODEs, second-order PDEs will be the most important
ones in applications.

Just as for ordinary differential equations (ODEs) we say that a PDE is linear if it is
of the first degree in the unknown function « and its partial derivatives. Otherwise we call
it nonlinear. Thus, all the equations in Example 1 on p. 536 are linear. We call a linear
PDE homogeneous if each of its terms contains either u or one of its partial derivatives.
Otherwise we call the equation nonhomogeneous. Thus, (4) in Example 1 (with f not
identically zero) is nonhomogeneous, whereas the other equations are homogeneous.

535
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CHAP.12  Partial Differential Equations (PDES)

Important Second-Order PDEs

Pu 3 .
e8] R One-dimensional wave equatio,
3 du 3 0%u X .
@ o "¢ P One-dimensional heat equatipy
_ %u 2% .
(3) 6x—2 + Ey—z =10 Two-dimensional Laplace equatio;,
@ o + o Fx, ¥) Two-dimensional Poi
— + T3 = flx, wo-dimensional Poisson equat;
a xz ayz Y. quation
0%u 2 a%u a%u . .
(5) -‘-3?2* =c .:3;5 + F Two-dimensional wave equation

82u Bzu 82u .
(6) e + r +—5 =0 Three-dimensional Laplace equation
y.

Here ¢ is a positive constant, 7 is time, x, y, z are Cartesian coordinates, and dimension is the number of these
coordinates in the equation. B

A solution of a PDE in some region R of the space of the independent variables is a
function that has all the partial derivatives appearing in the PDE in some domain D
(definition in Sec. 9.6) containing R, and satisfies the PDE everywhere in R.

Often one merely requires that the function is continuous on the boundary of R, has
those derivatives in the interior of R, and satisfies the PDE in the interior of R. Letting
R lie in D simplifies the situation regarding derivatives on the boundary of R, which is
then the same on the boundary as it is in the interior of R.

In general, the totality of solutions of a PDE is very large. For example, the functions

(D wu=x*~»,  u=ccosy, u=sinxcoshy, u=InG>+)?)

which are entirely different from each other, are solutions of (3), as you may verify. We
shall see later that the unique solution of a PDE corresponding to a given physical problem
will be obtained by the use of additional conditions arising from the problem. For
instance, this may be the condition that the solution # assume given values on the boundary
of the region R (“boundary conditions”). Or, when time ¢ is one of the variables, u (or
u; = du/dt or both) may be prescribed at ¢ = 0 (“initial conditions™).

We know that if an ODE is linear and homogeneous, then from known solutions we
can obtain further solutions by superposition. For PDEs the situation is quite similar:

Fundamental Theorem on Superposition

If u; and uy are solutions of a homogeneous linear PDE in some region R, then
U = Ciiy + Colig

with any constants ¢y and cy is also a solution of that PDE in the region R.

The simple proof of this important theorem is quite similar to that of Theorem 1 in
Sec. 2.1 and is left to the student.




JEC.121 Basic Concepts

“p XAMPLES2

537

Verification of solutions in Probs. 14-25 proceeds as for ODEs. Problems 1-12 concern
PDEs solvable like ODEs. To help the student with them, we consider two typical
examples.

Solving u,, — u = 0 Like an ODE

L]
Find solutions u of the PDE ., — ¥ = 0 depending on x and y.

Solution. Since no y-derivatives occur, we can solve this PDE like #" — u = 0. In Sec. 2.2 we would have
obtained 1 = Ae™ + Be™* with constant A and B. Here A and B may be functions of y, so that the answer is

ux, y) = AQ)e® + B(y)e™

with arbitrary functions A and B. We thus have a great variety of solutions. Check the result by differentiation. B

Solving u,, = —u, Like an ODE

Find solutions u = u(x, y) of this PDE.

Solution. Setting u, = p, we have py = P, Pylp = -1,

integration with respect to x,

u(x, y) = f@e ¥ + g

here, f(x) and g(y) are arbitrary.

Inp=-y+7¢, p= c(x)e” ¥ and by

flx) = J c(x) dx,

where

1-12| PDEs SOLVABLE AS ODEs

This happens if a PDE involves derivatives with respect to
one variable only (or can be transformed to such a form),
so that the other variable(s) can be treated as parameter(s).
Solve for u = u(x, y):

1wy, + 16u =0 20 Uy = U

3 by =0 4.uy+2yu=0
5. u, + u=e™ 6. Uy = 4y%u
7. u, = (cosh x)yu 8. u, = 2xyu

9. y2u,, + 2yu, — 2u =0 10. uy, = 4xiy

1L uyy = ug
2. u,, + 10u, + 258 = ¢
. (Fundamental Theorem) Prove Fundamental

Theorem 1 for second-order PDEs in two and three
independent variables.

‘14—25! VERIFICATION OF SOLUTIONS

Verify (by substitution) that the given function is a solution
of the indicated PDE. Sketch or graph the solution as a
surface in space.

14-17] Wave Equation (1) with suitable ¢

4.y = 4x% + 12 15. u = sin 8x cos 27
16. u = sin 3x sin 187 17. u = sin kx cos ket

18-21

18. u = e~ 2¥* cos 8x

Heat Equation (2) with suitable ¢

19. u = e~ ™"t sin 4x
20. u = "%t sin wx 21, u = e~ “"* cos wx
22-25 '
22. u in (7) in the text

24, y = arctan (y/x)

Laplace Equation (3)
23. u = cos 2y sinh 2x

2.3 .
25, u = ¢ ~¥ sin2xy

26. TEAM PROJECT. Verification of Solutions
(a) Wave equation. Verify that
u(x, ) = vlx + c) + w(x — cf) with any twice
differentiable functions v and w satisfies (1).
(b) Poisson equation. Verify that each u satisfies (4)
with f(x, ) as indicated.

u=x*+y* f=12(2 + %)

u = cosx siny f = —2cosxsiny

u = ylx f= 2y/x®

(c¢) Laplace equation. Verify that

u = 1/Vx2 + y2 + 72 satisfies (6) and

u = In (x* + y®) satisfies 3). s u = Vi2+y2%a

solution of (3)? Of what Poisson equation?
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-[ (d) Verify that u with any (sufficiently often equation (3) and determine a and b so that u satisfjeg
' differentiable) v and w satisfies the given PDE. the boundary conditions ¥ = 110 on the ¢
gL rcle
x2 +y2=1andu = 0 on the circle x® + y? = |
. 00,
! u = v(x) + wy) Uyy =0
. ‘ 28-30| SYSTEMS OF PDEs
U= U(I)W(y) 2 Ullyy = Uglly Saolve
u = U(X + 3!‘) + w(x - 3!‘) i = 9uII 28. Uy = 0) Uy = 0

27. (Boundary value problem) Verify that the function 29. gy = 0, ugy =0
u(x, y) = a In(x* + y?) + b satisfies Laplace’s  30. v, = 0, uy, = 0

12-2 Modeling: Vibrating String, Wave Equation

As a first 1mportant PDE let us derive the equation modeling small transverse vibrations
of an elastic string, such as a violin string. We place the string along the x-axis, stretch it
to length L, and fasten it at the ends x = 0 and x = L. We then distort the string, and at
some instant, call it t = 0, we release it and allow it to vibrate. The problem is to determine
the vibrations of the string, that is, to find its deflection u(x, £) at any point x and at any
time ¢ > 0; see Fig. 283.

u(x, 1) will be the solution of a PDE that is the model of our physical system to be
derived. This PDE should not be too complicated, so that we can solve it. Reasonable
simplifying assumptions (just as for ODEs modeling vibrations in Chap. 2) are as
follows. |

Physical Assumptions i

1. The mass of the string per unit length is constant (“homogeneous string”). The string
is perfectly elastic and does not offer any resistance to bending.

2. The tension caused by stretching the string before fastening it at the ends is so large
r that the action of the gravitational force on the string (trying to pull the strmg down
' a little) can be neglected.

3. The string performs small transverse motions in a vertical plane; that is, every particle
of the string moves strictly vertically and so that the deflection and the slope at every
point of the string always remain small in absolute value.

Under these assumptions we may expect solutions u(x, 7) that describe the physical

reality sufficiently well.
J ., ;

P 2 ==l
« -
T, - |
o
P
Lo

0 z x+Ax L

Fig. 283. Deflected string at fixed time t. Explanation on p. 539



Derivation of the PDE of the Model
(“Wave Equation”) from Forces

The model of the vibrating string will consist of a PDE (“wave equation”) and additional
conditions. To obtailt the PDE, we consider the forces acting on a small portion of the
string (Fig. 283). This method is typical of modeling in mechanics and elsewhere.

Since the string offers no resistance to bending, the tension is tangential to the curve
of the string at each point. Let 7; and T, be the tension at the endpoints P and Q of that
portion. Since the points of the string move vertically, there is no motion in the horizontal
direction. Hence the horizontal components of the tension must be constant. Using the
notation shown in Fig. 283, we thus obtain

(1) T,cosa =Ty cos B = T = const.

In the vertical direction we have two forces, namely, the vertical components —7T; sin «
and T, sin B of T, and T,; here the minus sign appears because the component at P is
directed downward. By Newton’s second law the resultant of these two forces is equal
to the mass p Ax of the portion times the acceleration 6%4/3:%, evaluated at some point
between x and x + Ax; here p is the mass of the undeflected string per unit length, and
Ax is the length of the portion of the undeflected string. (A is generally used to denote
small quantities; this has nothing to do with the Laplacian V2, which is sometimes also
denoted by A.) Hence
: : 0%u
TosinB—T;sina= pAx —5

ar?
Using (1), we can divide this by T cos 8 = T; cos a = 7, obtaining

TysinB  Tysina _ pAx 3%

2 t .
@ Tocos B T, cosa T ot

Now tan « and tan 8 are the slopes of the string at x and x + Ax:

(au) (au)
tana = | — and tan B = | —
ox

ox
Here we have to write partial derivatives because u# depends also on time ¢ Dividing (2)

by Ax, we thus have
1 du du P ﬁ
Ax 0% / | paz ox /|, T a2’

If we let Ax approach zero, we obtain the linear PDE

x z+Azx

3

This is called the one-dimensional wave equation. We see that it is homogeneous and
of the second order. The physical constant 7/p is denoted by ¢? (instead of ¢) to indicate
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. that this constant is positive, a fact that will be essential to the form of the solutiong

“One-dimensional” means that the equation involves only one space variable, x. In the
next section we shall complete setting up the model and then show how to solve it by 5
' ' general method that is probably the most important one for PDEs in engineering
mathematics. »

-12.3 solution by Separating Variables.
Use of Fourier Series

The model of a vibrating elastic string (a violin string, for instance) consists of the
one-dimensional wave equation

1)

o
Il
© |~

for the unknown deflection u(x, 7) of the string, a PDE that we have just obtained, and
some additional conditions, which we shall now derive.

Since the string is fastened at the ends x = 0 and x = L (see Sec. 12.2), we have the
two boundary conditions

2)

Furthermore, the form of the motion of the string will depend on its initial deflection
(deflection at time ¢ = 0), call it f(x), and on its initial velocity (velocity at t = 0), call
it g(x). We thus have the two initial conditions

where 1, = du/d1. We now have to find a solution of the PDE (1) satisfying the conditions
(2) and (3). This will be the solution of our problem. We shall do this in three steps, as
follows.

Step 1. By the “method of separating variables” or product method, setting
u(x, f) = F(x)G(t), we obtain from (1) two ODEs, one for F(x) and the other one for G(#).
Step 2. We determine solutions of these ODEs that satisfy the boundary conditions (2).

Step 3. Finally, using Fourier series, we compose the solutions gained in Step 2 to obtain
a solution of (1) satisfying both (2) and (3), that is, the solution of our model of the
vibrating string.

Step 1. Two ODEs from the Wave Equation (1)

In the method of separating variables, or product method, we determine solutions of the
wave equation (1) of the form

C))




..
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which are a product of two functions, each depending only on one of the variables x and
t. This is a powerful general method that has various applications in engineering
mathematics, as we shall see in this chapter. Differentiating (4), we obtain

2

%u - “u "
s = FG and — =FG
ot ox

where dots denote derivatives with respect to ¢ and primes derivatives with respect to x.
By inserting this into the wave equation (1) we have

FG = ¢*F"G.
Dividing by ¢?FG and simplifying gives '
é'-r F.fr

G - F .

The variables are now separated, the left side depending only on ¢ and the right side only
on x. Hence both sides must be constant because if they were variable, then changing
¢ or x would affect only one side, leaving the other unaltered. Thus, say,

s

G FH'
= ===k
F

G
Multiplying by the denominators gives immediately two ordinary DEs
@) P -KF=0

and

(6)
Here, the separation constant X is still arbitrary.

Step 2. Satisfying the Boundary Conditions (2)

We now determine solutions F and G of (5) and (6) so that u = FG satisfies the boundary
conditions (2), that is,

) u(0, 1) = FO)G@®) = 0, w(lL, 1) = FILGE) = 0 for all 1.

We first solve (5). f G =0, then u = FG = 0, which is of no interest. Hence G#0
and then by (7),

®) () F(©) =0, ® F@)=0.

We show that k must be negative. For k = 0 the general solution of (5)is F = ax + b,
and from (8) we obtaina = b = 0, so that F =0 and u = F G = 0, which is of no interest.
For positive k = p a general solution of (5) is

F=Ae"™ + Be ™™
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and from (8) we obtain ¥ = 0 as before (verify!). Hence we are left with the possibility
of choosing k negative, say, k = —p®. Then (5) becomes F” + p*F = 0 and has a5 ,
general solution

F(x) = A cos px + B sin px.

From this and (8) we have
FOy=A=0 and then F(L)y = B sinpL = 0.

We must take B # 0 since otherwise F = 0. Hence sin pL = 0. Thus
9 pL = n, so that p=— (n integer),
Setting B = 1, we thus obtain infinitely many solutions F(x) = F,,(x), where

. n
(10) F,(x} = sin -E"x n=1,2,--4).
These solutions satisfy (8). [For negative integer n we obtain essentially the same solutions,

except for a minus sign, because sin (—a) = —sin a.]

We now solve (6) with k = —p? = —(n7/L)? resulting from (9), that is,

. CRTT
(11%) G+M2G=0 where A, =cp= -
A general solution is .

G, (1) = B,, cos At + B,* sin A,t.

Hence solutions of (1) satisfying (2) are u,(x, 1) = F,(x)G,(t) = G,(£)F,(x), written out
an (%, 1) = (B 008 Apt + By sin Ay sin —3x (1= 1,2, ).

These functions are called the eigenfunctions, or characteristic functions, and the values
A, = cnm/L are called the eigenvalues, or characteristic values, of the vibrating string.
The set {Aq, Ag, - - -] is called the spectrum.

Discussion of Eigenfunctions. We see that each u,, represents a harmonic motion having
the frequency A,/27 = cn/2L cycles per unit time. This motion is called the nth normal
mode of the string. The first normal mode is known as the fundamental mode (n = 1),
and the others are known as overfones; musically they give the octave, octave plus fifth,
etc. Since in (11)

. nwx L 2L n—1
sin —— = 0 at X = —,— -, L,
L n R n

the nth normal mode has n — 1 nodes, that is, points of the string that do not move (in
addition to the fixed endpoints); see Fig. 284.
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0 L 0 N a \_/ L 0 \/ /L
1 2 n=3 n=£‘{-

n= n=

Fig. 284. Normal modes of the vibrating string

Figure 285 shows the second normal mode for various values of z. At any instant the
string has the form of a sine wave. When the left part of the string is moving down, the
other half is moving up, and conversely. For the other modes the situation is similar.

Tuning is done by changing the tension 7. Our formula for the frequency A, /27 = cn/2L
of u, with ¢ = VTlp [see (3), Sec. 12.2] confirms that effect because it shows that the
frequency is proportional to the tension. 7 cannot be increased indefinitely, but can you
see what to do to get a string with a high fundamental mode? (Think of both L and p.)
Why is a violin smaller than a double-bass?

Fig. 285. Second normal mode for various values of ¢

Step 3. Solution of the Entire Problem. Fourier Series

The eigenfunctions (11) satisfy the wave equation (1) and the boundary conditions (2)
(string fixed at the ends). A single u,, will generally not satisfy the initial conditions (3).
But since the wave equation (1) is linear and homogeneous, it follows from Fundamental
Theorem 1 in Sec. 12.1 that the sum of finitely many solutions u,, is a solution of (1). To
obtain a solution that also satisfies the initial conditions (3), we consider the infinite series
(with A,, = enn/L as before)

(12) Culx ) = E w,bx, ) = 2 (B,, €os At + B;* sin A1) sin H; x ._

‘m=1l . . m=1

Satisfying Initial Condition (3a) (Given Initial Displacement). From (12) and (3a)
we obtain

(13) ux, 0) = > B, sin %x = ).

n=1

Hence we must choose the B,,’s so that u(x, 0) becomes the Fourier sine series of f(x).
Thus, by (4) in Sec. 11.3,

L
(14) B, == fL £60) sin = d, n=1,2,--
s 3
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Satisfying Initial Condition (3b) (Given Initial Velocity). Similarly, by differenﬁaung
(12) with respect to ¢ and using (3b), we obtain

adu
at

< . . nmx
= [2 (—B,A, sin At + B,*A, cos A,f) sin —i|
_ _ L |
t=0 n=1 £=0

s . nmx
=2 By*Ay sin —— = g,
n=1 L

Hence we must choose the B, *’s so that for # = 0 the derivative 9u/3f becomes the Fourier
sine series of g(x). Thus, again by (4) in Sec. 11.3,

B ") ZJ‘L()' nﬂxdx
A, = — x — dx.
" I |]g sin T

Since A,, = cnar/L, we obtain by division

(15) n=12--

Result. Our discussion shows that u(x, ) given by (12) with coefficients (14) and (15)
is a solution of (1) that satisfies all the conditions in (2) and (3), provided the series (12)
converges and so do the series obtained by differentiating (12) twice termwise with respect
to x and ¢ and have the sums 8%/0x? and d%u/8t%, respectively, which are continuous.

Solution (12) Established. According to our derivation the solution (12) is at first a
purely formal expression, but we shall now establish it. For the sake of*simplicity we
consider only the case when the initial velocity g(x) is identically zero. Then the B,* are
zero, and (12) reduces to

nmx T
Ao —

L’ L

(16) u(x, ) = 2, By COS At sin

n=1

It is possible to sum this series, that is, to write the result in a closed or finite form. For
this purpose we use the formula [see (11), App. A3.1]

cm‘:'r . hm l .| am (= ci)bt + si nar N
cOos A sin 3 x=3 sin 7 x—c sin 7 x+ct)p|.
Consequently, we may write (16) in the form

u(x, t) = %- E B, sin{% (x — cr)} + L 2 B, sin{% (x + ct)}.

n=1 2

n=1

These two series are those obtained by substituting x — ct and x + cf, respectively, for
the variable x in the Fourier sine series (13) for f(x). Thus

. ue 1) = 3G f:bﬁ) + e+ en]
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“EXAMPEEST

where f* is the odd periodic extension of f with the period 2Z (Fig. 286). Since the initial
deflection f(x) is continuous on the interval 0 = x = L and zero at the endpoints, it follows
from (17) that u(x, 1) is a continuous function of both variables x and # for all values of
the variables. By differentiating (17) we see that u(x, #) is a solution of (1), provided f(x)
is twice differentiable on the interval 0 < x < L, and has one-sided second derivatives at
x = 0 and x = L, which are zero. Under these conditions u(x, ) is established as a solution
of (1), satisfying (2) and (3) with g(x) = 0. B

Fig. 286. Odd periodic extension of f(x)

Generalized Solution. If f'(x) and f"(x) are merely piecewise continuous (see Sec. 6.1),
or if those one-sided derivatives are not zero, then for each ¢ there will be finitely many
values of x at which the second derivatives of u appearing in (1) do not exist. Except at
these points the wave equation will still be satisfied. We may then regard u(x, 7) as a
“generalized solution,” as it is called, that is, as a solution in a broader sense. For instance,
a triangular initial deflection as in Example 1 (below) leads to a generalized solution.

Physical Interpretation of the Solution (17). The graph of f*(x — cf) is obtained from
the graph of f*(x) by shifting the latter ¢z units to the right (Fig. 287). This means that
F*x — ct) (c.> 0) represents a wave that is traveling to the right as ¢ increases. Similarly,
F*(x + ct) represents a wave that is traveling to the left, and u(x, ) is the superposition
of these two waves.

F¥(x) FHx—ct)

A "

et o

Fig. 287. Interpretation of (17)

Vibrating String if the Initial Deflection Is Triangular

Find the soluticn of the wave equation (1) corresponding to the triangular initial deflection

2k L
—_—x if 0<x<—
)z 2
fx) = 2%

L
— — * — oy
I (L—x) if 3 x<1L

and initial velocity zero. (Figure 288 shows f(x) = u(x, 0) at the top.)

Solution. Since g(x) = 0, we have B,* = 0 in (12), and from Example 4 in Sec. 11.3 we see that the B,,
are given by (3), Sec. 11.3. Thus (12) takes the form

k1 7 e 1 | 3= Jarc
u(x.r]=? ‘-I“gsmzxcos—l‘—r—S—szTxcos—L—r + =],

For graphing the solution we may use u(x, 0) = f(x) and the above interpretation of the two functions in the
representation (17). This leads to the graph shown in Fig. 288. 2
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u(x, 0)
3@ t=0

s+l 2D TN\
/\\ . L5

>

[
t~
(o}
[

/

lf“(x—z'[’)

1f,(x‘_
/\ N oo
\

/

Liark PEVACEE)

\ ! t=1L/2

Lpez+ 30 - 13D
L ‘</I I\ J t=38L/5¢
—- <
1 ppe.. , AL - Py 4L
e+ J:\ =T fAe—=3 ) ¢=4L/5¢
S~ < u

14 ) t=Llk
VE‘F*(J:—L)
=%f*(x+£)

Fig. 288. Solution u(x, t) in Example 1 for various values of t (right part
of the figure) obtained as the superposition of a wave traveling to the
right (dashed) and a wave traveling to the left (left part of the figure)

1-10| DEFLECTION OF THE STRING 7.

Find u(x, t) for the string of length L = 1 and ¢ = 1 when
the initial velocity is zero and the initial deflection with
small k (say, 0.01) is as follows. Sketch or graph u(x, ©) as

1L :
4 /\‘
1 |

1 1 1
in Fig. 288. 3 2
1. k sin 2mrx 2. k(sin wx — %sin 37x) 8. 1L
3. kx(1 — x) 4. kx(1 — x2) 4 /\
5. 1 1 |
1 3
0.1 1 3 !
f i it
0.5 1 4
6.1 % iF /\
i 1 | |
1 3 1 1 1 3 1
3 q 4 2 F
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" 11, (Frequency) How does the frequency of the

fundamental mode of the vibrating string depend on
the length of the string? On the mass per unit length?
What happens to the string if we double the tension?
Why is a contrabass larger than a violin?

- 12. (Nonzero initial velocity) Find the deflection u(x, 7)
of the string of length L = 7 and ¢ = 1 for zero
initial displacement and “triangular” initial velocity
u,(x, 0) = 0.0Ix if 0 = x = I, uy(x, 0) = 0.01(7 — x)
if 37 = x = 7. (Initial conditions with u,(x, 0) # 0 are
hard to realize experimentally.)

-13. CAS PROJECT. Graphing Normal Modes. Write a
program for graphing u,, with L = 7 and ¢2 of your
choice similarly as in Fig. 284. Apply the program to
in, Mg, Ug. AlSo graph these solutions as surfaces over
the xz-plane. Explain the connection between these two
kinds of graphs.

14, TEAM PROJECT. Forced Vibrations of an Elastic
String. Show the following.

(a) Substitution of

an wx, )= G, sin %rf
n=1

(L = length of the string) into the wave equation (1)
governing free vibrations leads to [see (10%)]

cRar

L

(18) G, + A,2G =0, A, =

(b) Forced vibrations of the string under an external
force P(x, £) per unit length acting normal to the string
are governed by the PDE

(19) By = CCUgy + >

(¢) For a sinusoidal force P = Ap sin wt we obtain

P—A‘ r—ik 1) si nTx
p_ sin wt = (%) sin 7

n=1
(20)
(4A/n) sin @t (n odd)
kn(2) =
0 (n even).

Substituting (17) and (20) into (19) gives

. A
G, + A2%G, = o (1 — cos nw) sin wi.

sec. 123 Solution by Separating Variables. Use of Fourier Series
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If A2 # 2, the solution is
G,(f) = By cos At + B,* sin A1

N 2A(1 — cosnm) |

nrOLE = o) sin wi.
Determine B,, and B,* so that u satisfies the initial
conditions u(x, 0) = f(x), w(x, 0) = 0.

(d) (Resonance) Show that if A,, = o, then
G,(t) = B, cos ot + B,* sin wt

A
— —— (1 — cos nw)t cos wt.
R

(e) (Reduction of boundary conditions) Show that
a problem (1)—~(3) with more complicated boundary
-conditions (0, £) = 0, u(L, ©) = A(t), can be reduced
to a problem for a new function v satisfying conditions
v(0,8) = v, 1) =0,v(x,0) = f,(x), vs(x, 0) = g,(x)
but a nonhomogeneous wave equation. Hint: Set
u = v + w and determine w suitably.

Elastic beam

Fig. 289.

15-20, SEPARATION OF A FOURTH-ORDER PDE.

VIBRATING BEAM

By the principles used in modeling the string it can be
shown that small free vertical vibrations of a uniform elastic
beam (Fig. 289) are modeled by the fourth-order PDE

21 L ==t T (Ref. [C11])

where ¢? = EI/pA (E = Young’s modulus of elasticity,
I = moment of intertia of the cross section with respect to
the y-axis in the figure, p = density, A = cross-sectional
area). (Bending of a beam under a load is discussed in
Sec. 3.3)

15. Substituting ¥ = F(x)G(f) into (21), show that
F®IF = ~G/c®G = B* = const,
F(x) = A cos Bx + B sin Bx
+ C cosh Bx + D sinh fBx,
G(1) = a cos cB% + b sin cB%.
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(A) Simply supported

7 (B) Clamped at both
ends

(C) Clamped at the left
end, free at the
right end

1
x=L

Fig. 290. Supports of a beam

16. (Simply supported beam in Fig. 290A) Find solutions
u, = F(x)G,() of (21) corresponding to zero initial
velocity and satisfying the boundary conditions (see
Fig. 290A)

u(@, ) =0, ulL,t)=10
(ends simply supported for all times £),
e (0, 1) = 0, u (L, 1) = 0
(zero moments, hence zero curvature, at the ends).

17. Find the solution of (21) that satisfies the conditions in
Prob. 16 as well as the initial condition

u(x, 0) = f(x) = x(L — x).

18. Compare the results of Probs. 17 and 3. What is tje
basic difference between the frequencies of the
normal modes of the vibrating string and the Vibratjng
beam?

19. (Clamped beam in Fig. 290B) What are the boundary
conditions for the clamped beam in Fig. 290B? Show
that F in Prob. 15 satisfies these conditions if AL is 5
solution of the equation

(22) cosh BL cos BL = 1.

Determine approximate solutions of (22), for instance,
graphically from the intersections of the curves of
cos AL and 1/cosh BL.

20. (Clamped-free beam in Fig. 290C) If the beam is
clamped at the left and free at the right (Fig. 2900),
the boundary conditions are

u(0, 1) = 0,
u::z(L& t) =0,

uz(0, 1) = 0,
u.(L, 1) = 0.

Show that F in Prob. 15 satisfies these conditions if gL
is a solution of the equation

(23) cosh 8L cos BL = —1.

Find approximate solutions of (18).

-12:4- D'Alembert’s Solution

of the Wave Equation.

Character_is_tics

CTtis interesting that the solution (17), Sec. 12.3, of the wave equation

1)

ar> - ¢ x>’

9%u 9 9%u

can be immediately obtained by transforming (1) in a suitable way, namely, by introducing

the new independent variables

(2) v=x+ct

w=x—cl.

Then u becomes a function of v and w. The derivatives in (1) can now be expressed in
terms of derivatives with respect to v and w by the use of the chain rule in Sec. 9.6.
Denoting partial derivatives by subscripts, we see from (2) that v, = 1 and w, = 1. For
simplicity let us denote u(x, 7), as a function of v and w, by the same letter u. Then

Uy = UpUy T UpyWy = Uy T Uy,
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We now apply the chain rule to the right side of this equation. We assume that all the
partial derivatives involved are continuous, so that iy, = U, Since v, = 1 and w, = 1,
we obtain

U = (Uy + )y = (Uy + Uy)yUp T ity T Upp)yWo = Uy + Uty T Uy
Transforming the other derivative in (1) by the same procedure, we find
uﬂ: = cz(uuv - zuuw + uww)'

By inserting these two results in (1) we get (see footnote 2 in App. A3.2)

3

The point of the present method is that (3) can be readily solved by two successive
integrations, first with respect to w and then with respect to v. This gives

L d —fh dv +
rod ) an u= |h(v)dv + g(w).

Here h(v) and y(w) are arbitrary functions of v and w, respectively. Since the integral is
a function of v, say, ¢(v), the solution is of the form u# = ¢(v) + ¢¥(w). In terms of
x and ¢, by (2), we thus have

) uln )= plx o) ).

This is known as d’Alembert’s solution® of the wave equation (1).

Its derivation was much more elegant than the method in Sec. 12.3, but d’ Alembert’s
method is special, whereas the use of Fourier series applies to various equations, as we
shall see.

D’'Alembert’s Solution Satisfying the Initial Conditions

&) (@) ulx, 0) = fl), (®)  udx, 0) = g).
These are the same as (3) in Sec. 12.3. By differentiating (4) we have

(6) u:(x, 1) = cq’)’(x + cf) — Cllllf (x — cf)

1JEAN LE ROND D'ALEMBERT (1717-1783), French mathematician, also known for his important work
in mechanics.

‘We mention that the general theory of PDEs provides a systematic way for finding the transformation (2) that
simplifies (1). See Ref. [C8] in App. 1.
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where primes denote derivatives with respect to the enfire arguments x + ¢ and x —
respectively, and the minus sign comes from the chain rule. From (4)-(6) we have

o u(x, 0) = ¢(x) + ¥&x) = f(x),
®) u(x, 0) = c¢'(x) — et (1) = gx).

Dividing (8) by ¢ and integrating with respect to x, we obtain

xz

1

O b@ = b = ko) + — [ gds k) = 9l) ~ Yixo)
If we add this to (7), then ¢ drops out and division by 2 gives
10 — L+ | e ds + =k
(10) (x) = 5 F&) + o xﬂg(S) s+ o kxo).
Similarly, subtraction of (9) from (7) and division by 2 gives

1 1 1
(1) P(x) = 3 f&) = 5~ J:g(S) ds — = k(xo).

In (10) we replace x by x + ct; we then get an integral from x, to x + ¢f. In (11) we
replace x by x — ¢t and get minus an integral from xo to x — c¢f or plus an integral from
x — ct to xg. Hence addition of ¢(x + cf) and (x — cf) gives u(x, 7) [see (4)] in the form

(12) ulx, ) == [fe+e) + fx— )] + — | g(s) ds.
2 26 x—ct

If the initial velocity is zero, we see that this reduces to

(13) uCx, ) = 3[f(x + o) + flx — en],

in agreement with (17) in Sec. 12.3. You may show that because of the boundary conditions
(2) in that section the function f must be odd and must have the period 2L.

Our result shows that the two initial conditions [the functions f(x) and g(x) in (5)]
determine the solution uniquely.

The solution of the wave equation by the Laplace transform method will be shown in
Sec. 12.11.

Characteristics. Types and Normal Forms of PDEs

The idea of d’Alembert’s solution is just a special instance of the method of
characteristics. This concerns PDEs of the form

(14) Aty + 2Bugy + Cuyy = F(x, y, u, Uy, )
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EXAMPEEST

(as well as PDEs in more than two variables). Equation (14) is called quasilinear because
it is linear in the highest derivatives (but may be arbitrary otherwise). There are three
types of PDEs (14), depending on the discriminant AC — B?, as follows.

~ Type it Defining Condition | Example in Sec. 12.1
Hyperbolic AC—B><0 Wave equation (1)
Parabolic AC—-B2=0 Heat equation (2)
Elliptic AC - B*>0 Laplace equation (3)

Note that (1) and (2) in Sec. 12.1 involve ¢, but to have y as in (14), we set y = ct in
(1), obtaining u; — Uy = cz(uyy — Uyy) = 0. And in (2) we set y = c?t, so that
Uy — CCupy = cz(uy = Uspy)-

A, B, C may be functions of x, y, so that a PDE may be of mixed type, that is, of
different type in different regions of the xy-plane. An important mixed-type PDE is the
Tricomi equation (see Prob. 10).

Transformation of (14) to Normal Form. The normal forms of (14) and the
corresponding transformations depend on the type of the PDE. They are obtained by
solving the characteristic equation of (14), which is the ODE

(15) L AY?=2By +C=0

wherey’ = dyldx (note —2B, not +2B). The solutions of (15) are called the characteristics
of (14), and we write them in the form ®(x, y) = const and W(x, y) = const. Then the
transformations giving new variables v, w instead of x, y and the normal forms of (14)
are as follows.

~Type  New Variables B o ‘Normal Form
Hyperbolic v==0 w=W Uy = Fy
Parabolic v=x w=o=T Uy = Fa
Elliptic v=%®+ ¥ w = ~21—i(¢> - ) Uy + Uppyy = F3

Here, ® = ®(x, y), ¥ = V(x, y), F; = F1(v, w, u, U,, u,), etc., and we denote i« as
function of v, w again by u, for simplicity. We see that the normal form of a hyperbolic
PDE is as in d’ Alembert’s solution. In the parabolic case we get just one family of solutions
@ = V. In the elliptic case, i = V/—1, and the characteristics are complex and are of
minor interest. For derivation, see Ref. [GR3] in App. 1.

D’Alembert’s Solution Obtained Systematically

The theory of characteristics gives d’Alembert’s solution in a systematic fashion. To see this, we write the wave
equation wy; — c®uy, = 0 in the form (14) by setting y = cz. By the chain rule, uy = uyy; = cuy and
Wy = czuw. Division by ¢ gives Uz, — Uy, = 0, as stated before. Hence the characteristic equation 1s
3% —=1=(y + 1)y’ — 1) = 0. The two families of solutions (characteristics) are ®(x, y) =y + x = const
and W(x, y) = y — x = const. This gives the new variables v = ® =y + x = ct + x and
w=T =y — x = ct — x and d’Alembert’s solution u = f1(x + ¢f) + falx — c1). B

(e




1. Show that ¢ is the speed of each of the two waves given
by (4).

2. Show that because of the boundary conditions (2),
Sec. 12.3, the function f in (13) of this section must

" be odd and of period 2L.

3, If a steel wire 2 m in length weighs 0.9 nt (about 0.20 1b)
and is stretched by a tensile force of 300 nt (about 67.4
Ib), what is the corresponding speed of transverse waves?

4. Whar are the frequencies of the eigenfunctions in
Prob. 37

5. Longitudinal Vibrations of an Elastic Bar or Rod.
These vibrations in the direction of the x-axis are
modeled by the wave equation u,; = ¢2u, c¢2=Elp

. (see Tolstov [C9], p. 275). If the rod is fastened at one -

end, x = 0, and free at the other, x = L, we have
u(0, t) = 0 and u,(L, ) = 0. Show that the motion
corresponding to initial displacement u(x, 0) = f(x)
and initial velocity zero is

u = 2 A, sin p,,x €08 pyct,
n=0
_ @n+ Dm

2
A, = 7 J;Lf(x) sin p,x dx, p, oL

_CHAP.12 _Partial Differential Equations (PDEs)

GRAPHING SOLUTIONS

Using (13), sketch or graph a figure (similar to Fig. 283 i,

Sec. 12.3) of the deflection u(x, #) of a vibrating string

(length L = 1, ends fixed, ¢ = 1) starting with initja

velocity 0 and initial deflection (k small, say, & = 0.01),

6. f(x) = k sin mx 7. f(x) = k(1 — cos 27x)
8. f(x) = kx(1 — x) 9. f(x) = k(x — x%)

10. (Tricomi and Airy equations®) Show that the Tricon;
equation yu, + iy, = 01is of mixed type. Obtain the
Airy equation G” — yG = 0 from the Tricomi equation
by separation. (For solutions, see p. 446 of Ref. [GR1]
listed in App. 1.)

[1120] NORMAL FORMS

Find the type, transform to normal form, and solve. (Show
the details of your work.)

110 sy — 4y = 0
13. w + Suyy, =0 14, uyy + Uyy — 2, =0
15, sy + 2upy + Uy = 0 160 XUy — yiyy =0

17, ugy — diigy + 4uy, =0 18, wyy + 21y + Siy, =0
19, xity, — Yitzy = 0 20,y — 4y + 3y, =0

12, wyy — 2upy +ouy, =0

12:5: Heat Equation: Solution by Fourier Series

From the wave equation we now turn to the next “big” PDE, the heat equation

K
— = 2V, 2=,
at ap

which gives the temperature u(x, y, z, ?) in a body of homogeneous material. Here c?is
the thermal diffusivity, K the thermal conductivity, o the specific heat, and p the density
of the material of the body. V2 is the Laplacian of u, and with respect to Cartesian

coordinates x, y, ,

Vi =

%u N u . %u
oxz a2

The heat equation was derived in Sec. 10.8. It is also called the diffusion equation.

As an important application, let us first consider the temperature in a long thin metal
bar or wire of constant cross section and homogeneous material, which is oriented along
the x-axis (Fig. 291) and is perfectly insulated laterally, so that heat flows in the x-direction

25IR GEORGE BIDELL AIRY (1801-1892), English mathematician, known for his work in elasticity.
FRANCESCO TRICOMI (1897-1978), Italian mathematician, who worked in integral equations.
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x=L
Fig. 291. Bar under consideration

only. Then u depends only on x and time #, and the heat equation becomes the
one-dimensional heat equation

(1)

This seems to differ only very little from the wave equation, which has a term iy instead
of u;, but we shall see that this will make the solutions of (1) behave quite differently
from those of the wave equation.

We shall solve (1) for some important types of boundary and initial conditions. We
begin with the case in which the ends x = 0 and x = L of the bar are kept at temperature
zero, so that we have the boundary conditions

2

Furthermore, the m1t1al tcmperature in thc bar at time 1 = 0 is given, say, f(x), so that we
have the initial condition

=0 for

3 [f(x) given].
Here we must have f(0) = 0 and f(L) = 0 because of (2).

We shall determine a solution u(x, ) of (1) satisfying (2) and (3)—one initial condition
will be enough, as opposed to two initial conditions for the wave equation. Technically,
our method will parallel that for the wave equation in Sec. 12.3: a separation of variables,
followed by the use of Fourier series. You may find a step-by-step comparison worthwhile.

Step 1. Two ODEs from the heat equation (1). Substitution of a product
u(x, ) = F(x)G(f) into (1) gives FG = ¢2F"G with G = dG/dt and F" = d2F/d:>. To
separate the variables, we divide by ¢?FG, obtaining

“)

The left side depends only on ¢ and the right side only on x, so that both sides must equal
a constant k (as in Sec. 12.3). You may show that for £ = 0 or k > 0 the only solution
u = FG satisfying (2) is u = 0. For negative k = —p? we have from (4)

c'; F.l'f
2= F -

Multiplication by the denominators gives immediately the two ODEs

®) F” ¥ sz : 0
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and
() G + %G = 0.
Step 2. Satisfying the boundary conditions (2). We first solve (5). A general solution jg
7N F(x) = A cos px + B sin px.
From the boundary conditions (2) it follows that
u(0, 1) = F(O)G(r) = 0 and w(L, t) = FILYG(r) = 0.

Since G = 0 would give u = 0, we require F(0) = 0, F(L) = 0 and get F(0) = A =
by (7) and then F(L) = B sin pL = 0, with B # 0 (to avoid F' = 0); thus,

nir
sin pL = 0, hence p——“-i-, n=1,2,-

Setting B = 1, we thus obtain the following solutions of (5) satisfying (2):

. RnmX
Fn(x)=sm~L—, n=1,2"""

(As in Sec. 12.3, we need not consider negative integral values of n.)
All this was literally the same as in Sec. 12.3. From now on it differs since (6) differs
from (6) in Sec. 12.3. We now solve (6). For p = nm/L, as just obtained, (6) becomes

- Cn?r

G+ A2G=0 where A, = —.

It has the general solution
G, (f) = Bpe ™, n=12 """

where B,, is a constant. Hence the functions

are solutions of the heat equation (1), satisfying (2). These are the eigenfunctions of the
problem, corresponding to the eigenvalues A, = cnr/L.

Step 3. Solution of the entire problem. Fourier series. So far we have solutions (8)
satisfying the boundary conditions (2). To obtain a solution that also satisfies the initial
condition (3), we consider a series of these eigenfunctions,

) Cun = =3 By sm?e‘*n‘* | (Aﬂ = ‘"‘”"T).
TEMEAT SR
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From this and (3) we have

nmx

u(x, 0) = >, B, sin 7

n=1

Fx).

Hence for (9) to satisfy (3), the B,,’s must be the coefficients of the Fourier sine series,
as given by (4) in Sec. 11.3; thus

The solution of our problem can be established, assuming that f(x) is piecewise
continuous (see Sec. 6.1) on the interval 0 = x = L and has one-sided derivatives (see
Sec. 11.1) at all interior points of that interval; that is, under these assumptions the series
(9) with coefficients (10) is the solution of our physical problem. A proof requires
knowledge of uniform convergence and will be given at a later occasion (Probs. 19, 20
in Problem Set 15.5).

Because of the exponential factor, all the terms in (9) approach zero as ¢ approaches
infinity. The rate of decay increases with 7.

Sinusoidal Initial Temperature

Find the temperature u(x, 1) in a laterally insulated copper bar 80cm long if the initial temperature is
100 sin (77x/80) °C and the ends are kept at 0°C. How long will it take for the maximum temperature in the
bar to drop to 50°C? First guess, then calculate. Physical data for copper: density 8.92 gm/em®, specific heat
0.092 cal/(gm °C), thermal conductivity 0.95 cal/(cm sec °C).

Solution. The initial condition gives

nmx
8

= X
u(x,0) = >, B, sin 5 = f9) = 100 sin —
n=1

80 °

Hence, by inspection or from (9) we get B; = 100, By = By = - -+ = 0. In (9) we need ‘\12 = 212,
where ¢ = Ki(op) = 0.95/(0.092 - 8.92) = 1.158 Icmzlsec}. Hence we obtain

A% = 1.158-9.870/80% = 0.001785 [sec™1].

The solution (9) is

T _
ulx, 1) = 100 sin E g~ 0-001785¢

Also, 100e™ %1% = 50 when ¢ = (In 0.5)/(~0.001785) = 388 [sec] ~ 6.5 [min]. Does your guess, or at
least its order of magnitude, agree with this result? E

Speed of Decay

Solve the problem in Example 1 when the initial temperature is 100 sin (37x/80) °C and the other data are as
before.

Solution. 1In (9), instead of n = 1 we now have n = 3, and A3% = 3%1,2 = 9 0.001785 = 0.01607, so that

the solution now is

3mx
u(x, t) = 100 sin 50 g~ 001607

Hence the maximum temperature drops to 50°C in ¢ = (In 0.5)/(—0.01607) ~ 43 [seconds], which is much
faster (9 times as fast as in Example 1; why7).
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s e —

Had we chosen a bigger n, the decay would have been still faster, and in a sum or series of such terins, each
term has its own rate of decay, and terms with large n are practically O after a very short time. Our next example ;
is of this type, and the curve in Fig. 292 corresponding 0 ¢ = 0.5 looks almost like a sine curve; that is, it i5
practically the graph of the first term of the solution. - B

x
| u
£ x
u t=2
T
T x

Fig. 292. Example 3. Decrease of temperature
with time t for L = wand ¢ =1

| rmneecsEXAPEES  “Triangular” Initial Temperature in a Bar

Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature 0; assuming that
the initial temperature is
x if 0<x<L2,
f) =

L —x if Li2 <x<L.

(The uppermost part of Fig. 292 shows this function for the special L = .)
Solution. From (10) we get

Li2 L
(10%) B =EU xsiniia—-x"dx“rj (wa)sinfﬁdx)
"L \Jg L L2 L '
Integration gives B, = 0if n is even,
B. o 1,59 ) d B s (i 3,7, 11
= n=1,3, R an = - n=2317, R B
n= 2.2 ( n 2ar? )

(see also Example 4 in Sec. 11.3 with k = L/2). Hence the solution is

4L . omx A 1 . 3mx 3ea V2
u(x,:)=? sm-i-e.xp - -Z- t —asm-—i—exp - T tl+ = 1.

Figure 292 shows that the temperature decreases with increasing 7, because of the heat loss due to the cooling

of the ends.
Compare Fig. 292 and Fig. 288 in Sec. 12.3 and comment. 8
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Bar with Insulated Ends. Eigenvalue 0

Find a solution formula of (1), (3) with (2) replaced by the condition that both ends of the bar are insulated.

Solution. Physical experiments show that the rate of heat flow is proportional to the gradient of the
temperature. Hence if the ends x = 0 and x = L of the bar are insulated, so that no heat can flow through the
ends, we have grad u = u, = du/dx and the boundary conditions

(2%) 10, ) = 0, u (L, £) =0 for all £,

Since u(x, £) = F()G(1), this gives uy(0, 7) = F'(0)G(1) = 0 and u,(L, #) = F'(L)G() = 0. Differentiating (7),
we have F'(x) = —Ap sin px + Bp cos px, so that

F'(0)=Bp=0 and then F'(L) = —Ap sinpL = 0.

The second of these conditions gives p = p, = nw/L, (n = 0, 1, 2, - - -). From this and () with A = 1
and B = 0 we get F,,(x) = cos (n7x/L), (n = 0, 1, 2, + * -). With G, as before, this yields the eigenfunctions

nwx oAt

(11) up(x, 1) = Fp(x) G,(1) = A, cos I =01,

corresponding to the eigenvalues A,, = cnar/L. The latter are as before, but we now have the additionzl eigenvalue
A9 = 0 and eigenfunction #, = const, which is the sclution of the problem if the initial temperature f(x) is
constant. This shows the remarkable fact that @ separation constant can very well be zero, and zero can be an
eigenvalue.

Furthermore, whereas (8) gave a Fourier sine series, we now get from (11) a Fourier cosine series

(12) 50 =T, ) = 3 Ay cos T e ("“ - gan)

. m=0

Its coefficients result from the initial condition (3),

u(x, 0) = 2 A, cos EILE = f(x),

n=0

in the form (2), Sec. 11.3, that is,

1 2 r nwx
(13) Ao=}:f:f(x)dx, An="gj;f{x}cos-£‘—dx, n=12 .. B

“Triangular” Initial Temperature in a Bar with Insulated Ends

Find the temperature in the bar in Example 3, assuming that the ends are insulated (instead of being kept at
temperature 0).

Solution. For the triangular initial temperaure, (13) gives Ay = L/4 and (see also Example 4 in Sec. 11.3
with k = L/2)

Li2 L
A 2 f nmwx N f ; ) nx 2L ) nar 1)
- = g — X) cos —— - e — )
n=7 . X Ccos 13 dx szc X I3 dx 33 cos 2 COs nmT

Hence the solution (12) is

_ L 8 [1 2mx 2em\2 ] 1 Gamx [ [6em\2 ] )
u(x, f) = n 2172 cos 7 exp I £+ P2 cOos 7 expL I3 I .

We see that the terms decrease with increasing ¢, and u — L/4 as ¢ —» o this is the mean value of the initial
temperature. This is plausible because no heat can escape from this totally insulated bar. In contrast, the cooling
of the ends in Example 3 led to heat loss and u — 0, the temperature at which the ends were kept. E
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Steady Two-Dimensional Heat Problems.
Laplace’s Equation

We shall now extend our discussion from one to two space dimensions and consider the
two-dimensional heat equation

ou 8%u 3%u
— =2V =2 — t =5
at ox ay

for steady (that is, rime-independent) problems. Then du/dt = O and the heat equation
reduces to Laplace’s equation

o 2 Pu
(14) LA A

(which has already occurred in Sec. 10.8 and will be considered further in
Secs. 12.7-12.10). A heat problem then consists of this PDE to be considered in some
region R of the xy-plane and a given boundary condition on the boundary curve C of R.
This is a boundary value problem (BVP). One calls it:

First BVP or Dirichlet Problem if u is prescribed on C (“Dirichlet boundary
condition’)
Second BVP or Neumann Problem if the normal derivative u, = du/dn is

prescribed on C (“Neumann boundary condition™)

Third BVP, Mixed BVP, or Robin Problem if « is prescribed on a portion of C
and i, on the rest of C (“Mixed boundary condition”).

u = flx)

u=0 *

Fig. 293. Rectangle R and given boundary values

Dirichlet Problem in a Rectangle R (Fig. 293). We consider a Dirichlet problem for
Laplace’s equation (14) in a rectangle R, assuming that the temperature u(x, y) equals a
given function f(x) on the upper side and 0 on the other three sides of the rectangle.

We solve this problem by separating variables. Substituting u(x, y) = F(x)G(y) into
(14) written as i, = —1,,, dividing by FG, and equating both sides to a negative constant,
we obtain
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1 d%F 1 d°G
F a6 Tk
From this we get
d’F
F + kF = 0,

and the left and right boundary conditions imply
F@O) =0, and F(a) = 0.

This gives k = (nm/a)® and corresponding nonzero solutions
. BT
(15) F(x) = F,,(x) = sin "E-x, n=12---

The ODE for G with k = (n/a)® then becomes

d’G 2
5 il G=0.
dy a

Solutions are

G() = Gul(y) = Ane™™" + B,

Now the boundary condition z = 0 on the lower side of R implies that G,(0) = 0; that
is, G,(0) = A, + B, = O or B,, = —A,,. This gives
ny

Gn(y) = An(enwyia - e_ﬂﬂwﬂ) = ZAn sinh ——;—“ .

From this and (15), writing 24,, = A, we obtain as the eigenfunctions of our problem

(16) Un(x, ) = Fo(x)Gp(y) = A¥ sin "_? sinh % _

These solutions satisfy the boundary condition ¥ = 0 on the left, right, and lower sides.
To get a solution also satisfying the boundary condition u(x, b) = f(x) on the upper
side, we consider the infinite series

u(e, y) = 2, up(x, y).

n=1
From this and (16) with y = b we obtain

= b
Wx, b) = f0) = D, A* sin %{ sinh —

n=1

We can write this in the form

ue B =S (A;': sinh ilﬁ) sin

n=1

nmx

a
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This shows that the expressions in the parentheses must be the Fourier coefficients b, of
f(x); that is, by (4) in Sec. 11.3, -

nih
b, =

2 ¢ . nmx
= — j f(x) sin — dx.
a “p a

From this and (16} we see that the solution of our problem is

an ue ) = s y) = X A% sin T sinh '
: coom=1 m=l w0 e

where

4 A i by TP

We have obtained this solution formally, neither considering convergence nor showing
that the series for u, #,,, and u,, have the right sums. This can be proved if one assumes
that f and f’ are continuous and f” is piecewise continuous on the interval 0 = x = 4.
The proof is somewhat involved and relies on uniform convergence. It can be found in
[C4] listed in App. 1.

Unifying Power of Methods. Electrostatics, Elasticity

The Laplace equation (14) also governs the electrostatic potential of electrical charges in
any region that is free of these charges. Thus our steady-state heat problem can also be
interpreted as an electrostatic potential problem. Then (17), (18) is the potential in the
rectangle R when the upper side of R is at potential f(x) and the other three sides are
grounded.

Actually, in the steady-state case, the two-dimensional wave equation (to be considered
in Secs. 12.7, 12.8) also reduces to (14). Then (17), (18) is the displacement of a rectangular
elastic membrane (rubber sheet, drumhead) that is fixed along its boundary, with three
sides lying in the xy-plane and the fourth side given the displacement f(x).

This is another impressive demonstration of the unifying power of mathematics. It
illustrates that enfirely different physical systems may have the same mathematical model
and can thus be treated by the same mathematical methods.

1. WRITING PROJECT. Wave and Heat Equations. 2. (Eigenfunctions) Sketch (or graph) and compare the

Compare the two PDEs with respect to type, general first three eigenfunctions (8) with B, = 1, ¢ = 1,
behavior of eigenfunctions, and kind of boundary and IL=afort=0,0.2, 04 0.6, 0.8, 1.0.

initial conditions and resuiting practical problems. Also 3. (Decay) How does the rate of decay of (8) with fixed
discuss the difference between Figs. 288 in Sec. 12.3 n depend on the specific heat, the density, and the

and 292. thermal conductivity of the material?
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4' I.t the first eigenfunction (8) of the bar decreases to half
its value within 10 sec, what is the value of the

diffusivity?
LATERALLY INSULATED BAR

jaterally insulated ba: of length 10 cm and constant
ss-sectional area 1 cm?, of density 10.6 gm/cm?, thermal
aductivity  1.04 calf(cm sec °C), and specific heat
056 cal/(gm °C) (this corresponds to silver, a good heat
nductor) has initial temperature f(x) and is kept at 0°C
the ends x = 0 and x = 10. Find the temperature u(x, )
later times. Here, f(x) equals:

. f(x) = sin 0.47rx

. f(x) = sin 0.17x + 1 sin 0.27x

. f(x) = 02xif 0 < x < 5 and O otherwise

L fx) =1 —02]x = 5]

. f) =xif 0 <x <25, f(x) =25if2.5 <x <75,

fx) =10 - xif 7.5 < x < 10

. (Arbitrary temperatures at ends) If the ends x = 0
and x = L of the bar in the text are kept at constant
_temperatures U; and U,, respectively, what is the

temperature u4(x) in the bar after a long time
(theoretically, as t — )7 First guess, then calculate.
. In Prob. 10 find the temperature at any time.

. (Changing end temperatures) Assume that the ends
of the bar in Probs. 5-9 have been kept at 100°C for a
long time. Then at some instant, call it ¢ = 0, the
temperature at x = L is suddenly changed to 0°C and
kept at 0°C, whereas the temperature at x = 0 is kept
at 100°C. Find the temperature in the middle of the bar
ats =1, 2, 3, 10, 50 sec. First guess, then calculate.

BAR UNDER ADIABATIC CONDITIONS

“Adiabatic” means no heat exchange with the
neighborhood, because the bar is completely insulated, also
at the ends. Physical Information: The heat flux at the ends
is proportional to the value of du/dx there.

13. Show that for the completely insulated bar,
u(0,1) = 0, u(L, 1) = 0, u(x, 1) = f(x) and separation
of variables gives the following solution, with A, given
by (2) in Sec. 11.3.

u(x, 1) = Ag + 2, A, cos H%E-{ g (enmiLy%
n=1

Find the temperature in Prob. 13 with L =

- c=1, and
14 f(x) = x 15. f(x) =1

16. f(x) = 0.5 cos 4x 17. f(x) = w2 — x2
B fx) =dw - |x—dn 19 fx) = (x — i)

“ 20. Find the temperature of the bar in Prob. 13 if the left
end is kept at 0°C, the right end is insulated, and the
initial temperature is Uy = const.

21. The boundary condition of heat transfer
(19) —u {m, t) = k[u(m, 1) — ug)

applies when a bar of length 7 with ¢ = 1 is laterally
insulated, the left end x = 0 is kept at 0°C, and at the
right end heat is flowing into air of constant
temperature . Let k& = 1 for simplicity, and 1y = 0.
Show that a solution is u(x, f) = sin px e~P”t, where
p is a solution of tan pw = —p. Show graphically
that this equation has infinitely many positive solutions
Pi. P2, P3, * ", Wherep,, > n — %and

Im (p,—n+ 1) = 0. (Formula (19) is also known

as radiation boundary condition, but this is
misleading; see Ref. [C3], p. 19.)

22. (Discontinuous f) Solve (1), (2), (3) with L = =
and f(x) = Uy = const (¥ 0) if 0 < x < 7/2,
fX)=0if7/2 <x < 7

23. (Heat flux) The heat flux of a solution u(x, f) across
x = (0 is defined by (1) = —Ku_(0, ). Find ¢(z) for
the solution (9). Explain the name. Is it physically
understandable that ¢ goes to 0 as ¢ — 07

OTHER HEAT EQUATIONS

24, (Bar with heat generation) If heat is generated at a
constant rate throughout a bar of length L = # with
initial temperature f(x) and the ends at x = O and
o are kept at temperature 0, the heat equation is
uy = cuy, + H with constant H > 0. Solve this
problem. Hint. Set u = v — Hx(x — m)/(2c?).

25. (Convection) If heat in the bar in the text is free to
flow through an end into the surrounding medium
kept at 0°C, the PDE becomes v, = c?v,, — Bv. Show
that it can be reduced to the form (1) by setting
vix, 1) = u(x, Hw(r).

26. Consider v, = c%v,, —v (0 <x <L, t>0),
v(0,8) = 0,v(L, 1) = 0,v(x, 0) = f(x), where the term
—v models heat transfer to the surrounding medium
kept at temperature 0. Reduce this PDE by setting
vix, 1) = ulx, Hw(¥) with w such that u is given by (9),
(10).

27. (Nonhomogeneous heat equation) Show that the
problem modeled by

Uy — c2u,, = Ne
and (2), (3) can be reduced to a problem for the
homogeneous heat equation by setting

ulx, 1) = v(x, 1) + w(x)

and determining w so that v satisfies the homogeneous
PDE and the conditions v(0, t) = v(L, 1) = O,
v(x, 0) = f(x) — w(x). (The term Ne™ " may represent
heat loss due to radioactive decay in the bar.)
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28-35| TWO-DIMENSIONAL PROBLEMS
28. (Laplace equation) Find the potential in the rectangle

0 = x = 20, 0 = y = 40 whose upper side is kept at
potential 220 V and whose other sides are grounded.
Find the potential in the square 0 = x =2, 0=y =2
if the upper side is kept at the potential sin 37x and the
other sides are grounded.

CAS PROJECT. Isotherms. Find the steady-state
solutions (temperatures) in the square plate in Fig. 294
with a = 2 satisfying the following boundary
conditions. Graph isotherms.

(a) u = sin 7rx on the upper side, 0 on the others.
(b) u = 0 on the vertical sides, assuming that the other
sides are perfectly insulated.

(¢) Boundary conditions of your choice (such that the
solution is not identically zero).

x

Fig. 294. Square plate

CHAP.12  Partial Differential Equations (PDEs)

31.

32.

33.

34.

35.

(Heat flow in a plate) The faces of the thin Square
plate in Fig. 294 with side a = 24 are perfect]y
insulated. The upper side is kept at 20°C and the Other
sides are kept at 0°C. Find the steady-state temperagyy,
u(x, y) in the plate.

Find the steady-state temperature in the plate in Prop,
31 if the lower side is kept at Uy°C, the upper side 5
U;°C, and the other sides are kept at 0°C. Hing; Spit
into two problems in which the boundary temperagpe
18 0 on three sides for each problem.

(Mixed boundary value problem) Find the steady-
state temperature in the plate in Prob. 31 with the upper
and lower sides perfectly insulated, the left side kept
at 0°C, and the right side kept at f(y)°C.

(Radiation) Find steady-state temperatures in the
rectangle in Fig. 293 with the upper and left sideg
perfectly insulated and the right side radiating into 3
medium at 0°C according to u,(a, y) + hu(a, y) = 0,
h > 0 constant. {(You will get many solutions since no
condition on the lower side is given.)

Find formulas similar to (17), (18) for the temperature
in the rectangle R of the text when the lower side of R
is kept at temperature f(x) and the other sides are kept
at 0°C.

- Heat Equation: Solution by

Fourier Integrals and Transforms

Our discussion of the heat equation

@

at

. u

=2
ax?

in the last section extends to bars of infinite length, which are good models of very long
bars or wires (such as a wire of length, say, 300 ft). Then the role of Fourier series in the
solution process will be taken by Fourier integrals (Sec. 11.7).

Let us illustrate the method by solving (1) for a bar that extends to infinity on both
sides (and is laterally insulated as before). Then we do not have boundary conditions, but

only the initial condition

@

u(x, 0) = f(x)

(—m<x<00)

where f(x) is the given initial temperature of the bar.
To solve this problem, we start as in the last section, substituting u(x, ) = F (0)G()

into (1). This gives the two ODEs

3

F" +p*F =0

[see (5), Sec. 12.5]
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and
) G+ c%p?G=0 [see (6), Sec. 12.5].
Solutions are

F(x) = A cos px + B sin px and G(t) = e~

7

respectively, where A and B are any constants. Hence a solution of (1) is
5) u(x,t; p) = FG = (Acospx + B sinpx)e'“zpzt.

Here we had to choose the separation constant k negative, k = —p?, because positive
values of k would lead to an increasing exponential function in (5), which has no physical
meaning.

Use of Fourier Integrals

Any series of functions (5), found in the usual manner by taking p as multiples of a fixed
number, would lead to a function that is periodic in x when ¢ = 0. However, since f(x)
in (2) is not assumed to be periodic, it is natural to use Fourier integrals instead of Fourier
series. Also, A and B in (5) are arbitrary and we may regard them as functions of p, writing
A = A(p) and B = B(p). Now, since the heat equation (1) is linear and homogeneous,
the function

© )= [[u i = [ 1) s + B s

is then a solution of (1), provided this integral exists and can be differentiated twice with
respect to x and once with respect to 7.

Determination of A(p) and B(p) from the Initial Condition. From (6) and (2) we get

(v o]

@ utz, 0) = [ [A(p) cos px + Bp) sn px] dp = £

This gives A(p) and B(p) in terms of f(x); indeed, from (4) in Sec. 11.7 we have
1 = 1 (= .

(8) A(p) = . J’_mf(v) cos pv dv, B(p) = — J;mf(u) sin pu dv.

According to (1%*), Sec. 11.9, our Fourier integral (7) with these A(p) and B(p) can be
written

1 oa [va]
ulx, 0) = . J; |:f f(v) cos (px — pv) dvi| dp.

Similarly, (6) in this section becomes

u(x, 1) = l f |:J’ f(v) cos (px — pv) ¢ —eP dv} dp.
m g —co




564

Assuming that we may reverse the order of integration, we obtain

Then we can evaluate the inner integral by using the formula

[as) ) ,\/—“
(10) f = cos 2bs ds = —— ¢~
0 2

[A derivation of (10) is given in Problem Set 16.4 (Team Project 28).] This takes the form
of our inner integral if we choose p = s/(cVt) as a new variable of integration and set

x—uv

- 20Vt

Then 2bs = (x — v)p and ds = ¢'V1 dp, so that (10) becomes

=} _ 2
J e~*P% cos (px — pv)dp = 2\/1—7_ exp {—- u}
() c

Taking z = (v — x):’(ZC\/;‘) as a variable of integration, we get the alternative form

If f(x) is bounded for all values of x and integrable in every finite interval, it can be
shown (see Ref. [C10]) that the function (11) or (12) satisfies (1) and (2). Hence this
function is the required solution in the present case.

Temperature in an Infinite Bar
Find the temperature in the infinite bar if the initial temperature is (Fig. 295)
Up = const if [ <1,

fm:[ 0 if | >1

-1 1 x
Fig. 295. Initial temperature in Example 1
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—EXAMPBLES2

Solution. From (11) we have
1

— Yo f — ﬂ } d
w(x, 1) = o _lexp % v.

If we introduce the above variable of integration z, then the integration over v from —1 to 1 corresponds to the
integration over z from (—1 — x)/(?,c\/-) to (1 — .r)!(2c\/-), and
AL-D2eVD

. »
(13) ‘x,r}=—Q-J’ e dz £ > 0).
“ Vi J —aroreevn ¢ )

‘We mention that this integral is not an elementary function, but can be expressed in terms of the error function,
whose values have been tabulated. (Table A4 in App. 5 contazins a few values; larger tables are listed in
Ref [GRI] in App. 1. See also CAS Project 10, p. 568.) Figure 296 shows u(x, ) for Uy = 100°C,

= 1 cm®/sec, and several values of 1. B

ulzx, t)

100

Fig. 296. Solution ux, t) in Example 1 for U, = 100°C,
¢* = 1cm?/sec, and several values of t

Use of Fourier Transforms

The Fourier transform is closely related to the Fourier integral, from which we obtained
the transform in Sec. 11.9. And the transition to the Fourier cosine and sine transform in
Sec. 11.8 was even simpler. (You may perhaps wish to review this before going on.)
Hence it should not surprise you that we can use these transforms for solving our present
or similar problems. The Fourier transform applies to problems concerning the entire axis,
and the Fourier cosine and sine transforms to problems involving the positive half-axis.
Let us explain these transform methods by typical applications that fit our present
discussion.

Temperature in the Infinite Bar in Example 1

Solve Example 1 using the Fourier transform.

Solution. The problem consists of the heat equation (1) and the initial condition (2), which in this example is
Fx) = Uy = const if[x] <1 and 0 otherwise.

Our strategy is to take the Fourier ransform with respect to x and then to solve the resulting ordinary DE in ¢.
The details are as follows.
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Let i = (u) denote the Fourier transform of u, regarded as a function of x. From (10) in Sec. 11.9 wa see
that the heat equation (1) gives

F(uy) = gy = A~wHF) = —c*w?i.

On the left, assuming that we may interchange the order of differentiation and integration, we have

[+=] o0
1 . 1 @ . o
F =——-——J. ue"‘md.r=————J- e T gy = — |
W) = 5 1 Van at o ot
Thus
ail
— = —c2w?i

Since this equation involves only & derivative with respect to ¢ but none with respect to w, this is a first-order
ordinary DE, with ¢ as the independent variable and w as a parameter. By separating variables (Sec. 1.3) we
get the general solution

ilw, 1) = Cw)e™ ="t

with the arbitrary “constant” C(w) depending on the parameter w. The initial condition (2) yields the relationship e
filw, 0) = Cw) = f(w) = F(f). Our intermediate result is :

iw, 1) = fow)e <,
The inversion formula (7), Sec. 11.9, now gives the solution
1 (=]
(14) u(x, ) = I J’ f(:v)e”C%zteim dw.
T ~—co

In this solution we may insert the Fourier transform

fow) = \/iz—f Fw)e % dy,
T ~—o0

Assuming that we may invert the order of integration, we then obtain i

u(x, f) = —2'1;' J’ f) I:f o~ Wt pllwm—10) dw] dv.

=

By the Euler formula (3). Sec. 11.9, the integrand of the inner integral equals

—c2w?t i

oy .
Wt sin (wx — wo).

cos (wx — wo) + ie
We see that its imaginary part is an odd function of w, so that its integral is 0. (More precisely, this is the
principal part of the integral; see Sec. 16.4.) The real part is an even function of w, so that its integral from
—o0 to o equals twice the integral from 0 to

1 oo co
u(x, ) = — J- F) D' e~ W cos (wx — wuv) dw:| dv.
T Y7 0
This agrees with (9) (with p = w) and leads to the further formulas (11) and (13). ]

Solution in Example 1 by the Method of Convolution
Solve the heat problem in Example 1 by the method of convolution.

Solution. The beginning is as in Example 2 and leads to (14), that is,

I
(15) u(x, ) = o

J- f' (w) e_"zwzteim dw.
—co
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Now comes the crucial idea. We recognize that this is of the form (13} in Sec. 11.9, that is,

(16) ux, 1) = (f * g)(x) = f FONEw)e™™ dw
where
an Bw) = —pe e~
g\w) = oy e
Since, by the definition of convolution [(11), Sec. 11.9],
(18) (f =) = f fip)elx — p) dp,

as our next and last step we must determine the inverse Fourier transform g of 2. For this we can use formula
9 in Table III of Sec. 11.10,

Fle—) = % W)

with a suitable a. With ¢? = 1/(da) or a = 1i(4c2t), using (17) we obtain

Fi(e—THADN _ Va2 e=% — \/22: \/2m E(w).

Hence g has the inverse

_ 2
. 22/ (4e o)

1
\ 2¢% \/;T

Replacing x with x — p and substituting this into (18) we finally have

(19) ur, B = (F » ) = — fmf( ) ex [— M}dp
o 8 PRV B g 4c% :

This solution formula of our problem agrees with (11). We wrote (f * g)(x), without indicating the parameter ¢
with respect to which we did not integrate.

=
————EXAMPEE-4 Fourier Sine Transform Applied to the Heat Equation

If a laterally insulated bar extands from x = 0 to infinity, we can use the Fourier sine transform. We let the
initial temperature be u(x, 0) = f(x) and impose the boundary condition u(0, r) = 0. Then from the heat equation
and (9b) in Sec. 11.8, since f(0) = (0, 0) = 0, we obtain

an
Folus) = Es = ®F (Upy) = — WP F ) = ~c2wii(w, D).

This is a first-order ODE ail;/0r + c2w?i, = 0. Its solution is
fw, 1) = Clw)e W™,

From the initial condition u(x, 0) = f(x) we have i (w, 0) = fA sw) = C(w). Hence
g, 1) = Fowye ™,

Taking the inverse Fourier sine transform and substituting

. 2 °
fs(WJ=‘/"1;J;f(p} sin wp dp
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on the right, we obtain the sclution formula

2 (" _ ,
20 uix, £) = — J- J. f(p)sinwp e Pt G e dp dw.
T o

_ CHAP.12 Partial Differential Equations (PDEs)

Figure 297 shows (20) with ¢ = 1 for f(x) = 1 if 0 =x = 1 and 0 otherwise, graphed over the xt-plane fo,
0=x=2 00l == 15. Note that the curves of u(x, f) for constant ¢ resemble those in Fig. 296 on p. 365, B

Fig. 297. Solution (20) in Example 4

SOLUTION IN INTEGRAL FORM

Using (6), obtain the solution of (1) in integral form
satisfying the initial condition u(x, 0) = f(x), where

L
2.
3.

=N i &

oo

10.

f(x) = 1 if |x] < a and O otherwise
fx) = e *=l (k > 0)
F(x) = 1/(1 + x%). [Use (15) in Sec. 11.7.]

. f(x) = (sin x)/x. [Use Prob. 4 in Sec. 11.7.]

. f(x) = (sin 7x)/x. [Use Prob. 4 in Sec. 11.7.]
. f(x) = x if [x| < 1 and O otherwise

. f(x) = |x| if |x| < 1 and O otherwise.

. Verify that u in Prob. 5 satisfies the initial condition.
. CAS PROJECT. Heat Flow. (a) Graph the basic

Fig. 296.

(b) In (a) apply animation to “see” the heat flow in
terms of the decrease of temperature.

(¢) Graph u(x, 7) with ¢ = 1 as a surface over the upper
xt-half-plane.

CAS PROJECT. Error Function

T

2 2
21 erfx=—fe_“’ dw
@b Vo

This function is important in applied mathematics
and physics (probability theory and statistics,
thermodynamics, etc.) and fits our present discussion.
Regarding it as a typical case of a special function
defined by an integral that cannot be evaluated as in
elementary calculus, do the following.

(a) Sketch or graph the bell-shaped curve [the curve
of the integrand in (21)]. Show that erf x is odd. Show
that

. Vo
'fe Y dw = (erf b — erf a),
e 2

b

f e~ dw = Vrerf b

—b

(b) Obtain the Maclaurin series of erfx from that
of the integrand. Use that series to compute a table of
erf x for x = 0(0.01)3 (meaning x = 0, 0.01, 0.02,
cee, 3

(¢) Obtain the values required in (b) by an integration
command of your CAS. Compare accuracy.

(d) 1t can be shown that erf () = 1. Confirm this
experimentally by computing erf x for large x.

.
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x

(e) Let f(x) =1 when x> 0and 0 when x < 0. Using 1 s
erf () = 1, show that (12) then gives (2) Show that ®(x) = Von f_ e ds
1 f"’ e
‘\/; &,-mzc-\/')e ‘ = l + l __x._
’ 2 "2 \VvE)

o (- 57)
— — —erf | — (t > 0).
2 2 2cVi Here, the integral is the definition of the “distribution

(f) Express the temperature (13) in terms of the error function of the normal distribution” to be discussed in

Sec. 24.8.

/= Modeling: Membrane,
Two-Dimensional Wave Equation

The vibrating string in Sec. 12.2 is a basic one-dimensional vibrational problem. Equally
important is its two-dimensional analog, namely, the motion of an elastic membrane, such
as a drumhead, that is stretched and then fixed along its edge. Indeed, setting up the model
will proceed almost as in Sec. 12.2.

Physical Assumptions

1. The mass of the membrane per unit area is constant (“homogeneous membrane”).
The membrane is perfectly flexible and offers no resistance to bending.

2. The membrane is stretched and then fixed along its entire boundary in the xy-plane.
The tension per unit length T caused by stretching the membrane is the same at all
points and in all directions and does not change during the motion.

3. The deflection u(x, y, r) of the membrane during the motion is small compared to
the size of the membrane, and all angles of inclination are small.

Although these assumptions cannot be realized exactly, they hold relatively accurately for
small transverse vibrations of a thin elastic membrane, so that we shall obtain a good
model, for instance, of a drumhead.

Derivation of the PDE of the Model (“Two-Dimensional Wave Equation’) from
Forces. As in Sec. 12.2 the model will consist of a PDE and additional conditions. The
PDE will be obtained by the same method as in Sec. 12.2, namely, by considering the
forces acting on a small portion of the physical system, the membrane in Fig. 298 on the
next page, as it is moving up and down.

Since the deflections of the membrane and the angles of inclination are small, the sides
of the portion are approximately equal to Ax and Ay. The tension T is the force per unit
length. Hence the forces acting on the sides of the portion are approximately 7 Ax and
T Ay. Since the membrane is perfectly flexible, these forces are tangent to the moving
membrane at every instant.

Horizontal Components of the Forces. We first consider the horizontal components
of the forces. These components are obtained by multiplying the forces by the cosines of
the angles of inclination. Since these angles are small, their cosines are close to 1. Hence
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Membrane

y+ay

TAy

a4
B
|

PP O

x+ Ax

Fig. 298. Vibrating membrane

the horizontal components of the forces at opposiie sides are approximately equal.
Therefore, the motion of the particles of the membrane in a horizontal direction will be
negligibly small. From this we conclude that we may regard the motion of the membrane
as transversal; that is, each particle moves vertically.

Vertical Components of the Forces. These components along the right side and the
left side are (Fig. 298), respectively,

TAysin 8 and —T Ay sin a.

Here « and J3 are the values of the angle of inclination (which varies slightly along the
edges) in the middle of the edges, and the minus sign appears because the force on the
left side is directed downward. Since the angles are small, we may replace their sines by
their tangents. Hence the resultant of those two vertical components is

W TAy (sin B — sina) = T Ay (tan § — tan @) o
= T Ay [u,(x + Ax, y1) — 105, 3]

where subscripts x denote partial derivatives and y, and y, are values between y and
y + Ay. Similarly, the resultant of the vertical components of the forces acting on the
other two sides of the portion is

2) T Ax [uy(xls y+ Ay) - Hy(lzu y)]

where x; and x, are values between x and x + Ax. i

Newton’s Second Law Gives the PDE of the Model. By Newton's second law (se€ .
Sec. 2.4) the sum of the forces given by (1) and (2) is equal to the mass pAA of that small |



.128 Rectangular Membrane. Double Fourier Series ' 571

portion times the acceleration 8%u/d1>; here p is the mass of the undeflected membrane
per unit area, and AA = Ax Ay is the area of that portion when it is undeflected. Thus

%u
pAx Ay Et"z- = TAy [uz(x + Ax, y1) — uglx, yz)]

+ T Ax [uy(xy, y + AY) — uy(x5, y)]

where the derivative on the left is evaluated at some suitable point (X, y¥) corresponding
to that portion. Division by p Ax Ay gives

Pu _ T [uz(x A% ) T ye) | Gyt AY) — (e y) }
or? p ’

- Ax Ay

If we let Ax and Ay approach zero, we obtain the PDE of the model

3)

© N

This PDE is called the two-dimensional wave equation. The expression in parentheses
is the Laplacian V?u of u (Sec. 10.8). Hence (3) can be written

3"

Solutions of the wave equation (3) will be obtained and discussed in the next section.

- Rectangular Membrane.
Double Fourier Series

12.8

The model of the vibrating membrane for obtaining the displacement u(x, y, 7) of a point
(x, y) of the membrane from rest (¢ = 0) at time # is

D

)
(3a)
(3b)

Caeno

Here (1) is the two-dimensional wave equation with ¢® = T/p just derived, (2) is the
boundary condition (membrane fixed along the boundary in the xy-plane for all times
t 2 0), and (3) are the initial conditions at = 0, consisting of the given initial
displacement (initial shape) f(x, y) and the given initial velocity g(x, y), where u, = du/at.
We see that these conditions are quite similar to those for the string in Sec. 12.2.
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a x

Fig. 299. Rectangular membrane

As a first important model, let us consider the rectangular membrane R in Fig, 299
which is simpler than the circular drumhead to follow. Then the boundary in (2) is the
rectangle in Fig. 299. We shall solve this problem in three steps:

Step 1. By separating variables, setting u(x, y, ) = F(x, y)G(:) and later F(x, y) = Hx)0(y)
we obtain from (1) an ODE (4) for G and later from a PDE (5) for F two ODEs (6) and. .
(7) for H and Q.

Step 2. From the solutions of those ODEs we determine solutions (13) of (1)
(“eigenfunctions” u,,,) that satisfy the boundary condition (2).

Step 3. We compose the u,,, into a double series (14) solving the whole model (1), (2), (3). =

Step 1. Three ODEs From the Wave Equation (1)

To obtain ODEs from (1), we apply two successive separations of variables. In the ﬁrst
separation we set u(x, y, £) = F(x, y)G(1). Substitution into (1) gives

FG = A(F G + Fy,G)

where subscripts denote partial derivatives and dots denote derivatives with respect to 7.
To separate the variables, we divide both sides by ¢?FG: ;

G 1
% = (F + Fyy) : .

Since the left side depends only on ¢, whereas the right side is independent of ¢, both sides
must equal a constant. By a simple investigation we see that only negative values of that
constant will lead to solutions that satisfy (2) without being identically zero; this is similar - -
to Sec. 12.3. Denoting that negative constant by —v2, we have

&
2G

1 2
(F + Fp) = —v-
This gives two equations: for the “time function” G(r) we have the ODE -

@) G+ A2G=0 where A = ¢,

and for the “amplitude function” F(x, y) a PDE, called the two-dimensional Helmholtz®
equation

&) Fpp + Fyy + v?F = 0.

*HERMANN VON HELMHOLTZ (1821-1894), German physicist, known for his basic work in
thermodynamics, fluid flow, and acoustics.
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Separation of the Helmholtz equation is achieved if we set F(x, y) = H(x)Q(y). By
substitution of this into (5) we obtain

d*H da%Q

To separate the variables, we divide both sides by HQ, finding

1 d°H 1 (d?'Q 2Q)

— == ==+
H & o \a? 7

Both sides must equal a constant, by the usual 'a.rgument. This constant must be negative,
say, —kZ, because only negative values will lead to solutions that satisfy (2) without being
identically zero. Thus

1 d®H 1 (4%
H d? 0

(6)
and

where p% = v2 — k2

Q)

Step 2. Satisfying the Boundary Condition
General solutions of (6) and (7) are

H(x) = A coskx + B sin kx and O(y) = C cos py + D sin py
with constant A, B, C, D. From u = FG and (2) it follows that F = HQ must be zero on

the boundary, that is, on the edges x = 0, x = @, y = 0, y = b; see Fig. 299. This gives
the conditions

H(0) =0, H(a) = 0, 0(0) = 0, o) = 0.

Hence H(0) = A = 0 and then H(a) = B sin ka = 0. Here we must take B # 0 since
otherwise H(x) = 0 and F(x, y) = 0. Hence sin ka = 0 or ka = mr, that is,

mr .
k = —— (m integer).
a
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In precisely the same fashion we conclude that C = 0 and p must be restricted to the
values p = nw/b where n is an integer. We thus obtain the solutions H = H,,, 0 = ¢
where s

. omTx . nmy m=12-:-.
H,(x) = sin and 0,(y) = sin — ,
b n= 1! 2s R
As in the case of the vibrating string, it is not necessary to consider m, n = —1, =2 ...

¥

since the corresponding solutions are essentially the same as for positive m and n, except
for a factor — 1. Hence the functions

)  Fonlny) = Hp(0)0n(y) = sin =

are solutions of the Helmholtz equation (5) that are zero on the boundary of our membrane,

Eigenfunctions and Eigenvalues. Having taken care of (5), we turn to (4). Since
p?=1?—k%in (7) and A = cv in (4), we have '

A=cVIi2 + p
Hence to k = mar/a and p = nw/b there corresponds the value

m=1,2 --

®

n=172,-
in the ODE (4). A corresponding general solution of (4) is
Grrn(t) = Brn, €08 At + Bl i Ayt

It follows that the functions u,,(x, ¥, 1) = Fpn(x, )G, (0), written out

mmTx | Ry
sin ——
b

(10) U5 Y5 ) = (Byam €OS Ayl + By, Si0 Apypt) sin

with A,,, according to (9), are solutions of the wave equation (1) that are zero on
the boundary of the rectangular membrane in Fig. 299. These functions are called the
eigenfunctions or characteristic functions, and the numbers A,,, are called the
eigenvalues or characteristic values of the vibrating membrane. The frequency of up,y, is

Ay 277T.

Discussion of Eigenfunctions. It is very interesting that, depending on a and b, several
functions F,y,, may correspond to the same eigenvalue. Physically this means that there
may exist vibrations having the same frequency but entirely different nodal lines (curves
of points on the membrane that do not move). Let us illustrate this with the following
example.
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Eigenvalues and Eigenfunctions of the Square Membrane

Consider the square membrane with 2 = b = 1. From (9) we obtain its eigenvalues
an Amm, = eV m?® + n2.
Hence A, = Ay, but for m # n the corresponding functions
Foyn = sin mrx sin nary and Frm = sin narx sin mary
are certainly different. For example, to ;3 = A9y = c7V/5 there correspond the two functions
Fis = sin 7rx sin 27y and Foy = sin 27rx sin wry.
Hence the corresponding solutions
ttyy = (Byy cos emV/5t + By sin ew\V/50)F,, and ugy = (Bgy cos cwV/5t + By, sin cnV50)Fy,

have the nodal lines y = § and x = 4, respectively (see Fig. 300). Taking B;5 = 1 and Bt_fg = By = 0, we
obtain '

(12) Uio + Ugq = COB r:1T'\/§I‘ (F12 + Bﬂngl}

which represents another vibration corresponding to the eigenvalue e7V/5. The nodal line of this function is the
solution of the equation

F12 + BZ].FZI = sin 7x sin 21Ty -+ le sin 277x sin my = 0

or, since sin 2 = 2 sin @ cos a,
(13) sin 7x sin 7y (cos 7y + Bay cos mx) = 0.
This solution depends on the value of Bgy (see Fig. 301).

From (11) we see that even more than two functions may correspond to the same numerical value of A,,,,,.
For example, the four functions Fyg, Fgy, Faq, and Fqy correspond to the value

A1g = Agy = Mgy = Agq = ¢V 65, because 11 + 8% =42 + 72 = 65.

This happens because 65 can be expressed as the sum of two squares of positive integers in several ways.
According to a theorem by Gauss, this is the case for every sum of two squares among whose prime factors

there are at least two different ones of the form 4n + 1 where n is a positive integer. In our case we have
65=15-13=(4 + 1)(12 + 1). B

Fig. 300. Nodal lines of the solutions Fig. 301. Nodal lines
Uy, Upy, Uy, Usy, Upy, Uy in the case of ; of the solution (12) for
the square membrane some values of B,

—
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Step 3. Solution of the Model (1), (2), (3).
Double Fourier Series

So far we have solutions (10) satisfying (1) and (2) only. To obtain the sclution that alsy
satisfies (3), we proceed as in Sec. 12.3. We consider the double series

U, 3, D) = >y D tma(®s Y5 1)
m=1ln=1
14)
mwx | Ay
sin ——

a b

= > (B €08 At + B . Sin Ay, ?) S0

m=1ln=1

(without discussing convergence and uniqueness); From (14) and (3a), setting £ = 0, we
have

(15)

Suppose that f(x, y) can be represented by (15). (Sufficient for this is the continuity of
f, af/x, afldy, 8%f/axdy in R.) Then (15) is called the double Fourier series of f(x, y).
Its coefficients can be determined as follows. Setting

niy

(16) Ep(y) = 2, By sin
n=1 b

we can write (15) in the form

mix

Fr, y) = 2 Kn(y) sin

m=1

a

For fixed y this is the Fourier sine series of f(x, y), considered as a function of x. From
(4) in Sec. 11.3 we see that the coefficients of this expansion are

2 ¢ . m7x
an Kn) = = | fe ) sin 2= ax

Furthermore, (16) is the Fourier sine series of K,,(y), and from (4) in Sec. 11.3 it follows
that the coefficients are

nay dy

2 b
B = = LKm(y) sin —

From this and (17) we obtain the generalized Euler formula
b a

as) B = ||

0

D o mrx n vor om=1,2,00"
£, 3) sin T sin > dx dy

a b n=12 """
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-y ntmsinan s d

for the Fourier coefficients of f(x, y) in the double Fourier series (15).
The By, in (14) are now determined in terms of f(x, y). To determine the B, , we
differentiate (14) termwise with respect to #; using (3b), we obtain

ou 2 & . mTX | nwy
— => > B¥ A, sin sin —= = g(x, y).
L P a

Suppose that g(x, y) can be developed in this double Fourier series. Then, proceeding as
before, we find that the coefficients are

(19)

Result. If f and g in (3) are such that u can be represented by (14), then (14) with
coefficients (18) and (19) is the solution of the model (1), (2), (3).
Vibration of a Rectangular Membrane

Find the vibrations of a rectangular membrane of sides a = 4ft and b = 2 f (Fig. 302) if the tension is
12.5 Tb/ft, the density is 2.5 slugs/ft? (as for light rubber), the initial velocity is 0, and the initial displacement is

(20) flxy) = 01(4x — 22y — Y it.

Membrane Initial displacement

Fig. 302. Example 2

Solution. ¢® = Tip = 12.52.5 = 5 [fi%sec?]. Also, BY,,, = 0 from (19). From (18) and (20),

2 4
_ 4 By 2y o TPEX L nTy
Bopm = ) J;J;D.l(étx W2y — y°) sin 4 Sin > dx dy

4 2
‘1f4 g'mdxftz—z)s' " g
=20 O(x x%) sin " ) y — ¥~) sin > y.

Two integrations by parts give for the first integral on the right

128 [ = (=1 256 (m 0dd)
—_— —— = m
mia® mir®
and for the second integral
16 32
n (1= 1] n2a (r odd)

For even m or n we get 0. Together with the factor 1/20 we thus have By, = 0if m or n is even and

2 25632 0.426 050
™ 20m°n® 75

d n both odd).
33 (m and n both odd)

[R——

[S——
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From this, (9), and (14) we obtain the answer

1 Vi mITx n
ﬂcus( 2 Vm2+4n2£sin-——-sin—y
m°n

u(x, y, £) = 0.426 050 >, >,

_m,nodd 4 2
. — 0426 050 VE5aV5  mwx | wy L V5aV37T  mx | 3wy
20 = (. cos 2 t sin 2 st 7 cos n t sin 2 sin =
1 V57V IS: o 3wx | Yy . L \/57\/45 . 3mx | 3wy
77 cos 7 sin e sin 5 729 cos — ¢ sin e sin > +. )

To discuss this solution, we note that the first term is very similar to the initial shape of the membrane, has ng
nodal lines, and is by far the dominating term because the coefficients of the next terms are much smaller, The
second term has two horizonfal nodal lines (y = 2/3, 4/3), the third term two vertical ones (x = 4/3, 8/3), the
fourth term two horizontal and two vertical ones, and so on.

1. (Frequency) How does the frequency of the
eigenfunctions of the rectangular membrane change if
(a) we double the tension, (b) we take a membrane of
half the mass of the original one, (¢) we double the
sides of the membrane? (Give reason.)

SQUARE MEMBRANE

2. Determine and sketch the nodal lines of the
eigenfunctions of the square membrane for m = 1, 2,
3,dandn=1,2, 3, 4.

Double Fourier Series. Represent f(x, y) by a
series (15), where 0 < x < 1,0 <y < 1.

3 fxe, =1

4, f(x,y) ==x

5. f(x, ) =

6. fx,y) =x+y

7. f(x, y) = xy

8 flx,y) = xy(1 — x)(1 — y)

9. CAS PROJECT. Double Fourier Series. (a) Write a

program that gives and graphs partial sums of (15).
Apply it to Probs. 4 and 5. Do the graphs show that
those partial sums satisfy the boundary condition (3a)?
Explain why. Why is the convergence rapid?
(b) Do the tasks in (a) for Prob. 3. Graph a portion,
say, 0 < x < 3,0 <y <3, of several partial sums on
common axes, so that you can see how they differ. (See
Fig. 303.)

(¢) Do the tasks in (b) for functions of your choice.

Fig. 303.

Partial sums 5, and S50
in CAS Project 9b

10. CAS EXPERIMENT. Quadruples of F . Write a
program that gives you four numerically equal Apy in
Example 1, so that four different F,,, correspond to
it. Sketch the nodal lines of Fig, Fgy, Fay, Fra in
Example 1 and similarly for further F,,, that you will
find.

|11—13§ Deflection. Find the deflection u(x, y, f) of the
square membrane of side 7 and c? = 1 if the initial veloeity
is 0 and the initial deflection is

11. k sin 2x sin Sy
12. 0.1sinxsiny
13. 0.1xy(7 — x)(7m — y)

RECTANGULAR MEMBRANE

14. Verify the discussion of the terms of (21) in Example 2.
15. Repeat the task of Prob. 2 whena =4 and b = 1.




16 Verify the calculation of B, in Example 2 by  21. f(x, y) = xy(a® — x?)(b2 — ¥2)
;  integration by parts. 22. f(x, ) = xy(a — x)(b — y)
= 17 Fmd eigenvalues of the rectangular membrane of sides
= 2 and & = 1 to which there correspond two or  23. (Deflection) Find the deflection of the membrane of

L more different (independent) eigenfunctions. sides @ and b with ¢ = 1 for the initial deflection
13, (Minimum property) Show that among all rectangular 3mx | 4wy
membranes of the same area A = gb and the same ¢ e y) = sin —= sin p  and initial velocity 0.
the square membrane is that for which iy, [see (10)]
. has the lowest frequency. 24. Repeat the task in Prob. 23 with ¢? = 1, for f(x, y) as

in Prob. 22 and initial velocity 0.
25. (Forced vibrations) Show that forced vibrations of a
membrane are modeled by the PDE u,, = c?V?u + P/p,
49, f(x,y) =k where P(x, y, f) is the external force per unit area acting
+20. f(x, y) = 0.25xy perpendicular to the xy-plane.

» Double Fourier Series. Represent f(r, )
i (0 < x <a, 0 <y < b)by a double Fourier series (15).

5291 Laplacian in Polar Coordinates.
Circular Membrane.
Fourier—Bessel Series

In boundary value problems for PDEs it is a general principle to use coordinates in which
the formula for the boundary is as simple as possible. Since we want to discuss circular
membranes (drumheads), we first transform the Laplacian in the wave equation (1),
Sec. 12.8,

¢)) e = VU = A(uy + uy,)

(subscripts denoting partial derivatives) into polar coordinates

Hence x = r cos 6, y = r sin 6. By the chain rule (Sec. 9.6) we obtain
Uy = U7y + ugl,.

Differentiating once more with respect to x and using the product rule and then again the
chain rule gives -

T
-

Ugy = (Uprg)y + (u60y);
) = (Up)ary + Uprpy + (Ug)zbr + uglpy
= Uty F UpgO Ty + Uply + (Uge Ty + Ugg0,) 0, + Ugh,,
Also, by differentiation of r and # we find

_

- _z 5 ,_J_(_J‘_)
r”_m_r’ 1+ (e 2] 2
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Fig. 304. Circular
membrane
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Differentiating these two formulas again, we obtain

roxn 12 o=y (-2,
r rs 3’ = Y 3)7=% 1

r = =
Xz 2
r

We substitute all these expressions into (2). Assuming continuity of the first and secopg
partial derivatives, we have g = Ug,, and by simplifying,

x> xy ¥ ¥2 xy

3 Upo = =5 Upp — 2 3 4+ = u, t mou.+ 2 5 u,.
3) g 2 M -3 Urg 4 o8 ) Uy L e

In a similar fashion it follows that

2 2 2 3
y xy x x xy g
4 uwz?iuw+2-;§u,9+?—uaa-t-—;?,-u,r—ZFue_
By adding (3) and (4) we see that the Laplacian of u in polar coordinates is il

o % 1 w19 3
) V= S s e

R e A

Circular Membrane

Circular membranes occur in drums, pumps, microphones, telephones, and so on. This
accounts for their great importance in engineering. Whenever a circular membrane is plane
and its material is elastic, but offers no resistance to bending (this excludes thin metallic |
membranes!), its vibrations are modeled by the two-dimensional wave equation in polar
coordinates obtained from (1) with V?z given by (5), that is,

Pu (% 1 w1 du T
— = —_—t - — =5 2= —,
©) a2 ¢ (arz roor 1 96° ¢

We shall consider a membrane of radius R (Fig. 304) and determine solutions u(r, f)
that are radially symmetric. (Solutions also depending on the angle 8 will be discussed in
the problem set.) Then ugg = 0 in (6) and the model of the problem (the analog of (1),
(2), (3) in Sec. 12.8) is

7 _@;4@41&

@ Z N\ Ty o)
® u® ) =0forall ;20
©a) RS I

(9b) om0 =g

Here (8) means that the membrane is fixed along the boundary circle r = R. The initial
deflection f() and the initial velocity g(r) depend only on r, not on 6, so that we cal
expect radially symmetric solutions u(r, 1).
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Step 1. Two ODEs From the Wave Equation (7).
Bessel’s Equation

Using the method of separation of variables, we first determine solutions u(r, 1) =W G().
(We write W, not F because W depends on r, whereas F, used before, depended on x.)
Substituting u = WG and its derivatives into (7) and dividing the result by c*WG, we get

G _ 1w, 1o,
c?G w r

where dots denote derivatives with respect to # and primes denote derivatives with respect
to r. The expressions on both sides must equal a constant. This constant must be negative,
say, —k?, in order to obtain solutions that satisfy the boundary condition without being
identically zero. Thus,

;’E:—% (Wu{-uﬂ) S
This gives the two linear ODEs :
(10) G+A2G=0 . where A = ck
and
an - W’+ -}; i{i"' +: _réw _o.

We can reduce (11) to Bessel’s equation (Sec. 5.5) if we set s = kr. Then 1/r = kis and,
retaining the notation W for simplicity, we obtain by the chain rule

dw  dw aw N
W = ——-—fdi=—k and W’ =

— = = k2.
dr ds dr ds ds?

By substituting this into (11) and omitting the common factor k2 we have

2w
LA + W=0.

1 dw
1_2 —_—
(12) ds? s ds

This is Bessel’s equation (1), Sec. 5.5, with parameter v = 0.

Step 2. Satisfying the Boundary Condition (8)

Solutions of (12) are the Bessel functions J, and ¥, of the first and second kind (see
Secs. 5.5, 5.6). But Y, becomes infinite at 0, so that we cannot use it because the deflection
of the membrane must always remain finite. This leaves us with

(13) W) = Jos) = Jo(kr) (s = kn).
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On the boundary r = R we get W(R) = Jo(kR) = 0 from (8) (because G = 0 would impiy
u = 0). We can satisfy this condition because J, has (infinitely many) positive zerqg
S = @y, @y, * * + (see Fig. 303), with numerical values '

o, = 24048, a, = 5.5201, o = 8.6537, @y = 117915, o5 = 149300

and so on. (For further values, consult your CAS or Ref. [GR1] in App. 1.) These zerog
are slightly irregularly spaced, as we see. Equation (13) now implies

14 R = o, thus k=fcm=%, m=1,2--.
Hence the functions

S,
(15) Won(r) = Jolkpmr) = Jo = ) m=1,2,-

are solutions of (11) that are zero on the boundary circle r = R.

Eigenfunctions and Eigenvalues. For W,, in (15), a corresponding general solution of
(10) with A = A,,, = ck,, = ca,/R is

G(f) = A, €08 At + B, sin AL

Hence the functions
(16) o, 1) = WnP)G®) = (Apy 508 Apnf + By sin A Tollrar)

withm = 1,2, - - - are solutions of the wave equation (7) satisfying the bounda4 ;condition
(8). These are the eigenfunctions of our problem. The corresponding eigenvalugs are Ay,

The vibration of the membrane corresponding to i, is called the mth normal mode;
it has the frequency A,,/27 cycles per unit time. Since the zeros of the Bessel funktion J,
are not regularly spaced on the axis (in contrast to the zeros of the sine functions appearing
in the case of the vibrating string), the sound of a drum is entirely different from that of
a violin. The forms of the normal modes can easily be obtained from Fig. 305 and are
shown in Fig. 306. For m = 1, all the points of the membrane move up (or down) at the
same time. For m = 2, the situation is as follows. The function Wy(r) = Jg (a7/R) is zero
for ayr/R = oy, thus r = ayR/ay,. The circle r = a;R/a, is, therefore, nodal line, and
when at some instant the central part of the membrane moves up, the outer part
(r > a,R/a,) moves down, and conversely. The solution u,,(r, ) has m — 1 nodal lines,
which are circles (Fig. 306).

J ()

Fig. 305. Bessel function Jo{s)
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m=1 m=2 m=23

Fig. 306. Normal modes of the circular membrane in the case of vibrations
independent of the angle

Step 3. Solution of the Entire Problem

To obtain a solution u(r, ) that also satisfies the initial conditions (9), we may proceed
as in the case of the string. That is, we consider the series

17 u(wm(r)cm(r) = 2 (Ay, €08 Ayt + By sin Ayt) Jo (%m ")

m=1 m=1

(leaving aside the problems of convergence and uniqueness). Setting ¢ = 0 and using (9a),
we obtain

(1s) wr,0) = -AmJo(%;'i ) = F).

m=1

Thus for the series (17) to satisfy the condition (9a), the constants A, must be the
coefficients of the Fourier-Bessel series (18) that represents f(r) in terms of Jy (v, 7/R);
that is [see (10) in Sec. 5.8 with n = 0, Qg = Oy, and x = r],

19 _ A, = ,m J;er(r){g(? r) dr m=12- -

Differentiability of f(r) in the interval 0 = r = R is sufficient for the existence of the
development (18); see Ref. [A13]. The coefficients B, in (17) can be determined from
(9b) in a similar fashion. Numeric values of A,, and B,, may be obtained from a CAS or
by a numeric integration method, using tables of J, and J;. However, numeric integration
can sometimes be avoided, as the following example shows.
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Vibrations of a Circular Membrane

Find the vibrations of a circular drumhead of radius 1 ft and density 2 slugsfﬂ?' if the tension is 8 Ib/ft, the initia]
velocity is 0, and the initial displacement is

) =1— 2 [f.

Solution. c®= Tlp=8/2 = 4 [f%/sec?]. Also B,y, = 0, since the initial velocity is 0. From (19) 2nd Exam
; . . ple
3 in Sec. 5.8, since R = 1, we obtain

1

= 2
= le(a’-m) J;r(l r<) Jolay,r) dr

4T5(eeys)
S R G
8
3
1 ()

Am

]

- where the last equality follows from (24c), Sec. 5.5, with » = 1, that is,

2 2
Joley) = ‘a_ Jylem) — Jolap) = -a; Jy (et

Table 9.5 on p. 409 of [GR1] gives ay, and J§(ay). From this we get Jy (o) = —Jglee,,) by (24b), Sec. 5.5,
with » = 0, and compute the coefficients Ay,

m e T A B A
1 2.40483 0.51915 0.43176 1.10801
2 5.52008 —0.34026 -0.12328 —0.13978
3 8.65373 0.27145 0.06274 0.04548
4 11.79153 —0.23246 —0.03943 —{0.02099
5 14.93092 0.20655 0.02767 0.01164
6 18.07106 —0.18773 —0.02078 —0.00722
7 2121164 0.17327 0.01634 0.00484
8 _ 2435247 —0.16170 —0.01328 —0.00343
9 27.49348 0.15218 0.01107 0.00253
10 30.63461 —0.14417 —0.00941 —0.00193
Thus

() = 1.1087,(2.40487) — 0.140Jo(5.5201r) + 0.045Jo(8.6537r) — *

We see that the coefficients decrease relatively slowly. The sum of the explicitly given coefficients in the table
is 0.99915. The sum of all the coefficients should be 1. (Why?) Hence by the Leibniz test in App. A3.3 the
partial sum of those terms gives about three correct decimals of the amplitade f(r). :
Since '
Ap = Ckpy = cag /R = 2ay,

from (17) we thus obtain the solution (with 7 measured in feet and 7 in seconds)
u(r, 1) = 1.108.J5(2.40487r) cos 4.8097¢ — 0. 140J(5.5201r) cos 11.0402¢ + 0.04574(8.65377) cos 17.3075t — - *~

In Fig. 306, m = 1 gives an idea of the motion of the first term of our series, m = 2 of the second term, and
m = 3 of the third term, so that we can “see” our result about as well as for a violin string in Sec. 12.3.

_3
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. Why did we use polar coordinates in this section?
2. Work out the details of the calculation leading to the
~ Laplacian in polar coordinates.

If u is independent of 6, then (5) reduces to
5 VR = Uy + wu,/r. Derive this directly from the
‘Laplacian in Cartesian coordinates.

' 1 3 a
4. An alternative form of (5) is V= — — (r —H?)
B s r ar ar

o+ — —3 . Derive this from (5).
r2 a6

5, (Radial solution) Show that the only solution of
v2y = 0 depending only on r = V2 +y2is
. u=alnr+ b with constant  and b.
6. TEAM PROJECT. Series for Dirichlet and
'  Neumann Problems
¢ (a) Show thatu, = r™ cos nb, u, = r*sinnf,n=0,
% 1, ---, are solutions of Laplace’s equation Vou=0
' with Vzu given by (5). (What would #, be in Cartesian
= coordinates? Experiment with small 7.)

% (b) Dirichlet problem (See Sec. 12.5) Assuming that

{ termwise differentiation is permissible, show that a
;; solution of the Laplace equation in the disk r < R
%  satisfying the boundary condition (R, 0 = f(O)
{  (f given) is

-u(r,ﬂ)-—a0+z

where a,,, b,, are the Fourier coefficients of f (see
Sec. 11.1).

@

using (20) if R = 1 and the boundary values are
u(f) = —100 volts if —m < 6 < 0, u(6) = 100 volts
if 0 < 0 < 7. (Sketch this disk, indicate the boundary
values.)

(d) Neumann problem Show that the solution of the
Neumann problem V?u = 0 if r < R, uy(R, 0) = f(6)
(where uy = du/aN is the directional derivative in the
direction of the outer normal) is

u(r, 6) = Ag + >, r™(A, cos nf + B, sinnf)

n=1

(c) Dirichlet problem Solve the Dirichlet problem -

with arbitrary 4g and
A, = an —— J. f(6) cos nf d6,
B, = R"’ 3 J. f(8) sinn@ d6.

(e) Compatibility condition Show that (9), Sec. 10.4,
imposes on f(6) in (d) the “compatibility condition”

j_:f(@) dg = 0.

(f) Neumann problem Solve V?z = 0 in the annulus
1< r<3ifufl, ) =sin b, u(3,6 =0

[7-12] ELECTROSTATIC POTENTIAL.

STEADY-STATE HEAT PROBLEMS

The electrostatic potential satisfies Laplace’s equation
V2y = 0 in any region free of charges. Also the heat
equation %, = ¢ V2u (Sec. 12.5) reduces to Laplace’s equation
if the temperature u is time-independent (“steady-state
case”). Using (20), find the potential (equivalently: the
steady-state temperature) in the disk r < 1 if the boundary
values are (sketch them, to see what is geimg on).

7. u(1, 6) = 40 cos® 0 7

8. u(1, 6) = 800 sin® 8

9. u(1, 6) = IIOif—%'r.r < f< lz‘qrandOOtherwise
10. u(1, 6) = 0 if —37w < 0 < 47 and 0 otherwise
1. u(1, ) = |8l if — 7 <0< =

12 u(1, ) = ®’if —w< @<

13. CAS EXPERIMENT. Equipotential Lines. Guess
what the equipotential lines u(r, §) = const in Probs.
9 and 11 may look like. Then graph some of them,
using partial sums of the series.

14. (Semidisk) Find the electrostatic potential in the
semidisk r < 1, 0 < § < 7r which equals 11060(7 — 6)
on the semicircle r = 1 and 0 on the segment
-1 <x<1L

15. (Semidisk) Find the steady-state temperature in a
semicircular thin plate r < g, 0 < 8 < 7 with the
semicircle 7 = a kept at constant temperature #o and
the segment —a < x < a at 0.

16. (Invariance) Show that V?z is invariant under
translations x* = x + a, y* = y + band under rotations
x* =xcosa— ysina,y* =xsina + ycosa.
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17. (Frequency) What happens to the frequency of an
cigenfunction of a drum if you double the tension?

18. (Size of a drum) A small drum should have a higher
fundamental frequency than a large one, tension and
density being the same. How does this follow from our
formulas?

19. (Tension) Find 2a formula for the tension required to
produce a desired fundamental frequency fi of a
drum.

20. CAS PROJECT. Normal Modes. (a) Graph the
normal modes us, s, Ug as in Fig. 306.

(b) Write a program for calculating the Ay’s in
Example 1 and extend the table to m = 15. Verify
numerically that &, =~ (m — %) and compute the
error form = 1, - -+, 10.

(¢) Graph the initial deflection f(r) in Example 1 as
well as the first three partial sums of the series.
Comment on accuracy.

(d) Compute the radii of the nodal lines of us, Ua, Ug
when R = 1. How do these values compare to those of
the nodes of the vibrating string of length 1?7 Can you
establish any empirical laws by experimentation with
further ,,?

21. (Nodal lines) Is it possible that for fixed ¢ and R two
or more #,, [see (16)] with different nodal lines
correspond fo the same eigenvalue? (Give a reason.)

22. Whyis Ay +Ag + - =1 in Example 17 Compute
the first few partial sums until you get 3-digit accuracy.
What does this problem mean in the field of music?

23. (Nonzero initial velocity) Show that for (17) to satisfy
(9b) we must have

2

Bpm = "—"mra . X _
A .. .C%Rjg(qm) S T

@21
| X J.-Rrg(r)Jo(amrj!R) dr.
. . ol&mT!.

VIBRATIONS OF A CIRCULAR MEMBRANE
DEPENDING ON BOTH r AND 0

24. (Separations) Show that substitution of 1 = F(r, 8)G(?)
into the wave equation (6), that is,

1 1
(22) Uy = c? (“rr + - u, + = uaa)

gives an ODE and a PDE

CHAP. 12 _Partial Differential Equations (PDEs)

26.

217.

. (Periodicity) Show that O(6) must be periodic with

23) G + A%G =0, where A = ck,

1 1
(24) Fﬁ+';Ff+'§ng+k2F=(}_

Show that the PDE can now be scparated py
substituting F = W(r)Q(0), giving

(25) 0" +n*Q =0,
@26) r*W" + rW + (k2r% — n®)W = 0.
period 27 and, therefore, n = 0,1, 2, - -~ in (25) and

(26). Show that this yields the solutions Oy, = cos ng
0,* = sinn, Wy = Ju(kr)yn =0, 1, .

(Boundary condition) Show that the boundary
condition

@7 u(R, 0,1) =0

leadsto k = kpp =
positive zero of Ju(s).

/R, where s = Qi 15 the mth

(Solutions depending on both r and 6) Show that
solutions of (22) satisfying (27) are (see Fig. 307)

Uy = (Amn €OS Chpnt + B S0 Chopf) X

X Jo(kpnr) cOS RO

(28)

u¥,, = (Ak, cos Ckynt + BE,, sin ckyppf) X

X Jp(kpyr) sin n0

u

12
Fig. 307. Nodal lines of some of the solutions (28)

28. (Initial condition) Show that u,(r, 6, 0) = 0 gives :

29. Show that u%,g = 0 and g is identical with (16) in

30. (Semicircular membrane) Show that iy, represents

By = 0, B, = 0in (28). -

the current section.

i

the fundamental mode of a semicircular membrane and
find the corresponding frequency when ¢ = 1 and
R=1

T T TP

]
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:1&: Laplace’s Equation in Cylindrical and
Spherical Coordinates. Potential

Laplace’s equation

@ VU=t bty 0 =0

is one of the most important PDEs in physics and its engineering applications. Here,
X, ¥, z are Cartesian coordinates in space (Fig. 165 in Sec. 9.1), u,, = 9%u/ax>, etc. The
expression V2 is called the Laplacian of u. The theory of the solutions of (1) is called
potential theory. Solutions of (1) that have confinuous second partial derivatives are
known as harmonic functions.

Laplace’s equation occurs mainly in gravitation, electrostatics (see Theorem 3,
Sec. 9.7). steady-state heat flow (Sec. 12.5), and fluid flow (to be discussed in
Chap. 18.4).

Recall from Sec. 9.7 that the gravitational potential u(x, y, 7) at a point (x, y, z) resulting
from a single mass located at a point (X, ¥, Z) is

c c
@ D)= == >0
= Va-XP+ (6 -12+ @ - 2° o

and u satisfies (1). Similarly, if mass is distributed in a region T in space with density
p(X, Y, Z), its potential at a point (x, y, z) not occupied by mass is

3) w3, =k [ 39—(—’;1-’1-2—) dX dY dZ.
T

It satisfies (1) because V*(1/r) = 0 (Sec. 9.7) and p is not a function of x, y, z.

Practical problems involving Laplace’s equation are boundary value problems in a
region T in space with boundary surface S. Such a pmblem is called (see also Sec. 12.5
for the two-dimensional case):

(I) First boundary value problem or Dirichlet problem if « is prescribed on S.
(II) Second boundary value problem or Neumann problem if the normal
derivative u,, = du/on is prescribed on S.
(III) Third or mixed boundary value problem or Robin problem if u is prescribed
on a portion of § and u,, on the remaining portion of S.

Laplacian in Cylindrical Coordinates

The first step in solving a boundary value problem is generally the introduction of
coordinates in which the boundary surface S has a simple representation. Cylindrical
symmetry (a cylinder as a region T) calls for cylindrical coordinates r, 8, z related to x,

Y, z by

“) x = rcos f, y = rsin 6, z=1z (Fig. 308, p. 588).




(r, 8,¢)

1
1
1
i
1
T
1
H ¥
N

Fig. 308. Cylindrical coordinates Fig. 309. Spherical coordinates

For these we get V2u immediately by adding uz; t0 (5) in Sec. 12.9; thus,
g

®) v = 2 Ll 1 du | Fu
R T
Laplacian in Spherical Coordinates

Spherical symmetry (a ball as region 7" bounded by 2 sphere S) requires spherical
coordinates 7, 6, ¢ related to x, y, Z by

6)  x=rcosfsind, y = rsin Osin ¢, s=rcosd  (Fig. 300).

Using the chain rule (as in Sec. 12.9), we obtain V2u in spherical coordinates

e 2w 1 P cotd w1 P
7 Viu=— +— — 1+ b — Yt o AaE
@ VET2  roar g e sin* ¢ 96*

We leave the details as an exercise. It is sometimes practical to write (7) in the form

1 ad au 1 0 ou 1 o%u
7' V2=——r2— 4 —— — |sind — ) T "3 52 |
7 Vi rz[ar( ar) sin ¢ a¢( $55) " s 062
Remark on Notation. Equation (6) is ased in calculus and extends the familiar notation
for polar coordinates. Unfortunately, some books use § and ¢ interchanged, an extension

of the notation x = r cos ¢, y = 7 sin ¢ for polar coordinates (used in some European
countries).

Boundary Value Problem in Spherical Coordinates

We shall solve the following Dirichlet problem in spherical coordinates:

'—.ﬂl— 9 z’l“J_ | 1i ; _a_u_ .
(8) Vzur- 72 [ ar(r ar) qu,) qu(sm aq[s):\ —U
o o awesio
a0 . lim urn, ) = 0.

T—+C0

I
|

LSS
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e

1! The PDE (8) follows from (7) by assuming that the solution « will not depend on 6 because
' the Dirichlet condition (9) is independent of f. This may be an electrostatic potential (or
a temperature) f(¢) at which the sphere S: = R is kept. Condition (10) means that the

:' potential at infinity will be zero.

Separating Variables by substituting u(r, ¢) = G(r)H(¢) into (8). Multiplying (8) by
72, making the substitution and then dividing by GH, we obtain

| 1 d (,dG 1 4 (. 6 dH
| — — PP == S \siné .
7 ' G dr dar Hsing d¢ d¢
E By the usual argument both sides must be equal to a constant k. Thus we get the two
: ODEs
: (11) 14 (.98)_, 2d26+2 LEgyve
Gdrrdr_ o T ar "ar
and

! 1 d (.  dH ~
(12). | ma(suub d¢)+kH-—0.

: The solutions of (11) will take a simple form if we set k = n(n + 1). Then, writing
G’ = dGldr, etc., we obtain

(13) 2G" + 2rG' — n(n + )G = 0.

I This is an Euler-Cauchy equation. From Sec. 2.5 we know that it has solutions G=r%
Substituting this and dropping the common factor r* gives '

I aa— 1)+ 2a—nr+1)=0. The roots are a=n and —n— L

Hence solutions are

(14) G, =r" and Gin = rnlﬂ .

We now solve (12). Setting cos ¢ = w, we have sin® ¢ = 1 — w” and

4 _ 4 4l
a6 aw dp P aw

Consequently, (12) with k = n(n + 1) takes the form

d o dH
(15) E[(I—W)Ev-]+n(n+l)ff=0.
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This is Legendre’s equation (see Sec. 5.3), written out

, o d’H dH :
s (1—w)——2-—2w——-+n(n+l)H=0.
dw dw
For integer n = 0, 1, - - - the Legendre polynornials
H:Pn(W):-Pn(CDS(b) n=0,1,-

are solutions of Legendre’s equation (15). We thus obtain the following two sequences
of solution # = GH of Laplace’s equation (8), with constant A, and B,, where
n=0,1,---,

S

1 @ i §) = AsPulcos @ O 1 &) = S5 Palcos B

Use of Fourier—Legendre Series

Interior Problem: Potential Within the Sphere S. We consider a series of terms from
(16a),

an 9 =S AR ) c=h)

f{a=.0

Since S is given by r = R, for (17) to satisfy the Dirichlet condition (9) on the sphere §,
we must have

(18) W(R, &) = >, A R"Py(cos &) = f();

n=0

that is, (18) must be the Fourier-Legendre series of f(¢). From (7) in Sec. 5.8 we get
the coefficients

2n + 1

1
(19%) AR = = J'_lf(w)Pn(w) dw

where F(w) denotes f(¢) as a function of w = cos ¢. Since dw = —sin ¢ d¢, and the
limits of integration —1 and 1 correspond to ¢ = 7 and ¢ = 0, respectively, we also
obtain

19) [$@)Pucos ysinpdg,  n=0.1
0 Lo

TR

If f(¢) and f' (¢) are piecewise continuous on the interval 0 = ¢ = , then the series (17
with coefficients (19) solves our problem for points inside the sphere because it can be
shown that under these continuity assumptions the series (17) with coefficients (19) gives
the derivatives occurring in (8) by termwise differentiation, thus justifying our derivation.
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Exterior Problem: Potential Outside the Sphere S. Outside the sphere we cannot use
the functions u, in (162) because they do not satisfy (10). But we can use the u:: in (16b),
which do satisfy (10) (but could not be used inside S why?). Proceeding as before leads
to the solution of the exterior problem '

=B
(20) U @) =2 g Palcos ¢) (r=R)

n=0

satisfying (8), (9), (10), with coefficients

@1 LR [H)Poos ) sin b d

The next example illustrates all this for a sphere of radius 1 consisting of two hemispheres
that are separated by a small strip of insulating material along the equator, so that these
hemispheres can be kept at different potentials (110 V and 0 V).

Spherical Capacitor

Find the potential inside and outside a spherical capacitor consisting of two metallic hemispheres of radius 1 ft
separated by a small slit for reasons of insulation, if the upper hemisphere is kept at 110 V and the lower is
grounded (Fig. 310).

Solution. The given boundary condition is (recall Fig. 309)
110 if 0=sd< a2
fld) =
0 ¥ #2<d=mw

Since R = 1, we thus obtain from (19)

2n+1 2 i
n = 5 110 P, (cos ¢) sin p dp
]
2+ 1 '
= - 110 f P,(w) dw
2 0
where w = cos ¢. Hence P, (cos ¢) sin ¢ dp = — n{W) dw, we integrate from 1 to 0, and we finally get rid

of the minus by integrating from 0 to 1. You can evaluate this integral by your CAS or continue by using (11)
in Sec. 5.3, obtaining
1

(2n — 2m)! f pa—
o

2"ml(n — m)(n — 2m)!

M
Apn=552n+ 1) > (=)™

m=0

where M = n/2 for even n and M = (n — 1)/2 for odd n. The integral equals 1/(n — 2m + ). Thus

110 volts

Fig. 310.  Spherical capacitor in Example 1

[ES—
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5520 + 1) X . (2n — 2m)!
22 =T ED 0" i = mln — 2m + DU
Taking n = 0, we get Ag = 55 (since 0! =1).Forn=1,2,3, - weget q
165 2! 165
A= onm T 2 |
2 o2t 2 o
275 (4 2\ _, ]
A2= 7 \onmr ~ Tmut) 2
Lo (8 4\ 385 -
5= \oma ~Tom)” 8 % |
. ]
Hence the potential (17) inside the sphere is (since Py = 1) o
165 385 4 |
(23) u(r, ¢) =55 + —— rPycos &) — e Pslcos @) + - - (Fig.311) -~
with Py, Pg, - - - given by (11"), Sec. 5.3. Since R = 1, we see from (19) and (21) in this section that E
By, = Ay, and (20) thus gives the potential outside the sphere h
55 165 385 i
(24) u(r,¢)=7+;2”?1(603@*;:;1’3(003@'*'“- -
Partial sums of these series can now be used for computing approximate values of the inner and outer potential.
Also, it is interesting to see that far away from the sphere the potential is approximately that of a point charge,
namely, 55/r. (Compare with Theorem 3 in Sec. 9.7.)
¥
\\ Sy 4|
0 A T
2
Fig. 311. Partial sums of the first 4, 6, and 11 - =

nonzero terms of (B)forr=R=1

soe e EsEXAMPLE 2 Simpler Cases. Help with Problems

The technicalities occurring in cases like that of Example 1 can often be avoided. For instance, find the potential
inside the sphere S: = R = 1 when § is kept at the potential f(¢) = cos 2¢. (Can you see the potential on S7
What is it at the North Pole? The equator? The South Pole?)

Solution. w =cos, cos2¢ =2cos® p— 1 = w2 —1=4Pw)— 3= 4@w? — 3) — 3. Hence the
potential in the interior of the sphere is

u = 42Pyw) — & = $2Pglcos ¢) — 3 = ¥70 cos2p— 1) — 3 B



B cc. 1210 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential _ 593

% the details.)

| . 2. Find the surfaces on which the functions u,, us, us are
o zero.

3 3, Skeich the functions P,(cos ¢) for n = 0, 1, 2 (see
. (1) in Sec. 5.3).

J 4. Sketch the functions P3(cos ¢) and P,(cos ¢).

£ 5, Verify that u, and u,,* in (16) are solutions of (8).

1

£ POTENTIALS DEPENDING ONLY ON r

| 6. (Dimension 3) Show that the only solution of the

~  Laplace equation depending only on

r=Vx® + y? + 2% isu = c/r + k with constant ¢

~ and k.

¢ 7, (Dimension 3) Verify that u = c/r,

"‘:f. r=Vx® + y* + 72 satisfies Laplace’s equation in

- spherical coordinates.

'\ 8. (Dirichlet problem). Find the electrostatic potential

| between two concentric spheres of radii rp = 10cm
and r, = 20 cm kept at potentials U; = 260 V and

.:- Us = 110V, respectively.

! 9. (Dimension 2, logarithmie potential) Show that the
only solution of the two-dimensional Laplace equation

Va2 +y%isu=clnr+k

o B

depending only on r =
with constant ¢ and k.

= 10. (Logarithmic potential) Find the electrostatic potential
: between two coaxial cylinders of radii 7, = 10 cm and
rp = 20cm kept at potentials U; = 260V and
U, = 110V, respectively. Compare with Prob. 8.
Comment.

: 11. (Heat problem) If the surface of the ball
r? = x® 4+ y®> + 72 = R? is kept at temperature
zero and the initial temperature in the ball is f(r),
show that the temperature u(r, #) in the ball is a solution
of u, = c*(u,, + 2u./r) satisfying the conditions

_ u(R, 1) = 0, u(r, 0) = f(r). Show that setting v = ru

i givesv, = ¢%0,,,U(R, ) = 0, v(r, 0) = rf(r). Include
the condition v(0, 1) = O (which holds because x must
be bounded at = 0), and solve the resulting problem
by separating variables.

" 12. (Two-dimensional potential problems) Show that the
functions x* — y2, xy, x/(x? + y?), e® cos y, e* sin y,
cos x cosh y, In (x® + %), and arctan (y/x) satisfy
Laplace’s equation u,, + Uy, = 0. (Two-dimensional
potential problems are best solved by complex
analysis, as we shall see in Chap. 18.)

BOUNDARY VALUE PROBLEMS IN
SPHERICAL COORDINATES r, 0, ¢

Find the potential in the interior of the sphere S: r = R = 1
if this interior is free of charges and the potential on S is:

13. f(¢) = 100

14. f(¢) = cos ¢

15. f(¢) = cos 3¢

16. f(¢) = sin® ¢

17. f(¢) = 35 cos4¢ + 20 cos 2 + 9

18. Show that in Prob. 13 the potential exterior to the
sphere is the same as that of a point charge at the origin.
Is this physically plausible?

19. Sketch the intersection of the equipotential surfaces in
Prob. 14 with the xz-plane.

20. Find the potential exterior to the sphere in Example 2
of the text and in Prob. 15.

21. What is the temperature in a ball of radius 1 and of
homogeneous material if its lower boundary
hemisphere is kept at 0°C and its upper at 100°C?

22. (Reflection in a sphere) Let 7, 6, ¢ be spherical
coordinates. If u(r, 8, ¢) satisfies V2 = 0, show that
v(r, 6, @) = u(l/r, 8, ¢)/r satisfies Vv = 0. What
does this give for (16)?7

23. (Reflection in a circle) Let r, # be polar coordinates.
If u(r, 9) satisfies V2u = 0, show that the function
v(r, ) = u(l/r, 8) satisfies V?v = 0. What are
u = r cos § and v in terms of x and y? Answer the
same question for ¥ = rZ cos 0 sin 0 and v.

24. TEAM PROJECT. Transmission Line and Related
PDEs. Consider a long cable or telephone wire
(Fig. 312) that is imperfectly insulated, so that leaks
occur along the entire length of the cable. The source
§ of the current i(x, f) in the cable is at x = 0, the
receiving end T at x = /. The current flows from S to
T, through the load, and returns to the ground. Let the
constants R, L, C, and G denote the resistance,
inductance, capacitance to ground, and conductance to
ground, respectively, of the cable per unit length.

8 T

[

s R T A B 2 e e e e L T e e e P e e i
=0 x = I

Load

Fig. 312. Transmission line
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(a) Show that (“first transmission line equation’)

au a1
~ — =Ri+L—

dx ot
where u(x, f) is the potential in the cable. Hint: Apply
Kirchhoff’s voltage law to a small portion of the cable
between x and x + Ax (difference of the potentials at
x and x + Ax = resistive drop + inductive drop).
(b) Show that for the cable in (a) (“second
transmission line equation™),

au
- — =Gu+C —
dx at

Hint: Use Kirchhoff’'s current law (difference of the
currents at x and x 4+ Ax = loss due to leakage to
ground + capacitive loss)..

(c) Second-order PDEs. Show that elimination of
i or u from the transmission line equations leads to

Upe = LCuy + (RC + GL)u; + RGu,

i_. = LCi,, + (RC + GL)i; + RGi.

j

12

(d) Telegraph equations. For a submarine cypy,
G is negligible and the frequencies are low. Shoy Iha;
this leads to the so-called submarine cable equatipy,
or telegraph equations

Uz, = RCuy, iz = RCi,.

Find the potential in a submarine cable with epdg

{(x = 0, x = ) grounded and initial voltage distributig,

Uy = const.

(e) High-frequency line equations. Show that in the

case of alternating currents of high frequencies the

equations in (c) can be approximated by the so-calleg

high-frequency line equations
Uzz = LCuy, iyr = LCi.

Solve the first of them, assuming that the initial
potential is

Uy sin (7x/1),

and #.(x, 0) = 0 and u = 0 af the ends x = 0 and
x = lforallt

- Solution of PDEs by Laplace Transforms

Readers familiar with Chap. 6 may wonder whether Laplace transforms can also be used
for solving partial differential equations. The answer is yes, particularly if one of the
independent variables ranges over the positive axis. The steps to obtain a solution are
similar to those in Chap. 6. For a PDE in two variables they are as follows.

g ]

1. Take the Laplace transform with respect to one of the two variables, usually 7. This
gives an ODE for the transform of the unknown function. This is so since the l
derivatives of this function with respect to the other variable slip into the transformed
equation. The latter also incorporates the given boundary and initial conditions. I

2. Solving that ODE, obtain the transform of the unknown function.
3. Taking the inverse transform, obtain the solution of the given problem.
If the coefficients of the given equation do not depend on 7, the use of Laplace transforms }

will simplify the problem.
We explain the method in terms of a typical example. I

I BEXAMPEEST  Semi-Infinite String

Find the displacement w(z, ¢) of an elastic string subject to the following conditions. (We write w since we need
u to denote the unit step function.) :

(i) The string is initially at rest on the x-axis from x = 0 to oo (“semni-infinite string”).

(ii) For ¢ > 0 the left end of the string (x = 0) is moved in a given fashion, namely, according to 2 single '
sine wave i
sin ¢ fo0=st=2w -
w0, 1 = f(1) = (Fig. 313}
0

otherwise
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Solution of PDEs by Laplace Transforms

Fi®)
1

L NS

Fig. 313. Motion of the left end of the string in Example 1 as a function of time ¢

(iii) Furthermore, Hm w(x, ) =0 fort=0.
T—00

Of course there is no infinite string, but our model describes a long string or rope (of negligible weight) with
its right end fixed far out on the x-axis.

Solution. We have to solve the wave equation (Sec. 12.2)

3w > T
1 — = —, = —
W ar® ax? P
for positive x and ¢, subject to the “boundary conditions”
2 w(0, ) = f(1), giﬂé wix, ) =0 =0

with f as given above, and the initial conditions

i €)) (@) w0 =0, (®) wix, 0)=0.

B We take the Laplace transform with respeci to £ By (2) in Sec. 6.2,

i aw 2 . 2 3w
. F -—a'?- = s°Z{w} — swix, 0) — wy(x, 0) = 2% ? .

The expression —sw(x, 0) — wy(x, 0) drops out because of (3). On the right we assume that we may interchange
integration and differentiation. Then

# am} jw 2 e e na= D 2
: — = e dr = D) dt = —5 . D).
& ax> b © a2 ax? Jy © W a2 —vE D}
; Writing W(x, 5) = £{w(x, )}, we thus obtain

zw 0 aZW th aZW 32 oo

5 =cC BIZ 3 us axz CZ -

Since this equation contains only a derivative with respect to x, it may be regarded as an ordinary differential
equation for W(x, s) considered as a function of 1. A general solution is

@ Wiz, 5) = A(5)e™ + B(s)e™%e,
From (2) we obtain, writing F(s) = £{f(0},
W0, 5} = Z{w(0, 0} = L{f(O)} = F(s).

Assuming that we can interchange integration and taking the limit, we have
. =2 ==}
lim W(x, s) = lim f ez, ) dt = f e lim w(x, 2) dr = 0.
T—C0 I—00 [} 0 T—c0

This implies A(s) = 0 in (4) because ¢ > 0, so that for every fixed positive s the function ¢5° increases as x
increases. Note that we may assume 5 > 0 since a Laplace transform generally exists for all s greater than some
fixed £ (Sec. 6.2). Hence we have

W(0, s) = B(s) = F(s),

[S——
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so that (4) becomes
Wix, 5) = F(s)e™s5e,

From the second shifting theorem (Sec. 6.3) with a = x/c we obtain the inverse transform

X X
®) wix, 1) = f(t - ‘c‘) “(f - :) (Fig. 319)
that is,
x x x
w(x,r):s'm(r——) if — <t< — + 27 or ct> x> (t— 2m)e
c C C

and zero otherwise. This is a single sine wave traveling to the right with speed c. Note that a point x remaipg
at rest until ¢ = x/c, the time needed to reach that x if one starts at ¢ = 0 (start of the motion of the left end)
and travels with speed ¢. The result agrees with our physical intuition. Since we proceeded formally, we mug

verify that (5) satisfies the given conditions. We leave this to the sudent.
=01
x
(¢ =27 |
U 27me x
(i =4m | TN
" x
(¢t =6m | N
=

Fig. 314. Traveling wave in Example 1

This is the end of Chap. 12, in which we concentrated on the most important partial
differential equations (PDES) in physics and engineering. This is also the end of Part C
on Fourier analysis and PDEs. .

We have seen that PDEs have various basic engineering applications, which make them
the subject of many ongoing research projects.

Numerics for PDEs follows in Secs. 21.4-21.7, which are independent of the other
sections in Part E on numerics.

In the next part, Part D on complex analysis, we turn to an area of a different nature
that is also highly important to the engineer, as our examples and problems will show.
This will include another approach to the (two-dimensional) Laplace equation and its
applications in Chap. 18.

1. Sketch a figure similar to Fig. 314 if ¢ = 1 and f is (nonterminating) sinusoidal motion of the left end
“triangular” as in Example 1, Sec. 12.3. starting at t = 07

2. How does the speed of the wave in Example 1 depend a6
on the tension and on the mass of the string?

3. Verify the solution in Example 1. What traveling wave aw ow _ _ _
do we obtain in Example 1 in the case of a 4 ax Ty TE wix 0) =1, w0, 0 =1

SOLVE BY LAPLACE TRANSFORMS




Chapter 12 Review Questions and Problems

ow | dw A
x-a;— + ry =zxt, wx,0)=0ifx= 0,

w,)=0ift=0

wix,0) =0ifx=0, wi(x,0=0ifr=0,
w(0,t) =sintift =0

insulated bar extending from x = 0 along the x-axis
to infinity, assuming that the initial temperature is 0,
(x, ) = 0 as x — = for every fixed + = 0, and
(0, 1) = f(2). Proceed as follows.

8. Set up the model and show that the Laplace transform
leads to
2

d
sW = c?

= W =%w)

and
W = F(s)e™V/c (F = 2{f)).

- 1. Write down the three probably most important PDEs
from memory and state their main applications.

2. What is the method of separating variables for PDEs?
Give an example from memory..

. What is the superposition principle? Give a typical
application.

- What role did Fourier series play in this chapter? Fourier
integrals?

. What are the eigenfunctions and their frequencies of the
vibrating string? Of the heat equation?

. What additional conditions did we consider for the wave
equation? For the heat equation?

+ Name and explain the three kinds of boundary conditions.
What do you know about types of PDEs? About
transformation to normal forms?

- What is d’Alembert’s method? To what PDE does it
apply?

- When and why did we use polar coordinates? Spherical
coordinates?

11. When and why did Legendre’s equation occur in this
chapter? Bessel’s equation?

T o L

e

4

Applying the convolution theorem, show that
t
- * — 32, —z2(dc?)
w(x, 1) e o J-n f — D dr.

9. Let w(0, 1) = f(r) = u(t) (Sec. 6.3). Denote the
corresponding w, W, and F by wy, Wy, and Fp. Show
that then in Prob. 8, '

i

x
wolx, 1) = PR f 732g—zA)
T g

with the error function erf as defined in Problem
Set 12.6.
10. (Duhamel’s formula®) Show that in Prob. 9,

1
Wolx, 5) = — ™ Voot

and the convolution theorem gives Duhamel’s formula

t
wix, ) = f £t — 7 % dr.
0

12. What are the eigenfunctions of the circular membrane?
How do their frequencies differ in principle from those
of the eigenfunctions of the vibrating string?

13. Explain mathematically (not physically) why we got
exponential functions in separating the heat equation,
but not for the wave equation.

14. What is the error function? Why did it occur and where?

15. Explain the idea of using Laplace transform methods
for PDEs. Give an example from memory.

16. For what k and m are x* + kx%y? + y* and
sin mx sinh y solutions of Laplace’s equation?

17. Verify that (x® ~ y®)/(x? + y?)? satisfies Laplace’s
equation.

Solve for u = u(x, y):

18. u,, + 16u = 0

19. upy +u — 2u =0

20, Upy tuy, +x+y+1=20

21. uy, + u, = 0, u(x, 0) = f(x), uy(x, 0) = g(x)

22. Find all solution u(x, y) = F(x)G(y) of Laplace’s
equation in two variables.

“JEAN-MARIE CONSTANT DUHAMEL (1797-1872), French mathematician.

[S—




598 CHAP.12 Partial Differential Equations (PDEs)

! 23—26| Find and sketch or graph (as in Fig. 285
in Sec. 12.3) the deflection u(x, t) of a vibrating string of
length 7, extending from x = 0 to x = m and
¢ = T/p = 1, starting with velocity 0 and deflection
23. f(x) = sinx — % sin 2x

24. f(x) = 37 — |x = 37|

25. f(x) = sin® x

26. f(x) = x(7 — x)

Find the temperature distribution in a laterally
insulated thin copper bar (¢? = K/ps = 1.158 cm®/sec),
50 cm long and of constant cross section with endpoints at
x = 0 and 50 kept at 0°C and initial temperature

27. f(x) = sin (7x/50)
28. f(x) = x(50 — x)
29, Ff(x) = 25 — |25 — x|
30. f(x) = 4 sin® (7x/10)

31-33 Find the temperature u(x, 7) in a laterally

insulated bar of length 7, extending fromx = Otox = m,
with ¢2 = 1 for adiabatic boundary condition (see Problem
Set 12.5) and initial temperature

31, 100 cos 4x

32. 3x*

3.7 — 2x — 57

34. Using partial sums, graph u(x, f) in Prob. 33 for several
constant # on common axes. Do these graphs agree with
your physical intuition?

35. Let f(x, y) = u(x, y, 0) be the initial temperature in 2
thin square plate of side 7 with edges kept at 0°C and
faces perfectly insulated. Separating variables, obtain
from u, = ¢2V2u the solution

(=] oo
. ' _ 22
u(x, y, £) = 2y > Bmp sinmx sinny e cHme 0t

m=1n=1

where
4 T LT . )
Bpn = —3 Fx, y) sin mx sin ny dx dy,
T Yoo

36. Find the temperature in Prob. 35 if
flx y) = x(m = xy(7T = ¥).

Transform to normal form and solve (showing
the details!) ‘ )

37, ugy = Uz

38, uy, + Aug, + 4uy,, =0
39, u,, + 4uy, =0

40, 2up, + Sy, + 2uy, =0
4. vpy + 2uyy T Uy, =0
42, ity + Ugy — 2uze = 0

43-47 Show that the following membranes of area |
with ¢2 = 1 have the frequencies of the fundamental mods
as given (4-decimal values). Compare.

43. Circle: a,/(2V'm) = 06784

44. Square: 1V2 = 0.7071

45. Rectangle (sides 1:2): V5/8 = 0.7906
46. Semicircle: 3.832/V87 = 0.7644

47. Quadrant of circle: ay,/(4V ) = 0.7244
(&5 = 5.13562 = first positive zero of Jy)

[48-50]  Find the electrostatic potential in the following

(charge-free) regions:

48. Between two conceniric spheres of radii rp and ry kept
at the potentials i, and u,, respectively.

49. Between two coaxial circular cylinders of radii ry and
r; kept at the potential uy and u;, respectively.
(Compare with Prob. 48.)

50. In the interior of a sphere of radius 1 kept at the
potential f(¢) = cos 3¢ + 3 cos ¢ (referred lo our
usual spherical coordinates).

_x.'!“..-;."'i'_. O L )
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Whereas ODEs (Chaps. 1-6) serve as models of problems involving only one I
independent variable, problems involving two or more independent variables (space
variables or time  and one or several space variables) lead to PDEs. This accounts for I
the enormous importance of PDEs to the engineer and physicist. Most important are:

2

- (1) uy = c Uy One-dimensional wave equation (Secs. 12.2-12.4) ]

Q) e = Hugg T+ Uyy)

Two-dimensional wave equation (Secs. 12.7-12.9) J




3) u = cu,, One-dimensional heat equation (Secs. 12.5, 12.6)
4 Vu=u, + uy, = 0 Two-dimensional Laplace equation (Secs. 12.5, 12.9)

() VPu = uy + uy + u,, =0 Three-dimensional Laplace equation
(Sec. 12.10).

Equations (1) and (2) are hyperbolic, (3) is parabolic, (4) and (5) are elliptic.

In practice, one is interested in obtaining the solution of such an equation in a
given region satisfying given additional conditions, such as initial conditions
(conditions at time t = 0) or boundary conditions (prescribed values of the solution
u or some of its derivatives on the boundary surface S, or boundary curve C, of the
region) or both. For (1) and (2) one prescribes two initial conditions (initial
displacement and initial velocity). For (3) one prescribes the initial temperature
distribution. For (4) and (5) one prescribes a boundary condition and calls the
resulting problem a (see Sec. 12.5)

Dirichlet problem if u is prescribed on S,
% Neumann problem if u,, = 9u/dn is prescribed on S,
Mixed problem if u is prescribed on one part of S and u, on the other.

A general method for solving such problems is the method of separating
variables or product method, in which one assumes solutions in the form of
products of functions each depending on one variable only. Thus equation (1) is
solved by setting u(x, f) = F(x)G(#); see Sec. 12.3; similarly for (3) (see Sec. 12.5).
Substitution into the given equation yields ordinary differential equations for F and
G, and from these one gets infinitely many solutions F = F,, and G = G,, such that
the corresponding functions

Un(%, 1) = Fp(x)Gy(1)

are solutions of the PDE satisfying the given boundary conditions. These are the
eigenfunctions of the problem, and the corresponding eigenvalues determine the
frequency of the vibration (or the rapidity of the decrease of temperature in the case
of the heat equation, etc.). To satisfy also the initial condition (or conditions), one
must consider infinite series of the u,,, whose coefficients turn out to be the Fourier
coefficients of the functions f and g representing the given initial conditions
(Secs. 12.3, 12.5). Hence Fourier series (and Fourier integrals) are of basic
importance here (Secs. 12.3, 12.5, 12.6, 12.8).

Steady-state problems are problems in which the solution does not depend on
time 7. For these, the heat equation #; = c®>V?u becomes the Laplace equation.

Before-solving an initial or boundary value problem, one often transforms the
PDE into coordinates in which the boundary of the region considered is given by
simple formulas. Thus in polar coordinates given by x = r cos 6, y = r sin 6, the
Laplacian becomes (Sec. 12.9)

1 1
(6) ' V2u=uw+—~uf+§uﬂe;
r

for spherical coordinates see Sec. 12.10. If one now separates the variables, one gets
Bessel’s equation from (2) and (6) (vibrating circular membrane, Sec. 12.9) and
Legendre’s equation from (5) transformed into spherical coordinates (Sec. 12.10).




