
1. Introduction

Since Bachelier, a French mathematician, first tried to give a mathematical definition for
Brownian motion and used it to model the dynamics of stock process in 1900, financial
mathematics has developed a lot. Black & Scholes (1973) and Merton (1973) respectively used
the geometric Brownian motion (GBM) to model the underlying asset’s price process so that
they opened the gate of easy ways to compute option prices, which led one of the major
breakthroughs of modern finance. Many good ideas have been proposed to model the stock
pricing processes since then. Merton (1976) first introduced the jumps into the asset price
processes in his seminar paper. More recently, a lot of exponential Lévy models, including
Kou’s model, Variance Gamma (VG) model, Inverse Gaussian (IG) model, Normal Inverse
Gaussian (NIG) model, and CGMY model, etc., were proposed to add jumps in the financial
models so that they can describe the statistical properties of financial time series better [e.g.
see Cont & Tankov (2003) and references there in]. Also, serval stochastic volatility modes
were presented [e.g. see Heston (1993), Bates (1996), and Duffie et al (2000), etc.]. Empirical
financial data indicate that these models are usually more consist with financial markets.

Under assuming that the price of an underlying asset follows a GBM, Black & Scholes (1973)
showed that the value of a European option satisfies a boundary problem of heat equation
(Black-Scholes equation) so that they derived an explicit formula (Black-Scholes formula) for
the value. However, this nice analytic tractability in option pricing can not be carried over to
the most exponential Lévy models or the stochastic volatility modes for asset returns. Thus,
many new approaches, including efficient numerical methods, for option pricing have been
proposed. These approaches and methods can be classified into four major groups: The partial
integro-differential equation (PIDE) and various numerical methods for such equations; The
Monte Carlo methods via the stochastic simulation techniques for underlying asset price
processes; Directly numerical integration and various numerical methods via differential
integral transforms; Backward stochastic differential equation and its numerical methods.
Each of them has its advantages and disadvantages for different financial models and specific
applications.

Since Stein & Stein (1991) first used Fourier inversion method to find the distribution of the
underlying asset in a stochastic volatility model, the Fourier transform methods have become
a very active field of financial mathematics. Heston (1993) applied the characteristic function
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approach to obtain an analytic representation for the valuation of European options in the
Fourier domain. Duffie et al (2000) offered a comprehensive survey that Fourier transform
methods are applicable to a wide range of stochastic processes, the class of exponential affine
diffusions [e.g. see Kwok et al (2010) and Schmelzle (2010)].

Carr & Madan (1999) pioneered the use of the fast Fourier transform (FFT) technique by
mapping the Fourier transform directly to option prices via the characteristic function. Since
then, many efficient numerical methods by using FFT techniques have been proposed,
and many authors have discussed these methods in rigorous detail. Lee (2004) extended
their method significantly and proved an error analysis for these FFT methods. Lewis
(2001) generalized this approach to several general payoff functions via the convolution of
generalized Fourier transforms.

Recently, some new ideas to improve the Fourier transform methods have been raised. Fang &
Oosterlee (2008) proposed the COS method which is based on the Fourier and Fourier-cosine
expansion. Feng & Linetsky (2008) presented a new method which involves the relation
between Fourier transform and the Hilbert transform, and the Sinc expansion in Hardy spaces.
Lord et al (2008) extended the FFT-based methods to the CONV method, which is based on
the a quadrature technique and relies heavily on Fourier transform.

In this chapter, we demonstrate the application of Fourier transform as a very effective tool in
option pricing theory. Together with the fast Fourier transform technique and other important
properties of Fourier transform, we survey serval different methods for pricing European
options and some path dependent options under different financial models.

This chapter is organized as follows. In the next section, the mathematical formulations that
will be used in this chapter are reviewed. They include a brief discussion on Fourier transform
with its important properties; an introduction of discrete Fourier transform and the FFT idea;
a definition of characteristic functions; and a brief review on the exponential Lévy models and
stochastic volatility models in financial mathematics. In Section 3, several Fourier transform
methods for pricing European options are introduced. They include the Black-Scholes type
formulas, the FFT methods for signal underlying asset and for multi underlying assets, and
the Fourier expansion methods. In Section 4, three new Fourier transform methods for pricing
path dependent options are considered. They are the CONV method for pricing Bermudan
barrier option, the COS method for pricing Bermudan barrier option, and the fast Hilbert
transform method for pricing barrier option.

2. Fourier transforms and characteristic functions

2.1 Fourier transforms

Let g(x) be a piecewise continuous real function over R which satisfies the integrability
condition:

∫ ∞

−∞
|g(x)|dx < ∞.

The Fourier transform of g(x) is defined by

Fg(u) =
∫ ∞

−∞
eiuxg(x)dx, u ∈ R, (1)
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where i =
√
−1 is the imaginary unit. Given the function Fg(u), the function g(x) can be

recovered by the Fourier inversion formula:

g(x) =
1

2π

∫ ∞

−∞
e−iuxFg(u)du, x ∈ R. (2)

Sometime it may be more convenient to consider the generalized Fourier transform on the
complex plane. Let a, b ∈ R with a < b. Assume

∫ ∞

−∞
e−ax|g(x)|dx < ∞

and
∫ ∞

−∞
e−bx|g(x)|dx < ∞.

Then, the generalized Fourier transform:

Fg(z) =
∫ ∞

−∞
eizxg(x)dx, z ∈ C,

exists and is analytic for all z in the strip S =
{

z ∈ C : a < Im{z} < b
}

. Moreover, within this
strip the generalized Fourier transform may be inverted by integrating along a straight line
paralleled to the real axis:

g(x) =
1

2π

∫ iw+∞

iw−∞
e−ixzFg(z)dz, x ∈ R, (3)

with a < w < b. Here, Im{·} denotes taking the imaginary part of argument.

The following properties of Fourier transform are useful in this chapter.

P1.Differentiation: F
(

g′(x)
)

(u) = −iuFg(u), where g′(x) is the derivative of g(x).

P2.Modulation: F
(

eλxg(x)
)

(u) = Fg(u − iλ), where λ is a constant.

P3.Convolution: F ( f ∗ g)(u) = F f (u)Fg(u), where f ∗ g is the convolution of f (x) and g(x),
which is defined by

( f ∗ g)(x) =
∫ ∞

−∞
f (y)g(x − y)dy.

P4.Relation with Hilbert transform: F (sgn · g)(u) = iH(Fg)(u), where sgn(x) is the signum
function, and H is the Hilbert transform, which is defined by the Cauchy principal value
integral:

H f (u) =
1

π
P.V.

∫ ∞

−∞

f (x)

u − x
dx.

P5.Parseval relation: 〈 f , g〉 = 1
2π 〈F f (u),Fg(u)〉, where 〈·, ·〉 is the inner product of two

square-integrable function defined by

〈 f , g〉 =
∫ ∞

−∞
f (x)g(x)dx.
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2.2 Fast Fourier transforms

Let N = 2L be a power of 2, and let x = (x0, x1, . . . , xN−1)
T be a given N-dimensional vector,

where vT presents the transpose of a vector v. The discrete Fourier transform of x is another
N-dimensional vector Dx = (y0, y1, . . . , yN−1)

T is defined by

yp =
N−1

∑
j=0

ei 2π
N jpxj, p = 0, 1, . . . , N−1. (4)

Denote AN an N × N matrix whose (p, j)th entry is given by

ap j = ei 2π
N jp, j, p = 0, 1, . . . , N−1.

Then, the discrete Fourier transform of x is given by

Dx = AN x.

It is clear that the computation to find Dx requires N2 steps. However, the fast Fourier technique
(FFT) would require only 1

2 NL = 1
2 N log2 N steps. The idea behind the FFT algorithm is to

take advantage of the periodicity property of N roots of unity. For the given N-dimensional
vector x, denote x′ = (x0, x2, . . . , xN−2)

T and x′′ = (x1, x3, . . . , xN−1)
T two N/2-dimensional

vectors. Then, we find
y′ = AMx′ and y′′ = AMx′′,

where M = N/2, y′ = (y′0, y′1, . . . , y′M−1)
T and y′′ = (y′′0 , y′′1 , . . . , y′′M−1)

T , and the matrix
AM = [aj k]M×M given by

ap j = ei 2π
N jp, j, p = 0, 1, . . . , M−1.

It is easy to verify that the vector Dx, which is defined in (4), now is given by

yp = y′p + ei 2π
N py′′p , p = 0, 1, . . . , M−1,

yM+p = y′p − ei 2π
N py′′p , p = 0, 1, . . . , M−1.

Instead of performing the matrix-vector multiplication AN x, we now only need to perform
two matrix-vector multiplications AMx′ and AMx′′ so that the number of operations is
reduced from N2 to 2(N/2)2 = N2/2. The same procedure of reducing the length of the
vector by half can be applied repeatedly. Using this FFT algorithm, the total number of
operations is reduced from O(N2) to O(N log2 N). The similar FFT algorithm also can be
used to calculate the discrete Fourier inversion transform:

xp =
N−1

∑
j=0

e−i 2π
N jpyj, p = 0, 1, . . . , N−1.

2.3 Characteristic functions

Let X be a random variable having the density function f (x). Then, the characteristic function
of X is defined by

ϕX(u) = E
[

eiuX
]

=
∫ ∞

−∞
eiux f (x)dx, u ∈ R,
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i.e. it is the Fourier transform of the density f (X). Here E[·] denotes the mathematical
expectation. The characteristic functions are uniformly continuous and non-negative definite.
Also they possess the following properties:

P6.If X and Y are independent, then ϕX+Y(u) = ϕX(u)ϕY(u).

P7.If a, b ∈ R and Y = aX + b, then ϕY(u) = eibu ϕX(au).

P8.X and Y have the same distribution function if and only if they have the same characteristic
function.

2.4 Exponential Lévy models

An adapted stochastic process Xt with X0 = 0 is called a Lévy process if it has independent and
stationary increments, and it is continuous in probability. Moreover, every Lévy process has
a right continuous with left limits (càdlàd) version which is also a Lévy process. We always
work with this càdlàg version.

Let Xt be a Lévy process, and let B0 be the set family of all Borel sets U ⊂ R whose closure Ū
does not contain 0. Set

μ
(

(0, t], U
)

= ∑
0<s≤t

1U

(

ΔXs
)

, t > 0, U ∈ B0,

and denote μ
(

{0}, U
)

≡ 0. Then μ(dt, dx) is a σ-finite random measure on B(R+) × B0,

which is called the jump measure of Xt. Set ν(U) = E
[

μ
(

[0, 1], U
)]

for any U ∈ B0. It is
clear that ν(dx) is a σ-finite measure on B0, which is called the Lévy measure of Xt. Then, the
characteristic function of Lévy process Xt has the Lévy-Khintchine representation:

ϕt(u) = etψ(u), u ∈ R, (5)

where the characteristic exponent function:

ψ(u) = iαu − 1

2
σ2u2 +

∫

R

(

eiux − 1 − iux1{|x|≤1}(x)
)

ν(dx). (6)

Here the triple (α, σ2, ν(dx)) is called the Lévy triple of Xt. The proof of this Lévy-Khintchine
decomposition is based on the famous Lévy-Itô decomposition, and the detail can be found in
Cont & Tankov (2003). Also a Lévy process is a strong Markov process, and a semimartingale.
Furthermore, under the condition:

∫

{|x|≥1} exν(dx) < ∞, the exponential eXt is a martingale if

and only if

α +
1

2
σ2 +

∫

R

(

ex − 1 − x1{|x|≤1}(x)
)

ν(dx) = 0.

To ensure positivity as well as the independence and stationarity of log-returns, in financial
mathematics, the price process of the underlying asset is usually modeled as the exponential
of a Lévy process Xt:

St = S0eXt , t ≥ 0. (7)

There are many models in the financing modeling literature simply correspond to different
choices for σ2 and ν(dx) to the Lévy process Xt.
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The cases that σ2 �= 0 and ν(dx) is a finite measure, i.e. Xt is a Lévy jump diffusion:

Xt = μt + σBt +
Nt

∑
k=1

ξk, t ≥ 0,

where Bt is a standard Brownian motion, {ξk} is a sequence of independent and identically
distributed random variables with common density fξ(x), and Nt is a Poisson process of
intensity λ, such that Bt, {ξk} and Nt are mutually independent. In these models, the Lévy
triple is given by

α = μ + λ
∫

{|x|<1}
x fξ(x)dx, σ2 and ν(dx) = λ fξ(x)dx.

These models explain the jump part as the market responses to outside news: good news and
bad news. The news arrives according to the Poisson process Nt, and the price changes in
response according to the jump size ξk.

• The earliest of these models is due to Merton (1976). In this model, ξks are normally
distributed, with mean μJ and standard deviation σJ , so that the characteristic function
of Xt is given by

ϕt(u) = exp
{

iαtu − 1

2
σ2tu2 + λt

(

eiμJ u− 1
2 σ2

J u2 − 1
)

}

.

• The second one belongs to Kou (2002). In this model, ξks are non-symmetric double
exponentially distributed, and the characteristic function of Xt is given by

ϕt(u) = exp
{

iαtu − 1

2
σ2tu2 + λt

( 1 − η2

1 + η2u2
eiκu − 1

)}

,

where η and κ are parameters.

The cases that σ2 = 0 and ν(R \ {0}) = ∞, i.e., the models have infinite activity in jumps. We
only list some examples here.

• The VG model, which is proposed by Madan et al (1998): Xt is a variance gamma process
with parameters σ, κ and θ, and its characteristic function is given by:

ϕt(u) =
(

1 − iθκu +
1

2
σ2κu2

)−t/κ
.

• The NIG model, which is presented by Barndorff-Nielsen (1997): Xt is a normal inverse
Gaussian process with parameters α, β and δ, and its characteristic function is given by:

ϕt(u) = exp
{

− δt
(

√

α2 − (β + iu)2 −
√

α2 − β2
)}

.

• The CGMY model, which is defined by Carr et al (2002): Xt is a CGMY process whose
characteristic function is given by

ϕt(u) = exp
{

tCΓ(−Y)
[

(M − iu)Y − MY + (G + iu)Y − GY
]

}

,

where the parameters C, G and M are nonnegative, Y < 2, and Γ(x) is the gamma function.
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• The Finite Moment Log Stable model, which is considered by Carr & Wu (2003): Xt is a
finite moment log stable process whose characteristic function is given by

ϕt(u) = exp
{

iωtu − (iσu)αt sec
πα

2

}

,

where ω, α and σ are parameters.

2.5 Stochastic volatility models

Although the class of Lévy processes is quite rich, it is sometime insufficient for multi-period
financial modeling. Several models combining jumps and stochastic volatility have been
appeared in the literature. We only list two such models here.

• The Heston’s stochastic volatility model [Heston (1993)]: In this model, the price process
St is defined by the system of stochastic differential equations (SDEs):

{

dSt = μStdt +
√

Vt StdBS
t ,

dVt = κ(θ − Vt)dt + σ
√

Vt dBV
t ,

with the initial values S0 = s0 and V0 = v0, where BS
t and BV

t are two standard Brownian

motions with correlation ρ (i.e. 〈BS, BV〉t = ρt), κ is the mean reversion, θ is the long-run
variance level, and σ is the volatility-of-volatility parameter. Although St is no longer a
Lévy process, under the risk neutral probability the characteristic function of the log-price
process Xt = log St is known in closed form:

ϕt(u) =
exp

{ κθt(κ−iρσu)
σ2 + irtu + ix0u

}

(

cosh γt
2 +

κ−iρσu
γ sinh γt

2

)2κθ/σ2 exp
{

− (u2 + iu)v0

γ coth γt
2 + κ − iρσu

}

,

where x0 = log s0, r is the interest rate, and γ =
√

σ2(u2 + iu) + (κ − iρσu)2.

• The Baste’s stochastic volatility model [Bates (1996)]: In this model, the price process St

and the variance process Vt are given by the system of SDEs:
{

dSt = μSt−dt +
√

Vt St−dBS
t + St−dZt,

dVt = κ(θ − Vt)dt + σ
√

Vt dBV
t ,

where BS
t and BV

t are two standard Brownian motions with correlation ρ, and Zt is a
compound Poisson process with intensity λ and log-normal distribution of jump sizes such
that if k is its jump size then

log(1 + k) ∼ N
(

log(1 + k̄)− 1

2
δ2, δ2

)

.

Similarly to the Heston’s model, the characteristic function of Xt = log St is known in
closed form:

ϕt(u) = ϕD
t (u) · ϕJ

t (u),

where the characteristic function of the diffusion part:

ϕD
t (u) =

exp
{ κθt(κ−iρσu)

σ2 + i(r − λk̄)tu + ix0u
}

(

cosh γt
2 +

κ−iρσu
γ sinh γt

2

)2κθ/σ2 exp
{

− (u2 + iu)v0

γ coth γt
2 + κ − iρσu

}

,
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and the characteristic function of the jump part:

ϕJ
t (u) = exp

{

tλ
(

e−
1
2 δ2u2+i

(

log(1+k̄)− 1
2 δ2

)

u − 1
)}

.

3. Fourier transform methods for pricing European options

3.1 Black-Scholes type formulas

Gurland (1948) used the Convolution property P3 to derive an formula for calculation of the
distribution function F(x) from the characteristic function ϕ(u) :

F(x) =
1

2
+

1

2π

∫ ∞

0

eiux ϕ(−u)− e−iux ϕ(u)

iu
du.

Shephard (1991) gave a simple proof of this formula. From this formula by a simple calculation
we can get an important formula for Fourier inversion method:

P
(

X > x
)

= 1 − F(x) =
1

2
+

1

π

∫ ∞

0
Re

( e−iux ϕ(u)

iu

)

du. (8)

Here Re{·} denotes taking the real part of argument. Inside the field of finance, this Fourier
inversion method was first considered by Stein & Stein (1991) to find the distribution of the
underlying asset price in a stochastic volatility model. Heston (1993) applied the formula (8),
to obtain a Black-Scholes type formula for pricing a European call option in the stochastic
volatility model.

In fact, with help of the risk-neutral valuation, the price of a European call with spot price S0

and strike price K is given by

V(S0, T; K) = e−rT
E
[

(ST − K)+
]

= e−rT
∫ ∞

−∞
(ex − ek)+ fT(x)dx

=
∫ ∞

k
e−rT+x fT(x)dx − e−rTK

∫ ∞

k
fT(x)dx = I1 − e−rTKI2,

where r is the interest rate, T is the maturity, k = log K, and fT(x) is the density function of
XT = log ST . It is clear that the second integral is the probability: Π2 = P(Xt > k). By the
Fourier inversion formula (8) we have

Π2 =
1

2
+

1

π

∫ ∞

0
Re

( e−iuk ϕT(u)

iu

)

du,

where ϕT(u) is the characteristic function of XT . By a change of probability measure, we can
verify that the second integral is give by I1 = S0Π1, where

Π1 =
1

2
+

1

π

∫ ∞

0
Re

( e−iuk ϕT(u − i)

iuϕT(−i)

)

du,

Thus, the price of the European call now is given by a Black-Scholes type formula:

V(S0, T; K) = S0Π1 − Ke−r(T−t)Π2. (9)
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Beginning with Heston’s work, many authors used the Fourier inversion methods to solve
advanced valuation problems [e.g. see Bates (1996), Schmelzle (2010), and references therein].
As mentioned by Carr & Madan (1999), the numerical integrals based on these methods are
generally much faster than finite difference solutions to PDEs or PIDEs. Unfortunately, the
FFT cannot be used to evaluate these integrals, since the integrands are singular at the required
evaluation point u = 0.

Recently, several authors applied the Property P5 (Parseval relation) to derive the Fourier
inversion formulas in option pricing [e.g. see Dufresne et al (2009)]. We have well known that,
under the risk-neutral probability, the option price V(S0, T) with the terminal payoff H(ST) is
given by

V(S0, T) = e−rT
E
[

H(ST)
]

= e−rT
∫ ∞

−∞
H(x)pT(x)dx = e−rT〈H(x), pT(x)〉,

where pT(x) is the density function of ST . By the Parseval relation we have

V(S0, T) =
e−rT

2π
〈FH(u),F pT(u)〉.

3.2 Fast Fourier transform methods - single asset

1. The method of Carr and Madan. Carr & Madan (1999) developed a different method
designed to use the fast Fourier transform to price options. They introduced a new
technique to calculate the Fourier transform of a modified call option price with respect to
the logarithmic strike price so that the fast Fourier transform can be applied to calculate the
integrals.

Consider a European call with the maturity T and the strike price K, which is written on a
stock whose price process is St = ert+Xt , under a risk-neutral probability. Let fT(x) be the
density of XT . Consider the price of a call option:

VT(k) = e−rT
E
[(

eXT − ek
)+]

= e−rT
∫ ∞

k
(ex − ek) fT(x)dx, (10)

where k = ln K is the log strike price. Note that VT(k) → S0 = 1 as k → −∞, and the function
VT(k) is not square-integrable. Thus, we cannot express the Fourier transform in strike in
terms of the characteristic function ϕT(u) of XT and then find a range of strikes by Fourier
inversion.

To obtain a square-integrable function we consider the modified call price:

ṼT(k : α) = eαkVT(k)

for some α > 0, which is chosen to improve the integrability. Carr & Madan (1999) showed
that a sufficient condition for square-integrability of Ṽ(k) is given by

∫ ∞

−∞
fT(x)e(1+α)xdx < ∞.

Consider the Fourier transform of Ṽ(k : α):

ψT(v : α) = F ṼT(k : α)(v) =
∫ ∞

−∞
eivkṼT(k : α)dk.
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By (10) and the definition of characteristic functions we have

ψT(v : α) = e−rT
∫ ∞

−∞
fT(x)dx

∫ x

−∞

(

ex+αk − e(1+α)k)eivkdk

=
e−rT ϕT

(

v − i(α + 1)
)

α2 + α − v2 + i(2α + 1)v
, (11)

where ϕT(u) is the characteristic function of XT . Using the Fourier inverse transform we get

VT(k) = e−αkṼ(k : α) =
e−αk

2π

∫ ∞

−∞
e−ivkψT(v : α)dv.

Note that ψT(v : α) is odd in its imaginary part and even in its real part. Since V(k) is real we
have

VT(k) =
e−αk

π

∫ ∞

0
e−ivkψT(v : α)dv. (12)

Now this integral can be evaluated by the numerical approximation using the trapezoidal
rule:

VT(kp) ≈
e−αkp

2π

N−1

∑
j=0

e−ivjkp ψT(vj : α)Δv, p = 0, 1, . . . , N − 1.

to apply the FFT algorithm, we set N as a power of 2, and define the grid points:

{

kp = − 1
2 NΔk + pΔk, p = 0, 1, . . . , N−1,

vj = − 1
2 NΔu + jΔv, j = 0, 1, . . . , N−1,

with the step sizes Δk and Δv, which satisfy the Nyquist relation: ΔkΔv = 2π/N. Then, the
numerical approximation can expressed as

VT(kp) ≈
e−αkp

2π

N−1

∑
j=0

(−1)j+pe−i 2π
N jpψT(vj : α)Δv, p = 0, 1, . . . , N−1,

which can be efficiently computed by using FFT algorithm.

Many authors have discussed this Carr and Madan’s pricing method in rigorous detail. Lee
(2004) extended this method significantly and proved an error analysis for this FFT method.
On the other hand, numerical experiments show that this FFT method has a quite large error
when the strike price K is small, and its stability is very dependent on the choice of the
damping exponential factor α. Ding & U (2010) presented a modified FFT-based method to
overcome these disadvantages.

2. The method of Lewis. Lewis (2001) introduced an option pricing method which generalizes
previous work on Fourier transform methods. The main idea of his method is to express the
option price via the convolution of generalized Fourier transforms, and then, to apply the
property P5 (Parseval relation) to obtain the generalized Fourier transform of option price.

Consider a European type option whose payoff is H(ST) at maturity T, where St = S0ert+Xt

is the stock price process under the risk neutral probability. To proceed, we assume that Xt is
a Lévy process having the analytic characteristic function ϕT(z), which is regular in the strip
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SX =
{

z : a < Im{z} < b
}

, and h(x) = H(ex+rT) is Fourier integrable in some strip Sh such
that

SV = S̄X ∩ Sh �= ∅,

where S̄X is the complex conjugate set of SX .

Let s = log S0 denote the logarithm of current stock value. Then, the option price is given by

V(s) = e−rT
E

[

H
(

es+rT+XT
)

]

= e−rT
∫ ∞

−∞
H(es+rT+x) fT(x)dx,

where fT(x) is density function of XT . Under the assumption we can compute the generalized
Fourier transform of V(s) by the Parseval relation:

∫ ∞

−∞
eizsV(s)ds = e−rT

∫ ∞

−∞
fT(x)dx

∫ ∞

−∞
eizs H(es+rT+x)ds

= e−rT
∫ ∞

−∞
e−izx fT(x)dx

∫ ∞

−∞
eizy H(ey+rT)dy,

for all z ∈ S. Finally we obtain

FV(z) = e−rT ϕT(−z)Fh(z), z ∈ SV .

Option prices can now be given by the generalized Fourier inversion formula (3):

V(s) =
e−rT

2π

∫ iw+∞

iw−∞
ϕT(−z)Fh(z)dz,

with a < w < b, for a range of initial values s.

For a European call option, the function h(x) = (erT+x − ek)+, is Fourier integrable in the
region Im{z} > 1, where its generalized Fourier transform can be computed explicitly:

Fh(z) =
∫ ∞

−∞
eixz

(

ex+rT − ek
)+

dx =
ek+iz(k−rT)

iz(iz + 1)
.

Hence, the generalized Fourier transform of call option price takes the form:

FV(z) = ϕT(−z)
e(1+iz)(k−rT)

iz(iz + 1)
, 1 < Im{z} < 1 + α.

and hence, the option price is given by

V(s) =
ews+(1−w)(k−rT)

2π

∫ ∞

−∞

ϕT(−z)eiu(k−rT−s)

(iu − w)(1 + iu − w)
du,

for some 1 < w < 1 + α. The integral in this formula can be approximated by using the FFT
algorithm as the formula (12). However, the choice of w is a delicate issue because choosing
big w leads to slower decay rates at infinity and bigger truncation errors, and while w is close
to one the denominator diverges and the discretization error becomes to large (see Chapter 11
in Cont & Tankov (2003)). On the other hand, Lewis (2001) also listed the generalized Fourier
transforms Fh(z) and the strip Sh for various claims, for instance, the put option, the covered
call or the cash-secured put, etc.
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3.3 Fast Fourier transform methods - multi assets

1. The most direct extension of the Carr and Madan method to the multi assets model is to
price the correlation option, whose payoff at the maturity T is defined by

H(S1T , S2T) = (S1T − K1)
+(S2T − K2)

+,

where K1 and K2 are strike prices [see, e.g. Kwok et al (2010)]. Define Xit = log Sit and
ki = log Ki, i = 1, 2, and let fT(x1, x2) be the joint density of X1T and X2T under the risk neutral
probability. Then, the characteristic function of X1T and X2T is defined by the following
two-dimensional Fourier transform:

ϕT(u1, u2) =
∫ ∞

−∞

∫ ∞

−∞
ei(u1x1+u2x2) fT(x1, x2)dx1dx2.

Consider the price of the correlation option:

VT(k1, k2) = e−rT
∫ ∞

k2

∫ ∞

k1

(ex1 − ek1 )(ex2 − ek2 ) fT(x1, x2)dx1dx2.

Following the Carr and Madam method we consider the modified call price:

ṼT(k1, k2 : α1, α2) = eα1k2+α2k2 VT(k1, k2),

for some parameters α1 > 0 and α2 > 0, which are chosen such that this modified price
is square integrable for negative value of k1 and k2. Then, by a direct integral the Fourier
transform of Ṽ(k1, k2) is given by

ψT(v1, v2) = F ṼT(k1, k2 : α1, α2)

=
e−rT ϕT

(

v1 − i(α1 + 1), v2 − i(α2 + 1)
)

(α1 + iv1)(α1 + 1 + iv1)(α2 + iv2)(α2 + 1 + iv2)
.

Applying the Fourier inversion on ψT(v1, v2) and using the numerical approximation of
two-dimensional Fourier inversion integral we have

VT(k
1
p, k2

q) =
e−α1k1

p−α2k2
q

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(v1k1

p+v2k2
q)ψT(v1, v2)dv1dv2

≈ e−α1k1
p−α2k2

q

(2π)2

N−1

∑
m=0

N−1

∑
n=0

e−i(v1
mk1

p+v2
nk2

q)ψT(v
1
m, v2

n)Δv1Δv2,

for p, q = 0, 1, . . . , N−1. To apply the two-dimensional of the FFT algorithm we set

v1
m =

(

m − N

2

)

Δv1, v2
n =

(

n − N

2

)

Δv2, m, n = 0, 1, . . . , N−1,

and

k1
p =

(

p − N

2

)

Δk1, k2
q =

(

q − N

2

)

Δk2, p, q = 0, 1, . . . , N−1,

where N is a power of 2, and the step sizes Δv1, Δv2, Δk1, and Δk2 observe the Nyquist
relations: Δv1Δk1 = Δv2Δk2 = 2π/N. Dempster & Hong (2002) shown that the numerical
approximation now is given by

VT(k
1
p, k2

q) ≈
e−α1k1

p−α2k2
q

(2π)2
ΨT(k

1
p, k2

q),
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for k1
p �= k2

q, where

ΨT(k
1
p, k2

q) = (−1)p+q
N−1

∑
m=0

N−1

∑
n=0

e−i 2π
N (mp+nq)((−1)m+nψT(v

1
m, v2

n)Δv1Δv2
)

,

which can be computed via the FFT algorithm.

There are some other types of terminal payoff functions that admit analytic representation of
the Fourier transform of the damped option price [see e.g. Eberlein et al (2010), Lee (2004),
and references therein]. However, to derive the FFT pricing algorithm for the spread option:

H(S1T , S2T) = (S1T − S2T − K)+, (13)

Dempster & Hong (2002) approximated the exercise region of H(S1T , S2T) by a combination
of rectangular strips.

2. Hurd & Zhou (2010) proposed an alternative approach to pricing the European spread
option (13) under the three-factor SV model and exponential Lévy models. Let h(x1, x2) be
the terminal spread option payoff with the strike price K = 1, i.e.

h(x1, x2) = (ex1 − ex2 − 1)+. (14)

And denote Γ(z) the complex gamma function defined by

Γ(z) =
∫ ∞

0
e−ttz−1dt, Re{z} > 0.

Then, the method of Hurd and Zhou mainly relies on the following Fourier representation of
the payoff function h(x1, x2):

h(x1, x2) =
1

(2π)2

∫ iǫ2+∞

iǫ2−∞

∫ iǫ1+∞

iǫ1−∞
ei(u1x1+u2x2) ĥ(u1, u2)du1du2, (15)

where ǫ1 and ǫ2 are any two given real numbers with ǫ2 > 0 and ǫ1 + ǫ2 < −1, and

ĥ(u1, u2) =
Γ
(

i(u1 + u2)− 1
)

Γ(−iu2)

Γ(iu1 + 1)
.

The proof of this formula can be found in the appendix of Hurd & Zhou (2010). Let X1t =
log S1t and X2t = log S2t with X10 = x1 and X20 = x2, and let ϕT(u1, u2) be the characteristic
function of X1T − x1 and X2T − x2. Then, we have

E
[

ei(u1X1T+u2X2T)
]

= ei(u1x1+u2x2)ϕT(u1, u2).

Now, using the formula (16), the price of the spread option (14) is expressed as an explicit
two-dimensional Fourier inversion transform:

VT(x1, x2) = e−rT
E
[(

eX1T − eX2T − 1
)+]

= e−rT
E

[ 1

(2π)2

∫ iǫ2+∞

iǫ2−∞

∫ iǫ1+∞

iǫ1−∞
ei(u1X1T+u2X2T) ĥ(u1, u2)du1du2

]

=
e−rT

(2π)2

∫ iǫ2+∞

iǫ2−∞

∫ iǫ1+∞

iǫ1−∞
E
[

ei(u1X1T+u2X2T)
]

ĥ(u1, u2)du1du2

=
e−rT

(2π)2

∫ iǫ2+∞

iǫ2−∞

∫ iǫ1+∞

iǫ1−∞
ei(u1x1+u2x2)ϕT(u1, u2)ĥ(u1, u2)du1du2.
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This two-dimensional Fourier inversion integral can be numerically computed by the usual
FFT calculations. Since this approach does not require an approximation of the exercise region,
it is considered to be more computationally efficient.

3.4 Fourier expansion methods

Fang & Oosterlee (2008) proposed a new numerical method for pricing European options,
which is called the COS method. This method is based on the Fourier transform and the
Fourier-cosine expansion, and is shown to have the exponential convergence rate and linear
computational complexity. And now, this novel method has been considered by many authors
to price various options [see e.g. Ding et al (2011b),Fang & Oosterlee (2009), and the references
therein].

We recall that the price St of underlying asset follows an exponential Lévy model. Let Xt =
log(St/K), where K is the strike price. Consider the price of European call in the form:

V0(K) = e−rT
E
[

(ST − K)+
]

= e−rTK
∫ ∞

0
(ex − 1) fT(x)dx, (16)

where fT(x) is the probability density of XT under the risk-neutral probability. Let ϕT(u) be
the characteristic function of fT(x). The main ideas of the COS method are to choose two
numbers a and b such that the truncated integral approximates the infinite integral very well,
i.e.,

ϕ̃T(u) =
∫ b

a
eiux fT(x)dx ≈

∫ ∞

−∞
eiux fT(x)dx = ϕT(u), (17)

and to consider the Fourier-cosine expansion of fT(x) in [a, b]:

fT(x) =
1

2
A0 +

∞

∑
n=1

An cos
(

nπ
x − a

b − a

)

, x ∈ [a, b], (18)

where

An =
2

b − a

∫ b

a
p̃T(x) cos

(

nπ
x − a

b − a

)

dx, n = 0, 1, 2, . . . .

From (17) we have

An =
2

b − a
Re

{

ϕ̃T

( nπ

b − a

)

exp
(

− i
naπ

b − a

)}

, n = 0, 1, 2, . . . .

Then, we get an approximation of fT(x) in (18) by

fT(x) ≈ 1

2
Ã0 +

N−1

∑
n=1

Ãn cos
(

nπ
x − a

b − a

)

, x ∈ [a, b], (19)

where

Ãn =
2

b − a
Re

{

ϕT

( nπ

b − a

)

exp
(

− i
naπ

b − a

)}

≈ An, n = 0, 1, . . . , N−1

Now, substituting (19) into (16), we obtain an approximation of the option price:

V0(K) ≈ Ke−rT
{1

2
Ã0

(

Φ0(0, b)− Ψ0(0, b)
)

+
N−1

∑
n=1

Ãn
(

Φn(0, b)− Ψn(0, b)
)

}

, (20)
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where Φn(0, b) and Ψn(0, b) are two integrals given by:

Φn(c, d) =
∫ d

c
ex cos

(

nπ
x − a

b − a

)

dx and Ψn(c, d) =
∫ d

c
cos

(

nπ
x − a

b − a

)

dx,

for any [c, d] ⊂ [a, b], which are analytically given by

Φn(c, d) =
1

1 +
(

nπ
b−a

)2

[

cos
(

nπ
d − a

b − a

)

ed − cos
(

nπ
c − a

b − a

)

ec

+
nπ

b − a
sin

(

nπ
d − a

b − a

)

ed − nπ

b − a
sin

(

nπ
c − a

b − a

)

ec
]

,

Ψn(c, d) =

⎧

⎨

⎩

[

sin
(

nπ
d − a

b − a

)

− sin
(

nπ
c − a

b − a

)] b − a

nπ
n �= 0,

(d − c) n = 0
.

Fang & Oosterlee (2008) also showed that, in most cases, the convergence rate of the COS
formula (20) is exponential and the computational complexity is linear. They also discussed
the truncation range for COS method, and gave a general formula to determine the interval of
integration [a, b] in that paper, which is given by

[a, b] =
[

c1 − δ
√

c2 +
√

c4, c1 + δ
√

c2 +
√

c4

]

, (21)

where c1, c2, and c4 are the first, second, and fourth cumulates of Xt = log(St/K). Also,
the constant δ depends on the tolerance level in the approximation (17), and usually we
choose δ = 10. Meanwhile, Ding & U (2011) respectively applied the Fourier-sine and Fourier
expansions to substitute the Fourier-cosine expansion in (18). A comprehensive analysis with
numerical comparisons for these different methods is also given in their paper.

4. Fourier transform methods for pricing path dependent options

4.1 The CONV method for pricing Bermudan barrier options

Pricing Bermudan or barrier options is much harder than pricing European options. Because
these options are depended on paths of the price process for the underlying assets. Recently,
some new numerical integration methods based on Fourier transforms are proposed. Lord et
al (2008) proposed an efficient and accurate FFT-based method, called the CONV method, to
price Bermudan options under exponential Lévy models.

In the following we apply the CONV method to price a Bermudan barrier option in which the
monitored dates may be many times more than the exercise dates. Denote

G(S) =

{

(S − K)+, for call option,

(K − S)+, for put option,

where K is the strike price, S is the spot price of the underlying asset. Let

{

T =
{

tmL+l : m = 0, 1, . . . , M, l = 0, 1, . . . , L−1
}

,

Te =
{

tmL : m = 1, . . . , M−1
}

⊂ T,
(22)
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be the set of pre-specified monitored dates and the set of pre-specified exercise dates,
respectively, before maturity T, where

0 = t0 < t1 < · · · < tML = T with Δt = tk − tk−1 = T/(ML).

Consider a discrete American barrier option, which is monitored at every tk ∈ T and can be
exercised at each tk ∈ Te, namely Bermudan barrier option, whose payoff is given by

G(Stk
)1{Stk

<H} + R01{Stk
≥H}, tk ∈ T.

Here Stk
is the price of the underlying asset at time tk ∈ T, H > K is the constant barrier and

R0 is the contractual rebate. That is, this Bermudan barrier option is an up-and-out barrier
option that cease to exist if the asset price Stk

hits the barrier level H at one time tk ∈ T, and it
can also be exercised at any time tk ∈ Te before maturity T.

Denote V(S, tk) the value of this Bermudan barrier option at time tk and the spot price
Stk

= S. With help of the risk-neutral valuation formula, this price process can be computed
recursively by the following backward induction:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

V(S, tML) = G(S)1{S<H} + R01{S≥H},

C(S, tk) = E
[

e−rΔtV(Stk+1
, tk+1) | Stk

= S
]

, tk ∈ T,

V(S, tk) = C(S, tk)1{S<H} + e−r(T−tk)R01{S≥H}, tk ∈ T \ Te,

V(S, tk) = max
{

G(S), C(S, tk)
}

1{S<H} + e−r(T−tk)R01{S≥H}, tk ∈ Te,

(23)

in specialty, the initial price is given

V(S, t0) = C(S, t0) = E
[

e−rΔtV(S, t1) | St0 = S
]

.

Here r > 0 is the interest rate, and E[· | ·] is the conditional expectation under the risk-neutral
probability.

Assume that the price process of the underlying asset is given by

St = S0eXt , t ≥ 0,

where Xt is a Lévy process and S0 is the initial price. Let f (· | x) be the condition density of
Xtk+1

given Xtk
= x for tk ∈ T. Set

g(x) =

{

(S0ex − K)+, for a call option,
(K − S0ex)+, for a put option.

Then the backward induction (23) can be rewritten by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v(x, tML) = g(x)1{x<h} + R01{x≥h},

c(x, tk) = e−rΔt
∫ ∞

−∞
v(y, tk+1) f (y | x)dy, tk ∈ T,

v(x, tk) = c(x, tk)1{x<h} + R01{x≥h}, tk ∈ T \ Te,

v(x, tk) = max
{

g(x), c(x, tk)
}

1{x<h} + e−r(T−tk)R01{x≥h}, tk ∈ Te,

(24)

and

v(x, t0) = c(x, t0) = e−rΔt
∫ ∞

−∞
v(y, t1) f (y | x)dy,
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where v(x, tk) = V(S0ex, tk) for any tk ∈ T, and h = log(H/S0).

Since each Lévy process is stationary and has independent increments, the condition density
f (· | x) possesses the property:

f (y|x) = f (y−x), x, y ∈ R,

where f (y) is the density of Xt1 under the initial condition Xt0 = x. Applying this property to
infinite integrals c(x, tk) in (24) it becomes to

c(x, tk) = e−rΔt
∫ ∞

−∞
v(y, tk+1) f (y−x)dy = e−rΔt

∫ ∞

−∞
v(x+z, tk+1) f (z)dz

for any tk ∈ T. Then, this integral can be rewritten as a convolution of v(x+z, tk+1) and the
function f (−x), i.e.

c(x, tk) = e−rΔt f (−x) ∗ v(x, tk+1).

Thus we have
eαxc(x, tk) = e−rΔt

[

eαx f (−x)
]

∗
[

eαxv(x, tk+1)
]

, (25)

where α > 0 is chosen to improve the integrability. Now, the main idea of CONV method
is that, taking the Fourier transform in the both sides of (25) and applying the Property P3
(Convolution), the integral becomes

erΔtF
[

eαxc(x, tk)
]

(u) = F
{[

eαx f (−x)
]

∗
[

eαxv(x, tk+1)
]}

(u)

= F
[

eαx f (−x)
]

(u) · F
[

eαxv(x, tk+1)
]

(u).

Denote ϕ(z) is the characteristic function of the density f (x) on the complex plan C. Then, by
a simple calculation, we have

erΔtF
[

eαxc(x, tk)
]

(u) = ϕ
(

−(u−iα)
)

· F
[

eαxv(x, tk+1)
]

(u).

Thus, taking the inverse Fourier transform we obtain

eαxc(x, tk) = e−rΔt 1

2π

∫ ∞

−∞
e−iux ϕ

(

−(u−iα)
)

∫ ∞

−∞
eiuy+αyv(y, tk+1)dydu. (26)

Denote

κ = δ

√

− ∂2 ϕT(u)

∂u2

∣

∣

∣

u=0
+

( ∂ϕT(u)

∂u

∣

∣

∣

u=0

)2
,

where ϕT(u) is the characteristic function of XT , and δ is a proportionality constant. According
to the suggestion from Lord et al (2008), we can take δ = 20 for the GBM model and δ = 40 for
other exponential Lévy models. Let N be a power of 2. We consider the grid points on x-axes:

xj =
(

j − 1

2
N
)

Δx, j = 0, 1, . . . , N−1,

where Δx = κ/N. Furthermore, we also consider the grid points for the numerical integrals
in (26):

uj = (j − 1

2
N)Δu, yj = xj, j = 0, 1, . . . , N−1,
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where Δu = 2π/κ. It is clear that these grids satisfy the Nyquist relation: ΔuΔy = 2π/N.
Now, for each tk ∈ T and each p = 0, 1, . . . , N−1, approximating the integral in (26) with
composite trapezoidal rule and the second integral with left rectangle rule yields

c(xp, tk) ≈ e−αxp−rΔt ΔuΔy

2π

N−1

∑
j=0

(

e−iuj xp ϕ
(

−(uj−iα)
)

N−1

∑
n=0

ωneiujyn+αyn v(yn, tk+1)
)

where the weights ωn are chosen as ω0 = ωN−1 = 1
2 and ωn = 1 for n = 1, . . . , N−2. Noting

that u0 = − 1
2 NΔu and Δx = Δy = 2π/(NΔu), we have

c(xp, tk) ≈ e−αxp−rΔteiu0(y0−x0)(−1)p
N−1

∑
j=0

(

e−ijp 2π
N eij(y0−x0)Δu ϕ

(

−(uj−iα)
)

· 1

N

N−1

∑
n=0

eijn 2π
N (−1)nωneαyn v(yn, tk+1)

)

. (27)

Now, we can employ the FFT algorithm to calculate the summations in the right side of (27).
Once the integral c(xp, tk) is computed, we can determine the early-exercise price S∗

tk
, tk ∈ Te,

by the procedure: for each tk ∈ Te, locate jk such that

c(xjk , tk)− g(xjk ) = 0, (28)

or,
(

c(xjk , tk)− g(xjk )
)(

c(xjk+1, tk)− g(xjk+1)
)

≤ 0. (29)

In the case (28) set x∗(tk) = xjk , and in the case (29) set x∗(tk) = 1
2 (xjk + xjk+1

). Then the

early-exercise price at every tk ∈ Te is given by S∗
tk
= S0ex∗(tk). Ding et al (2011b) gave a detail

algorithm, which summarizes the above procedure, for pricing an up-and-out Bermudan
barrier option, and the corresponding numerical experiments.

4.2 The COS method for pricing Bermudan barrier options

Recently, Fang & Oosterlee (2009) extended their COS method to price discrete early-exercise
options under exponential Lévy models, and Fang & Oosterlee (2011) further considered such
pricing problems under Heston’s model.

Assume that the price process of the underlying asset St follows an exponential Lévy model,
and T and Te are the set of pre-specified monitored dates and the set of pre-specified exercise
dates, respectively, before the maturity T, which are defined by (22). In the following, we
apply the COS method to price the Bermudan barrier option which defined in preceding
subsection, whose payoff is given by

G(Stk
)1{Stk

<H} + R01{Stk
≥H}, tk ∈ T,

where H > K is the constant barrier and R0 is the contractual rebate. Denote V(S, tk), tk ∈ Te,
the value of this Bermudan barrier option at time tk and the spot price Stk

= S. As in the
preceding subsection, with help of the risk-neutral valuation formula, this price process can
be computed recursively by the backward induction (23). In specialty, the initial price is given
by

V(S, t0) = C(S, t0) = E
[

e−rΔtV(S, t1) | St0 = S
]

. (30)
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Here S is the spot price of underlying asset, r > 0 is the interest rate. Let Xt = log(St/K) be
the logarithm of the underlying asset price St over the strike price K, and denote x = log(S/K)
and h = log(H/K). Let f (· | x) be the condition density of Xtk+1

given Xtk
= x for tk ∈ T. Set

g(x) =

{

K(ex − 1)+, for a call option,
K(1 − ex)+, for a put option.

Then the backward induction (23) and the price formula (30) can be rewritten by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v(x, tML) = g(x)1{x<h} + R01{x≥h},

c(x, tk) = e−rΔt
∫ ∞

−∞
v(y, tk+1) f (y | x)dy, tk ∈ T,

v(x, tk) = c(x, tk))1{x<h} + R01{x≥h}, tk ∈ T \ Te,

v(x, tk) = max
{

g(x), c(x, tk)
}

1{x<h} + e−r(T−tk)R01{x≥h}, tk ∈ Te,

(31)

and

v(x, t0) = c(x, t0) = e−rΔt
∫ ∞

−∞
v(y, t1) f (y | x)dy, (32)

where v(x, tk) = V(Kex, tk) for any tk ∈ T.

We consider the infinite integrals c(x, tk) in (31). Since f (y|x) decays to zero very quickly as
y → ±∞ we may choose two bounds a and b, which can be selected by (21), such that

c̄(x, tk) = e−rΔt
∫ b

a
v(y, tm+1) f (y | x)dy ≈ c(x, tk), tk ∈ T. (33)

without losing some significant accuracy. Note that the density f (y | x) has the following
Fourier-cosine expansion on [a, b]:

f (y | x) =
2

b − a

∞

∑
j=0

[

wj cos
(

jπ
y − a

b − a

)

∫ b

a
f (u | x) cos

(

jπ
u − a

b − a

)

du
]

,

where w0 = 1
2 and wj = 1 for all j = 1, 2, 3, . . .. We substitute this expansion into the integral

(33) and then we can rewrite it by

c̄(x, tk) =
(b − a)

2
e−rΔt

∞

∑
j=0

wjFj(x)Vj(tk+1), (34)

where for each j = 1, 2, 3, . . .,

Vj(tk+1) =
2

b − a

∫ b

a
v(y, tk+1) cos

(

jπ
y − a

b − a

)

dy, (35)

and

Fj(x) =
2

b − a

∫ b

a
f (y | x) cos

(

jπ
y − a

b − a

)

dy. (36)

Since the Fourier-cosine expansion has a high accuracy with a few terms, we can truncate the
infinity series (34) and approximate c̄(x, tk) by leaving the first N terms, i.e.,

ĉ(x, tk) =
(b − a)

2
e−rΔt

N−1

∑
j=0

wjFj(x)Vj(tk+1) ≈ c̄(x, tk), (37)
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for any tk ∈ T, where w0 = wN−1 = 1
2 and wj = 1 for j = 1, . . . , N−2. On the other hand, we

can represent each integral (36) by approximation as the following

Fj(x) =
2

b − a
Re

{

exp
(

− i
jaπ

b − a

)

∫ b

a
f (u | x) exp

(

i
juπ

b − a

)

du
}

≈ 2

b − a
Re

{

exp
(

− i
jaπ

b − a

)

∫ ∞

−∞
f (u | x) exp

(

i
jπ

b − a
u
)

du
}

.

Let ϕ(u; x) be the characteristic function of f (· | x). Then, we can approximate each Fj(x) by

Fj(x) ≈ 2

b − a
Re

{

exp
(

− i
jaπ

b − a

)

· ϕ
( jπ

b − a
; x
)}

.

And so, we get the further numerical approximations of the integrals ĉ(x, tk) in (37) by

c̃(x, tk) = e−rΔt
N−1

∑
j=0

wjRe
{

exp
(

− i
jaπ

b − a

)

· ϕ
( jπ

b − a
; x
)}

Vj(tk+1) ≈ ĉ(x, tj). (38)

In special, the approximation of initial price v(x, t0) in (32) is given by

ṽ(x, t0) = e−rΔt
N−1

∑
j=0

wjRe
{

exp
(

− i
jaπ

b − a

)

· ϕ
( jπ

b − a
; x
)}

Vj(t1). (39)

Meanwhile, since the characteristic function φ(u; x) possesses the property:

ϕ(u; x) = ϕ(u) · eiux, u ∈ R,

where ϕ(u) = ϕ(u; 0), the approximations (38) and (39) can be simplified to

c̃(x, tk) = e−rΔt
N−1

∑
j=0

wjRe
{

exp
(

ijπ
x − a

b − a

)

· ϕ
( jπ

b − a

)}

Vj(tk+1), (40)

and the initial price of option

ṽ(x, t0) = e−rΔt
N−1

∑
j=0

wjRe
{

exp
(

ijπ
x − a

b − a

)

· ϕ
( jπ

b − a

)}

Vj(t1). (41)

In order to use this approximate formulation we still need to compute the integrals Vj(tk). For
convenience we introduce the following notions: for any a ≤ x1 ≤ x2 ≤ b,

Cj(x1, x2; tk) =
2

b − a

∫ x2

x1

c̃(x, tk) cos
(

jπ
x − a

b − a

)

dx, j = 0, 1, . . . , N−1,

and

Dj(x1, x2) =
2R0

b − a

∫ x2

x1

cos
(

jπ
x − a

b − a

)

dx, j = 0, 1, . . . , N−1,

where c̃(x, tML) = g(x), and c̃(x, tk), tk ∈ T, are given in (40).
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We first calculate Vj(tML), j = 0, 1, . . . , N−1. We have

Vj(tML) =

{

Cj(0, h; tML) + Dj(h, b), for a call option,

Cj(a, 0; tML) + Dj(h, b), for a put option,

for all j = 0, 1, . . . , N−1. Denote

Φj(x1, x2) =
∫ x2

x1

ex cos
(

jπ
x − a

b − a

)

dx and Ψk(x1, x2) =
∫ x2

x1

cos
(

jπ
x − a

b − a

)

dx,

for any a ≤ x1 ≤ x2 ≤ b and j = 0, . . . , N−1. Then, by simple integration, these integrals
admit the following analytic solutions:

Φj(x1, x2) =
1

1 + (
jπ

b−a )
2

[

cos
(

jπ
x2 − a

b − a

)

ex2 − cos
(

jπ
x1 − a

b − a

)

ex1

+
jπ

b − a
sin

(

jπ
x2 − a

b − a

)

ex2 − jπ

b − a
sin

(

jπ
x1 − a

b − a

)

ex1

]

,

and

Ψj(x1, x2) =
[

sin
(

jπ
x2 − a

b − a

)

− sin
(

jπ
x1 − a

b − a

)] b − a

jπ
,

for j = 0, . . . , N−1, with Ψ0(x1, x2) = x2 − x1. Moreover, by a simple calculation, j =
0, . . . , N−1, we have the following result:

Dj(x1, x2) =
2R0

b − a
Ψj(x1, x2), (42)

Cj(x1, x2; tML) =
2

b − a
αK

(

Φj(x1, x2)− Ψj(x1, x2)
)

, (43)

where α is a parameter such that α = 1 for a call option and α = −1 for a put option.

And next, we consider to calculate the integrals Vj(tk) for tk ∈ T \ Te. We have

Vj(tk) = Cj(a, h; tk) + e−r(T−tk−1)Dj(h, b), j = 0, 1, . . . , N−1.

Since the integral Dj(x1, x2) has the analytic representation (45), we only need to calculate the
integral Cj(x1, x2; tk). Fang & Oosterlee (2009) gave an efficient numerical algorithm which
approximates Cj(x1, x2; tk) by using FFT method with the operation cost O(N log2(N)).

Finally, we consider to calculate the integrals Vk(tk) for tk ∈ Te. It is clear that we should find
the value ṽ(x, tk) in the last equation in (31), or equivalently, to determine the early-exercise
point x∗k at each time tk, which is the point where the continuation value is equal to the payoff,
i.e., c̃(x∗k , tk) = g(x∗k ). Let

hk(y) = c̃(y, tk)− g(y), tk ∈ Te.

Then, the problem becomes to find the root x∗k of each equation hk(y) = 0. Note that the
function c̃(y, tk), which is given in (40), is bounded and smooth, and the function g(y) is
smooth except for y = 0 and bounded in [a, b]. We can use the Newton’s method or the
secant method to find the root x∗k . Here if x∗k is not in the interval [a, b], we set it in the nearest
boundary point a or b. Once we find the early-exercise point x∗k , tk ∈ Te, we have two different
cases for an up-and-out barrier option:
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Case 1: x∗k < h, which means the early-exercise point doesn’t hit the up barrier. Thus, We have
the authority to decide to execute the option now or reserve it to the next time point. So we
can split the integral that defines Vj(tk) into three parts: [a, x∗k ], (x∗k , h) and [h, b]. We have

Vj(tk) =

{

Cj(a, x∗k ; tk) + Cj(x∗k , h; tML) + e−r(T−tk−1)Dj(h, b), for a call option,

Cj(a, x∗k ; tML) + Cj(x∗k , h; tk) + e−r(T−tk−1)Dj(h, b), for a put option.

Case 2: x∗k ≥ h , which means the early-exercise point hits the up barrier. Thus, the option
integral can be split into two parts: [a, h) and [h, b]:

Vj(tk) =

{

Cj(a, h; tk) + e−r(T−tk−1)Dj(h, b), for a call option,

Cj(a, h; tML) + e−r(T−tk−1)Dj(h, b), for a put option,

Ding et al (2011a) gave a detail algorithm, which summarizes the above procedure, for pricing
an up-and-out Bermudan barrier option, and the corresponding numerical experiments.

4.3 The fast Hilbert transform approach for pricing barrier options

Feng & Linetsky (2008) presented a new numerical method to price discretely monitored
barrier options under exponential Lévy models. Their method involves the relation with
Hilbert transform (Property P4) and the Sine expansion in Hardy spaces. They also gave
an efficient computational algorithm based on the fast Hilbert transform.

Let T = {tk : k = 1, . . . , M} be the set of pre-specified monitored dates, where

0 = t0 < t1 < · · · < tM = T with Δt = tk − tk−1 = T/M.

We consider a European-type barrier put option whose payoff at maturity T is given by

G = 1{St1
>L}1{St2

>L} · · · 1{StM
>L}(K − ST)

+,

where K is the strike price and 0 < L < K is the lower barrier. We also assume that the
underlying asset price process is given by St = KeXt with S0 = S, where Xt is a Lévy process
started at x = log(S/K). Denoting l = log(L/K), then, with help of the risk-neutral valuation
formula, the price of this option is given by

V(x, t0) = e−rT
E
[

1{Xt1
>l}1{Xt2

>l} · · · 1{XtM
>l}K(1 − eXtM )+ | X0 = x

]

,

which can be computed recursively by the following backward induction:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V(x, tM) = 1{x>l}K(1 − ex)+,

V(x, tk) = e−rΔt1{x>l}E
[

V(Xtk+1
, tk+1) | Xtk

= x
]

, k = M−1, . . . , 1,

V(x, t0) = e−rTE
[

e−rΔtV(Xt1 , t1) | Xt0 = x
]

.

(44)

Since each Lévy process is stationary and has independent increments, for each k =
1, . . . , M−1, we have

E
[

V(Xtk+1
, tk+1) | Xtk

= x
]

= E
[

V(Xt1 , tk+1) | Xt0 = x
]

.
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Thus, letting Pt1 v(x) = E
[

v(Xt1 ) | Xt0 = x
]

be the expectation operator, from the backward
induction (44) we get

⎧

⎪

⎨

⎪

⎩

vM(x) = 1{x>l} · K(1 − ex)+,

vk(x) = 1{x>l}Pt1 vk+1(x), j = M−1, . . . , 1,

v0(x) = Pt1 v1(x),

(45)

where vk(x) = erΔtV(x, tk). And hence, the problem now becomes to find the function v0(x)
from the backward induction (45).

Note that 1{x>0} = 1
2

(

1 + sgn(x)
)

for all x ∈ R. Using the Property P4 (Relation with Hilbert
transform) we obtain

F (1{x>0} · v)(u) =
1

2

(

Fv(u) + iH(Fv)(u)
)

. (46)

Let a ∈ R and Ta be the transform operator: Tav(x) = v(x − a). Then, we have

1{x>a} = Ta1{x>0} =
1

2

(

1 + Tasgn(x)
)

,

and hence,

1{x>a} · v(x) =
1

2

(

v(x) + v(x) · Tasgn(x)
)

=
1

2

(

v(x) + Ta
(

sgn · T−av
)

(x)
)

.

Taking the Fourier transform to both sides of this equation, we have

F
(

1{x>a} · v
)

(u) =
1

2
Fv(u) +

1

2
F
(

Ta
(

sgn · T−av
)

)

(u).

and using equation (46) we obtain

F
(

1{x>a} · v
)

(u) =
1

2
Fv(u) +

1

2
ieiauH

(

e−iayFv(y)
)

(u). (47)

On other hand, noting that, for each k = 1, . . . , M−1, the condition density of Xtk+1
given

Xtk
= x possesses the property:

f (y|x) = f (y−x), x, y ∈ R,

where f (y) is the density of Xt1 under the initial condition Xt0 = x. The infinite integrals
Pt1 vk+1(x) in (45) becomes to

Pt1 vk+1(x) =
∫ +∞

−∞
vk+1(y) f (y−x)dy =

∫ +∞

−∞
vk+1(x+z) f (z)dz.

Then, this integral can be rewritten as a convolution of vk+1(x+z) and the function f (−x), i.e.

Pt1 vk+1(x) = f (−x) ∗ vk+1(x).

Note that suppvk(x) ⊂ (l, 0) for each k = M, . . . , 1 from the backward induction (45). We can
take the Fourier transform in the both sides of (45). Applying the Property P3 (Convolution)
we have

F
[

Pt1 vk(x)
]

(u) = F
[

f (−x) ∗ vk+1(x)
]

(u) = F
[

f (−x)
]

(u) · F
[

vk+1(x)
]

(u).
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Denote ϕ(u) is the characteristic function of f (x) on the complex plane C. Then, by a simple
calculation, we have

F
[

Pt1 vk(x)
]

(u) = ϕ(−u) · Fvk+1(u). (48)

Thus, using the formulas (47) and (48) we obtain

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v̂M(u) = K(1−eiul)
iu − K(1−e(1+iu)l)

1+iu ,

v̂k(u) =
1
2 ϕ(−u)v̂k+1(u) +

1
2 ieiulH

(

e−iyl ϕ(−y)v̂k+1(y)
)

(u),

k = M−1, . . . , 1,
v̂0(u) = ϕ(−u)v̂1(u).

(49)

Here v̂k(u) = Fvk(u) for each k. Applying the truncated Sinc approximation, Feng & Linetsky
(2008) obtained the discretization of v̂k(u):

v̂k(nh) =
1

2
ϕ(−nh)v̂k+1(nh)

+
ieinhl

2π

N

∑
j=−N,j �=n

e−ijhl ϕ(−jh)v̂k+1(jh)
1 − (−1)n−j

n − j
, (50)

for n = −N, . . . , N and k = M−1, . . . , 1, where N is a positive integer and h is the
discretization step size. Then, the function v0(x) can be computed by the discretised inversion
Fourier transform:

v0(x) =
1

2π

N

∑
j=−N

e−ijhx ϕ(−jh)v̂1(jh)h.

Furthermore, Feng & Linetsky (2008) showed that the computation (50) involves a Toeplitz
matrix-vector multiplication, which can be accomplished in O(N log2 N) operations using the
FFT technique. They also referred the corresponding algorithm of computing the discrete
Hilbert transform via the FFT as the Fast Hilbert Transform.
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