Chapter 12. Fast Fourier Transform

12.0 Introduction

A very large class of important computational problems falls under the general
rubric of “Fourier transform methods’ or “spectral methods.” For some of these
problems, the Fourier transform is simply an efficient computational tool for
accomplishing certain common manipulations of data. In other cases, we have
problems for which the Fourier transform (or the related “ power spectrum”) isitself
of intrinsicinterest. These two kinds of problems share a common methodol ogy.

Largely for historical reasons the literature on Fourier and spectral methods has
been digointfromtheliteratureon “classical” numerical analysis. Nowadaysthereis
no justificationfor such asplit. Fourier methods are commonplacein research and we
shall not treat them as specialized or arcane. At the same time, we realize that many
computer users have had relatively less experience with this field than with, say,
differential equations or numerical integration. Therefore our summary of analytical
resultswill be more complete. Numerical algorithms, per se, beginin§12.2. Various
applications of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either in the time domain, by the values of
some quantity as afunction of timet, eg., h(t), or else in the frequency domain,
where the process is specified by giving its amplitude H (generally a complex
number indicating phase aso) as a function of frequency f, that is H(f), with
—o00 < f < oo. For many purposesit is useful to think of h(t) and H(f) as being
two different representations of the same function. One goes back and forth between
these two representations by means of the Fourier transform equations,

mﬁ:/mmmmmﬁ
o (12.0.1)
h(t) = / H(f)e > 5" df

If t ismeasured in seconds, then f in equation (12.0.1) isin cycles per second,
or Hertz (the unit of frequency). However, the equations work with other unitstoo.
If hisafunctionof positionx (in meters), H will beafunction of inversewavelength
(cycles per meter), and so on. If you aretrained as a physicist or mathematician, you
are probably more used to using angular frequency w, which is givenin radians per
sec. The relation between w and f, H(w) and H(f) is

w=2nf H(w)=[H(f) 0 /2x (12.0.2)

490

SINOYQD 10 ‘sanaysip ‘sy00q sadioay [eauswny Japio o] ‘panugiyosd Apouis si ‘1aindwod Janias Aue 03 (suo siyy Buipnjour) saji ajgepeal
"alemyjos sadinay [eouswnN Aq z66T-986T (O) WyBLUAdOD sweibold ssaid Ausiaaiun sbpuqued Ag 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(eolBWY YLION 8pISINo) 3N oe wed dnd@ape) 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £27/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axeWw 0} SIasn 1duIBIUI 10} pajueId SI UoISSIWISd

12.0 Introduction 491

and equation (12.0.1) looks like this

H(w) = / h h(t)e'dt
R (12.0.3)

h(t) = % /_ H(w)e ™ dw

We were raised on the w-convention, but we changed! There are fewer factors of
27 to remember if you use the f-convention, especially when we get to discretely
sampled data in §12.1.

From equation (12.0.1) it is evident at once that Fourier transformation is a
linear operation. The transform of the sum of two functionsis equal to the sum of
the transforms. The transform of a constant times a function is that same constant
times the transform of the function.

In the time domain, function h(¢t) may happen to have one or more specia
symmetries It might be purely real or purely imaginary or it might be even,
h(t) = h(—t), or odd, h(t) = —h(—t). Inthe frequency domain, these symmetries
lead to relationships between H(f) and H(—f). The following table gives the
correspondence between symmetries in the two domains:

If... then. .
t)isred f) [H(N))*
t) isimaginary f) =—-[HI*
t) iseven f)= H() [i.e, H(f)iseven)
fy=—-H(f) [i.e, H(f)isodd]

) |sreal and even
f) isimaginary and odd
f) isimaginary and even
f) isrea and odd

t) isred and odd
t) isimaginary and even
t) isimaginary and odd

h(t) H(—
h(t) H(—
h(t) H(-
h(t) isodd H(-
h(t) isreal and even H(
h(t) H(
h(t) H(
h(t) H(

In subsequent sections we shall see how to use these symmetries to increase
computationa efficiency.

Here are some other elementary properties of the Fourier transform. (We'll use
the “<=-" symbol to indicate transform pairs.) If

h(t) <= H(f)

is such a pair, then other transform pairs are

h(at) <= |1—|H(i) “time scaling” (12.0.4)

a a
o] h() < H(bf) “frequency scaling” (12.0.5)
h(t —to) <= H(f) *™ft0 “timeshifting” (12.0.6)

h(t) e= 2ot — H(f — fo) “frequency shifting” (12.0.7)

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

492 Chapter 12. Fast Fourier Transform

With two functions h(t) and g(t), and their corresponding Fourier transforms
H(f) and G(f), we can form two combinationsof special interest. The convolution
of the two functions, denoted g h, is defined by

gxh= /_OO g(T)h(t —7) dt (12.0.8)

Notethat g * h isafunction in the time domain and that g « h = h * g. It turns out
that the function g * h is one member of a simple transform pair

gxh<= G(f)H(f) “Convolution Theorem” (12.0.9)

In other words, the Fourier transform of the convolution is just the product of the
individua Fourier transforms.
The correlation of two functions, denoted Corr(g, k), is defined by

Corr(g, h) = /OO g(t +t)h(r) dr (12.0.10)

— 00

The correlationisafunction of ¢, which iscalled thelag. It thereforeliesin thetime
domain, and it turns out to be one member of the transform pair:

Corr(g, h) < G(f)H*(f) “Correlation Theorem” (12.0.11)

[Moregenerally, thesecond member of thepairisG(f)H (—f), butwearerestricting
ourselvesto theusual caseinwhich g and h arereal functions, so wetaketheliberty of
setting H(—f) = H*(f).] Thisresult shows that multiplyingthe Fourier transform
of one function by the complex conjugate of the Fourier transform of the other gives
the Fourier transform of their correlation. The correlation of afunction withitself is
called itsautocorrelation. In this case (12.0.11) becomes the transform pair

Corr(g, g) < |G(f)| “Wiener-Khinchin Theorem” (12.0.12)

The total power in a signa is the same whether we compute it in the time
domain or in the frequency domain. Thisresult isknown as Parseval’s theorem:

Total Power = /OO \h())? dt = /OO \H(f)]? df (12.0.13)

— 00 —00

Frequently onewantsto know “how much power” is contained in the frequency
interval between f and f + df. In such circumstances one does not usually
distinguish between positive and negative f, but rather regards f as varying from O
(“zero frequency” or D.C.) to +oo. In such cases, one defines the one-sided power
spectral density (PSD) of the function h as

P(f)=|HN* +H(=FP 0= f<oo (12.0.14)

so that the total power isjust theintegral of P, (f) from f = 0to f = co. When the
function h(t) isreal, thenthetwotermsin (12.0.14) areequal, 0 P, (f) = 2 |H(f)|*.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.0 Introduction 493

Ch(t)?

@

=

Ph(f) (one-sided)

—~
AS)

P(f)
(two-sided)

~f 0 f
(©

Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, (c).

Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly spesking, are called two-sided power spectral densities, but some books
are not careful about stating whether one- or two-sided is to be assumed. We
will aways use the one-sided density given by equation (12.0.14). Figure 12.0.1
contrasts the two conventions.

If the function h(t) goes endlessly from —oo < ¢t < oo, then its total power
and power spectral density will, in generd, be infinite. Of interest then is the (one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the function A(t), computing its PSD [that is, the PSD
of afunction that equals h(t) in the finite stretch but is zero everywhere elsg], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equa to the mean square amplitude of the signa A(t).

You might well worry about how the PSD-per-unit-time, which is a function
of frequency f, converges as one evaluates it using longer and longer stretches of
data. This interesting question is the content of the subject of “power spectrum
estimation,” and will be considered below in §13.4-513.7. A crude answer for

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

494 Chapter 12. Fast Fourier Transform

now is. The PSD-per-unit-time converges to finite values at all frequencies except
those where h(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a delta-function, i.e., a sharp spike,
whose width gets narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especialy with experimental
data, we are amost never given a continuous function h(t) to work with, but are
given, rather, alist of measurements of h(t;) for adiscrete set of ¢;’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e, its value is
recorded) at evenly spaced intervalsintime. Let A denote thetime interval between
consecutive samples, so that the sequence of sampled valuesis

hp =h(nA) n=...,—3,-2,-1,0,1,2,3,... (12.1.1)

The reciprocal of thetimeinterval A iscalled the sampling rate; if A is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval A, there is also a specia frequency f., called the
Nyquist critical frequency, given by

1
fe= 5A (12.1.2)
If asinewave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval A. In this case the Nyquist critical frequency is
just the constant 1/2.
The Nyquist critical frequency isimportant for two related, but distinct, reasons.

Oneis good news, and the other bad news. First the good news. It isthe remarkable

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.1 Fourier Transform of Discretely Sampled Data 495

fact known as the sampling theorem: If a continuous function A(t), sampled at an
interval A, happensto be bandwidth limitedto frequencies smaller in magnitudethan
fe e, if H(f) =0foral |f| > f., thenthefunction h(t) iscompletely determined
by its samples h,,. In fact, h(t) is given explicitly by the formula

sin[27 f.(t — nA))
Anz_ooh — (12.1.3)
This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signa that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at arate A~! equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range —f. < f < f. is spurioudy moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range (—f., f.) is aliased (falsely trandated) into that range by the very act of
discrete sampling. You can readily convince yourself that two waves exp(27i f1t)
and exp(27ifat) give the same samples a an interva A if and only if f; and
f2 differ by a multiple of 1/A, which is just the width in frequency of the range
(= fe, fe). Thereislittle that you can do to remove aliased power once you have
discretely sampled asignal. The way to overcome diasingisto (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might
as well assume) that its Fourier transform is equa to zero outside of the frequency
range in between — f. and f.. Then welook to the Fourier transform to tell whether
the continuousfunction has been competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approaches f. from below, or —f. from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from afinite number of its
sampled points. Suppose that we have N consecutive sampled vaues

he = h(ty), te=kA, k=0,1,2,...,N—1 (12.1.4)

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

496 Chapter 12. Fast Fourier Transform

h(t)
T
@
A
H(f)
ci) f
(b)

aliased Fourier transform

(©

Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of time T'.
It follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with a sampling
interval A, asin (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist
critical frequency. Power outside that rangeis folded over or “aliased” into the range. The effect can be
eliminated only by low-pass filtering the original function before sampling.

so that the sampling interval is A. To make things simpler, let us also suppose that
N is even. If the function h(t) is nonzero only in a finite interval of time, then
that wholeinterval of time is supposed to be contained in the range of the NV points
given. Alternatively, if the function h(t) goes on forever, then the sampled points
are supposed to be at least “typical” of what h(t) lookslikeat al other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H(f) at al values of f in the range —f. to f., let us seek estimates
only at the discrete values

n N N
fn VA n=—gan g (12.1.5)

The extreme values of n in (12.1.5) correspond exactly to thelower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there are N + 1, not N, values of n in (12.1.5); it will turn out that
the two extreme values of n are not independent (in fact they are equal), but al the
others are. This reduces the count to N.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.1 Fourier Transform of Discretely Sampled Data 497

The remaining step isto approximate theintegral in (12.0.1) by a discrete sum:

0o N-1 N—1
H(.fn) :/ h(t)e27rij'ntdt ~ Z hy e27'rij>ntkA = A Z hu e271'1']611/N
B k=0 5—0
(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final eguality. The final
summation in equation (12.1.6) is called the discrete Fourier transform of the N
points h,. Let us denote it by H,,,

N—

=

Hy,

hy, e2mikn/N (12.1.7)
k=0

The discrete Fourier transform maps NV complex numbers (the hy's) into N complex
numbers (the H,,’s). It does not depend on any dimensional parameter, such as the
time scale A. The relation (12.1.6) between the discrete Fourier transform of a set
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval A can be rewritten as

H(f,) ~ AH, (12.1.8)

where f,, is given by (12.1.5).

Up to now we have taken the view that the index n in (12.1.7) varies from
—N/2to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodicin
n, with period N. Therefore, H_,, = Hy_, n =1,2,.... With thisconversion
in mind, one generdly lets the n in H,, vary from 0 to N — 1 (one complete
period). Then n and & (in hy) vary exactly over the same range, so the mapping
of N numbers into N numbers is manifest. When this convention is followed,
you must remember that zero frequency correspondsto n = 0, positive frequencies
0 < f < f. correspond to values 1 < n < N/2 — 1, while negative frequencies
—fe < f <0 correspond to N/2+1 < n < N-—1. Thevduen = N/2
corresponds to both f = f. and f = —f..

Thediscrete Fourier transform has symmetry propertiesalmost exactly thesame
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read hy, for h(t), H, for H(f), and Hy_,,
for H(—f). (Likewise, “even” and “odd” intimerefer to whether the values i, at k
and N — k are identical or the negative of each other.)

The formulafor the discrete inverse Fourier transform, which recovers the set
of hy's exactly from the H,,’s is:

1 N—1
hy = — H,, e 27mikn/N 12.1.9
=N nZ:O e ()

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N. This means that a
routinefor calculating discrete Fourier transforms can al so, with slight modification,
calculate the inverse transforms.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

498 Chapter 12. Fast Fourier Transform

The discrete form of Parseva’s theorem is

N-1 1 N-1
Ihil* = < D [Hal” (12.1.10)
k=0 n=0

Therearea so discrete ana ogsto the convol ution and correl ationtheorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computationisinvolved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W = e2m/N (12.2.1)

Then (12.1.7) can be written as

N—
H, = Wnkhy, (12.2.2)
k=0

=

In other words, the vector of h;’sis multiplied by a matrix whose (n, k)th element
isthe constant W to the power n x k. The matrix multiplication produces a vector
result whose components are the H,,’s. Thismatrix multiplication evidently requires
N? complex multiplications, plus a smaller number of operations to generate the
required powers of 1. So, the discrete Fourier transform appears to be an O(N?)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log, N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log, N and N? isimmense.
With N = 106, for example, it isthe difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on amicrosecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from thework
of JW. Cooley and JW. Tukey. Retrospectively, we now know (see[1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length V/2. One of the two is formed from the

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.2 Fast Fourier Transform (FFT) 499

even-numbered points of the original N, the other from the odd-numbered points.
The proof is simply this:

2

-1

F. = e27T’L]k/ij

™

Z <
IS
o

-1 N/2—1

_ e2m’k(2j)/Nf2j_|_ Z e2m’k(2j+1)/Nf2j+1
. = (12.2.3)

91 N/2-1
e27n'kj/(N/2)f2j_|_Wk Z ezm'lm'/(zv/z)fQjJr1
j=0

2.

I
™

o

J:
= Ff +W" Fp

Inthelast line, W is the same complex constant as in (12.2.1), F}¢ denotes the kth
component of the Fourier transform of length N/2 formed from the even components
of theoriginal f;’s, while F? isthe corresponding transform of length V/2 formed
from the odd components. Notice also that & in thelast line of (12.2.3) varies from
0 to N, not just to N/2. Nevertheless, the transforms F¢ and F? are periodicin k&
with length N/2. So each is repeated through two cycles to obtain F.

The wonderful thing about the Daniel son-Lanczos Lemma isthat it can be used
recursively. Having reduced the problem of computing F}, to that of computing
F¢ and F?, we can do the same reduction of £} to the problem of computing
the transform of its N/4 even-numbered input data and N/4 odd-numbered data
In other words, we can define 7 and F£° to be the discrete Fourier transforms
of the points which are respectively even-even and even-odd on the successive
subdivisions of the data

Although there are ways of treating other cases, by far the easiest case is the
one in which the original N is an integer power of 2. In fact, we categorically
recommend that you only use FFTswith N apower of two. If thelength of your data
set isnot a power of two, pad it with zeros up to the next power of two. (Wewill give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N, it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
isthe Fourier transform of length one? It isjust the identity operation that copiesits
oneinput number intoitsoneoutput slot! In other words, for every pattern of log, N
e'sand o's, thereis aone-point transform that isjust one of the input numbers f,,

eroeeoeanoee — fn for somen (1224)

(Of course thisone-point transform actually does not depend on k, sinceitis periodic
in k& with period 1.)

The next trick is to figure out which value of n corresponds to which pattern of
e'sand o'sin equation (12.2.4). The answer is. Reverse the pattern of e’'sand o’s,
thenlet e = 0 and o = 1, and you will have, in binary the value of n. Do you see
why it works? It is because the successive subdivisionsof the datainto even and odd
aretests of successive low-order (least significant) bitsof n. Thisideaof bit reversal
can be exploited in a very clever way which, adong with the Danielson-Lanczos

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

500 Chapter 12. Fast Fourier Transform

000 > 000 000
001 001 001
011 011 011
100 100 100
101 > 101 101
110 / \ 110 110
111 > 111 111
@ (b)

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the origina vector of data f;
and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j, but of the number obtained by bit-reversing j.
Then the bookkeeping on the recursive application of the Daniel son-Lanczos Lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairsto get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log, N combinations, so the whole
algorithmisof order N log, N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log, N).

This, then, isthe structure of an FFT algorithm: It has two sections. The first
section sortsthe datainto bit-reversed order. Luckily thistakes no additional storage,
sinceit involvesonly swapping pairs of elements. (If £, isthebit reverse of k2, then
ko isthe bit reverse of k;.) The second section has an outer loop that is executed
log, N times and calculates, in turn, transforms of length 2,4,8,..., N. For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Daniel son-Lanczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made only log, N
times. Computation of the sines and cosines of multiple angles is through simple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originally written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (data), and isign, which should be set to either £1 and is the sign of 7 in
the exponential of equation (12.1.7). When isign is set to —1, the routine thus
calculates the inverse transform (12.1.9) — except that it does not multiply by the
normalizing factor 1/N that appears in that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points, athough

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

2

12.2 Fast Fourier Transform (FFT) 501

we avoid the use of complex arithmetic because of the inefficient implementations
found on many computers. The actua length of the real array (data) is 2 times
nn, with each complex value occupying two consecutive locations. In other words,
data(1) isthereal part of fy, data(2) isthe imaginary part of f, and so on up
to data(2*nn-1), which isthered part of fy_1, and data(2*nn), which isthe
imaginary part of fy_1. The FFT routine returns the F;,’s packed in exactly the
same fashion, as nn complex numbers.

Thereal and imaginary partsof thezero frequency component Fy areindata (1)
and data(2); thesmallest nonzero positivefrequency hasreal and imaginary partsin
data(3) and data(4); the smallest (in magnitude) nonzero negative frequency has
real and imaginary partsin data(2*nn-1) and data(2*nn). Positivefrequencies
increasing in magnitude are stored in the real-imaginary pairs data(5), data(6)
up to data(nn-1), data(nn). Negative frequencies of increasing magnitude are
stored in data(2*nn-3), data(2*nn-2) down to data(nn+3), data(nn+4).
Finaly, thepair data(nn+1), data(nn+2) containtherea and imaginary parts of
the onealiased point that contains the most positiveand the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

SUBROUTINE fourl(data,nn,isign)

INTEGER isign,nn

REAL data(2*nn)
Replaces data(1:2*nn) by its discrete Fourier transform, if isign is input as 1; or replaces
data(1:2+*nn) by nn times its inverse discrete Fourier transform, if isign is input as —1.
data is a complex array of length nn or, equivalently, a real array of length 2*%nn. nn
MUST be an integer power of 2 (this is not checked for!).

INTEGER i,istep,j,m,mmax,n

REAL tempi,tempr

DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Double precision for the trigonomet-
n=2*nn ric recurrences.
j=1
don i=1,n,2 This is the bit-reversal section of the routine.
if(j.gt.i)then
tempr=data(j) Exchange the two complex numbers.

tempi=data(j+1)
data(j)=data(i)
data(j+1)=data(i+1)
data(i)=tempr
data(i+1)=tempi
endif
m=n/2
if ((m.ge.2).and.(j.gt.m)) then
j=jm
m=m/2
goto 1
endif
j=j+m
enddo 11
mmax=2 Here begins the Danielson-Lanczos section of the routine.
if (n.gt.mmax) then Outer loop executed log, nn times.
istep=2*mmax
theta=6.28318530717959d0/ (isign*mmax) Initialize for the trigonometric recur-
wpr=-2.d0*sin(0.5d0*theta) **2 rence.
wpi=sin(theta)
wr=1.d0
wi=0.d0

do 13 m=1,mmax,2 Here are the two nested inner loops.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

502 Chapter 12. Fast Fourier Transform

@ red @ red

it t=0 | b= f=0

® imag @ imag

o || o || 1

@ imag @ imeg NA

< =4
z [z z | % S
N N
E 2 __@:})__f_e?'___ N/2 1
% % ® imag
9 | |@Dred || binat
% % imag ‘ZA (combination)
i 3 T @ red ‘e N/2 1
Q@D imag

@3 redl 2 s

——————————— t=(N-2)A

@p imeg |72 > :

edl

N U I ==y |

@V imag @ imag NA
(@ (b)

Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power of 2)
complex time samples in areal array of length 2V, with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

do12 i=m,n,istep
j=i+mmax This is the Danielson-Lanczos formula:
tempr=sngl (wr)*data(j)-sngl (wi)*data(j+1)
tempi=sngl (wr)*data(j+1)+sngl (wi)*data(j)
data(j)=data(i)-tempr
data(j+1)=data(i+1)-tempi
data(i)=data(i)+tempr
data(i+l)=data(i+l)+tempi

enddo 12

wtemp=wr Trigonometric recurrence.

WI=Wr*wpr-wi*wpi+wr

wi=wi*wpr+wtemp*wpi+wi

enddo 13

mmax=istep
goto 2 Not yet done.
endif All done.
return

END

(A double precision version of four1, named dfourl, isused by the routine mpmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipes diskette.)

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(eoLIBWY YUON SpPISINO) yn'oe wed dnd@ape.i 0] jlews puas o ‘(Ajuo eolswy YUON) £2t/-2/8-008-T [[ed 10 WO U MMM//:dny aNsgam JSIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.2 Fast Fourier Transform (FFT) 503

Other FFT Algorithms

We should mention that thereareanumber of variantson thebasic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform in log, IV iterations. In
the literature, this sequence is called a decimation-in-time or Cooley-Tukey FFT
algorithm. It is also possibleto derive FFT algorithmsthat first go through a set of
log, N iterations on the input data, and rearrange the output values into bit-reverse
order. Theseare called decimation-in-frequency or Sande-Tukey FFT agorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domain and then, after some manipulation, back out again. Inthesecasesitispossible
to avoid al bit reversing. You use a decimation-in-frequency agorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only asmall fraction of an FFT's
operations count, and since most useful operationsin the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initia data set of length N not al the
way down to the trivial transform of length 1, but rather only down to some other
small power of 2, for example N = 4, base-4 FFTs, or N = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of specia symmetries of that particular small N. For example, for
N = 4, the trigonometric sines and cosines that enter are al +1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than simpler FFTs by some significant, but not overwhelming, factor,
eg., 20 or 30 percent.

There are also FFT agorithms for data sets of length NV not a power of
two. They work by using relations analogous to the Danielson-Lanczos Lemma to
subdivide the initial problem into successively smaller problems, not by factors of
2, but by whatever small prime factors happen to divide N. The larger that the
largest prime factor of NV is, the worse this method works. If IV is prime, then no
subdivision is possible, and the user (whether he knows it or not) is taking a slow
Fourier transform, of order N2 instead of order N log, N. Our adviceisto stay clear
of such FFT implementations, with perhaps one class of exceptions, the Winograd
Fourier transformalgorithms. Winograd algorithms are in some ways ana ogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small- NV discrete Fourier transforms, e.g., for N = 2,3,4,5,7,8,11,13, 16.
The agorithms also use a new and clever way of combining the subfactors. The
method involvesa reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplicationsin the
algorithm. For some especidly favorable values of NV, the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT agorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated data indexing involved in these
transforms, and the fact that the Winograd transform cannot be done “in place.”

Finaly, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

504 Chapter 12. Fast Fourier Transform

integer arithmetic modulo some large prime N+1, and the Nth root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
a al, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itsalf is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]
Bloomfield, P. 1976, Fourier Analysis of Time Series — An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.LAM.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14-21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples f;, j = 0...N — 1. To use fourl, we put these into a complex array
with all imaginary parts set to zero. The resulting transform F,,, n =0... N — 1
satisfies Fiyv_,* = F,. Since this complex-vaued array has real values for Fj
and Fi /2, and (IN/2) — 1 other independent values I} . .. Fiy/o_1, it has the same
2(N/2 —1) 4 2 = N “degrees of freedom” asthe original, real data set. However,
theuse of thefull complex FFT algorithmfor real dataisinefficient, bothin execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
rea functionsinto the input array in such away that their individua transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of haf itslength. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. Thisis donein the program realft below.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.3 FFT of Real Functions, Sine and Cosine Transforms 505

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transform F,, to handle
two real functions a once: Since the input data f; are real, the components of the
discrete Fourier transform satisfy

Frnon = (F)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete
Fourier transform of a purely imaginary set of g;'s has the opposite symmetry.

GNon = —(Gp)* (12.3.2)

Therefore we can take the discrete Fourier transform of two real functions each of
length N simultaneously by packing the two data arrays as the redl and imaginary
parts, respectively, of the complex input array of four1. Thentheresultingtransform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routine twofft works out these ideas.

SUBROUTINE twofft(datal,data2,fftl,fft2,n)

INTEGER n

REAL datal(n),data2(n)

COMPLEX ffti1(n),fft2(n)

USES fourl
Given two real input arrays datal(1:n) and data2(1:n), this routine calls fourl and
returns two complex output arrays, fft1(1:n) and £ft2(1:n), each of complex length n
(i-e., real length 2*n), which contain the discrete Fourier transforms of the respective data
arrays. n MUST be an integer power of 2.

INTEGER j,n2

COMPLEX h1,h2,cl,c2

cl=cmplx(0.5,0.0)

c2=cmplx(0.0,-0.5)

dou j=1,n

fft1(j)=cmplx(datal(j),data2(j))
enddo 11
call fourl(ffti,n,1)

Pack the two real arrays into one complex
array.
Transform the complex array.

fft2(1)=cmplx(aimag(££ft1(1)),0.0)
fft1(1)=cmplx(real (fft1(1)),0.0)
n2=n+2
do 12 j=2,n/2+1
hi=cl*(fft1(j)+conjg(ffti(n2-j)))
h2=c2* (fft1(j)-conjg(fft1(n2-j)))
£££1(j)=h1
fft1(n2-j)=conjg(hl)
£££2(j)=h2
fft2(n2-j)=conjg(h2)
enddo 12
return
END

Use symmetries to separate the two trans-
forms.
Ship them out in two complex arrays.

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in asingle FFT? Thisis
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plus i times the second. Invert using four1 with

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

506 Chapter 12. Fast Fourier Transform

isign = —1. Thereal and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which alows us to perform the FFT of
a single real function without redundancy, we split the data set in haf, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the origina data. It will
be a schizophrenic combination of two transforms, each of which has haf of the
information we need. Fortunately, thisschizophreniaistreatable. It workslikethis:

The right way to split the origina data is to take the even-numbered f; as
one data set, and the odd-numbered f; as the other. The beauty of this is that
we can take the original real array and treat it as a complex array h; of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed for twofft. No repacking isrequired. In other words
hj = faj +ifoj41, 7 =0,...,N/2—1. We submit this to four1, and it will
return acomplex array H,, = F¢ +iF?, n=0,...,N/2—1with

N/2-1
Frez _ Z f2k e271'1']611/(N/2)

k=0
o (12.3.3)

Ff; — Z f2k+1 e271'1']611/(N/2)
k=0

The discussion of program twofft tellsyou how to separate the two transforms
F? and F? out of H,,. How do you work them into the transform F,, of the origina
data set f;? Simply glance back at equation (12.2.3):

F,=F¢+4e¥n/Npe pn—=0,...,N—1 (12.3.4)

Expressed directly in terms of the transform H,, of our real (masquerading as
complex) data set, the result is

1

5 (Hn = Hypop)™M n=0,...,N -1
(12.3.5)

1

A few remarks:

e Since Fy_,* = F, thereisno point in saving the entire spectrum. The
positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

e Evenso,weneedvaduesH,,, n =0, ..., N/2whereasfour1 returnsonly
thevaluesn = 0,..., N/2 — 1. Symmetry to the rescue, H /o = H.

e Thevalues F; and Fy/, arerea and independent. In order to actually get
the entire F;, in the origina array space, it is convenient to return Fy /o
as the imaginary part of Fj.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.3 FFT of Real Functions, Sine and Cosine Transforms 507

o Degpite its complicated form, the process above is invertible. First peel
Fpnyo out of Fy. Then construct

o1 :
P% ::§(Ek/+'PkU2—n)

1 , *
By = SN (B =)

n=0,...,N/2-1 (12.36)

and use fourl to find the inverse transform of H, = Fﬁl) + z’FﬁQ).
Surprisingly, the actua agebraic steps are virtualy identical to those of

the forward transform.

Here is a representation of what we have said:

SUBROUTINE realft(data,n,isign)
INTEGER isign,n

REAL data(n)

USES fourl

Calculates the Fourier transform of a set of n real-valued data points. Replaces this data
(which is stored in array data(1:n)) by the positive frequency half of its complex Fourier
transform. The real-valued first and last components of the complex transform are returned
as elements data(1) and data(2), respectively. n must be a power of 2. This routine
also calculates the inverse transform of a complex data array if it is the transform of real
data. (Result in this case must be multiplied by 2/n.)

INTEGER i,i1,i2,i3,i4,n2p3
REAL c1,c2,hli,hlr,h2i,h2r,wis,wrs
DOUBLE PRECISION theta,wi,wpi,wpr,
wr,wtemp
theta=3.141592653589793d0/dble(n/2)
c1=0.5
if (isign.eq.1) then
c2=-0.5
call fourl(data,n/2,+1)
else
c2=0.5
theta=-theta
endif
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.0d0+wpr
wi=wpi
n2p3=n+3
don i=2,n/4
i1=2%i-1
i2=i1+1
i3=n2p3-i2
i4=i3+1
wrs=sngl (wr)
wis=sngl (wi)
hir=cix(data(il)+data(i3))
hili=cix(data(i2)-data(i4))
h2r=-c2*(data(i2)+data(i4))
h2i=c2x*(data(il)-data(i3))
data(il)=hlr+wrs*h2r-wis*h2i
data(i2)=hli+wrs*h2i+wis*h2r
data(i3)=hlr-wrs*h2r+wis*h2i
data(i4)=-hli+wrs*h2i+wis*h2r
wtemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
enddo 1

Double precision for the trigonometric recurrences.

Initialize the recurrence.

The forward transform is here.

Otherwise set up for an inverse transform.

Case i=1 done separately below.

The two separate transforms are separated out of
data.

Here they are recombined to form the true trans-
form of the original real data.

The recurrence.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

508 Chapter 12. Fast Fourier Transform

if (isign.eq.1) then
hir=data(1)
data(1l)=hlr+data(2)
data(2)=hir-data(2) Squeeze the first and last data together to get
else them all within the original array.
hir=data(1)
data(1l)=cil*(hir+data(2))
data(2)=cl*(hlr-data(2))
call fourl(data,n/2,-1)
endif
return
END

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential equations (see §19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero a the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

N-1
Fp =Y f;sin(mjk/N) sinetransform (12.3.7)

j=1

where f;, 7 =0,...,N — listhedata array, and f, = 0.

At first blush thisappearsto be simply theimaginary part of the discrete Fourier
transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform uses sines only as a complete set
of functionsin the interval from 0 to 2x, and, as we shall see, the cosine transform
uses cosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be“force-fit” into aform that allowsits cal culation
viathe FFT. Theideaisto extend the given function rightward past itslast tabulated
value. We extend the data to twice their length in such away as to make them an
odd function about j = N, with fy = 0,

fon—j=—f; j=0,....N—1 (12.3.8)
Consider the FFT of this extended function:
2N—1
Fp= Y fjemik/CN) (12.3.9)
j=0

The half of this sum from j = N to j = 2N — 1 can be rewritten with the
substitution j' = 2N — j

2N—-1 N
Z fje2m'jk/(2N) _ Z sz_j/e2m'(2N_j/)k/(2N)
j=N j'=1

(12.3.10)

N-1
.y
- _ E fj/e—27'rz] k/(2N)
J'=0

This is the inverse transform for the case isign=-1.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.3 FFT of Real Functions, Sine and Cosine Transforms 509

+1 1
4 W\/
@ 0
5
_1 3
+1 3 2 1
() o
4
5
-1
+1 1
2
3
© o
4
-1 5
0 21

Figure 12.3.1. Basisfunctionsused by the Fourier transform (a), sinetransform (b), and cosinetransform
(c), are plotted. Thefirst five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functionslabeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

0 that

F, = [ezm'jk/(zN) _ e—2mijk/(2N)

(12.3.11)
fisin(mjk/N)

N-1
S f
7=0
N-1
20y
=0
Thus, up to a factor 2i we get the sine transform from the FFT of the extended
function.

This method introduces a factor of two inefficiency into the computation by
extending the data. This inefficiency shows up in the FFT output, which has
zeros for the red part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearable, especially in view of the simplicity
of the method. When we work with partia differential equations in two or three
dimensions, though, the factor becomes four or eight, so efforts to eliminate the
inefficiency are well rewarded.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

510 Chapter 12. Fast Fourier Transform

From theoriginal real dataarray f; we will construct an auxiliary array y; and
apply toit theroutinerealft. The output will then be used to construct the desired
transform. For thesinetransformof data f;, j = 1,..., N —1, theauxiliary array is

Yo =10
y 1 .
y; = s(Gr/N)(fj + fv-j) + 5(fi = fv—j) =1 . N~1
This array is of the same dimension as the original. Notice that the first term is

symmetric about j = N/2 and the second is antisymmetric. Consequently, when
realft isappliedto y;, theresult hasreal parts R, and imaginary parts I;, given by

N—1
Ry = y; cos(2mjk/N)
3=0
N—1
=) _(fi + fn—j)sin(jm/N) cos(2mjk/N)
j=1
N—1
= 2f;sin(jm/N) cos(2mjk/N)
7=0
N—1 . .
. 2k+ Dy . (2k-1)jrm
= . fi [sm N — sin N
7=0
= Forp1 — Fors (12.3.13)
N—1
I = y; sin(2mjk/N)
7=0
N—1
=D (fi = fn—j)5 sin(2mjk/N)
j=1
N—1
= fjsin(2mjk/N)
3=0
— Fu (12.3.14)

Therefore F), can be determined as follows:
Fy, = Iy, Fopy1=Fop_1+ Ry k=0,...,(N/2-1) (12.3.15)
The even terms of F}, are thus determined very directly. The odd terms require

a recursion, the starting point of which follows from setting £ = 0 in equation
(12.3.15) and using Fy = —F_q:

1
Fy = R (12.3.16)

The implementing program is

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.3 FFT of Real Functions, Sine and Cosine Transforms 511

SUBROUTINE sinft(y,n)

INTEGER n

REAL y(n)

USES real ft
Calculates the sine transform of a set of n real-valued data points stored in array y(1:n).
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.

INTEGER j

REAL sum,y1,y2

DOUBLE PRECISION theta,wi,wpi,wpr,

wr,wtemp Double precision in the trigonometric recurrences.
theta=3.141592653589793d0/dble(n) Initialize the recurrence.
wr=1.0d0
wi=0.0d0

wpr=-2.0d0*sin(0.5d0*theta)**2

wpi=sin(theta)

y(1)=0.0

dou j=1,n/2
wtemp=wr
WI=Wr*wpr-wi*xwpi+wr
wi=wi*wpr+wtemp*wpi+wi

Calculate the sine for the auxiliary array.
The cosine is needed to continue the recurrence.

yl=wikx(y(j+1)+y(n-j+1)) Construct the auxiliary array.
y2=0.5%(y (j+1)-y (n-j+1))
y(j+1)=yl+y2 Terms j and N — j are related.
y(n-j+1)=y1-y2
enddo 11
call realft(y,n,+1) Transform the auxiliary array.
sum=0.0
y(1)=0.5%y(1) Initialize the sum used for odd terms below.
y(2)=0.0

do1 j=1,n-1,2
sum=sum+y (j)

y(P=y(G+1) Even terms in the transform are determined directly.
y(j+1)=sum Odd terms are determined by this running sum.
enddo 12
return
END

The sine transform, curioudly, isitsown inverse. If you apply it twice, you get the
origina data, but multiplied by a factor of N/2.

The other common boundary condition for differential eguations is that the
derivative of the function is zero at the boundary. In this case the natural transform
is the cosine transform. There are severa possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of doublethe length, and/or from whether the extended array
contains2N — 1, 2N, or some other number of points. In practice, only two of the
numerous possibilitiesare useful so we will restrict ourselves to just these two.

The first form of the cosine transform uses N + 1 data points:

N—-1
Fi = é[fo + (=D]+ D S cos(mik/N) (123.17)
Jj=1

It results from extending the given array to an even array about j = N, with

fon—j=1f;, j=0,....N—-1 (12.3.18)

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

512 Chapter 12. Fast Fourier Transform

If you substitute thisextended array into equation (12.3.9), and follow stepsana ogous
to those leading up to equation (12.3.11), you will find that the Fourier transform is
just twice the cosinetransform (12.3.17). Another way of thinking about theformula
(12.3.17) isto notice that it isthe Chebyshev Gauss-L obatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Onceagain thetransform can be computed without thefactor of twoinefficiency.
In this case the auxiliary function is

1 . .
yi = 5(fi + fv—y) = sin(Gn/N)(f; = fv—j) 7=0,...,N -1 (12319)
Instead of equation (12.3.15), realft now gives
o, = Ry, Fopy1 = Fop1+ I k=0,...,(N/2-1) (12.3.20)

The starting value for the recursion for odd % in this case is

N—-1
b= %(fo —fn)+ Y ficos(jm/N) (12.3.21)

j=1

This sum does not appear naturally among the Ry, and I, and so we accumulate it
during the generation of the array y;.

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform has N + 1 input and output values, it passes an array only
of length N to realft.

SUBROUTINE cosfti(y,n)

INTEGER n

REAL y(n+1)

USES real ft
Calculates the cosine transform of a set y(1:n+1) of real-valued data points. The trans-
formed data replace the original data in array y. n must be a power of 2. This program,
without changes, also calculates the inverse cosine transform, but in this case the output
array should be multiplied by 2/n.

INTEGER j

REAL sum,y1,y2

DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp For trig. recurrences.

theta=3.141592653589793d0/n Initialize the recurrence.

wr=1.0d0

wi=0.0d0

wpr=-2.0d0*sin(0.5d0*theta)**2

wpi=sin(theta)

sum=0.5*(y(1)-y(n+1))

y(1)=0.5%(y(1)+y(n+1))

dou j=1,n/2-1 j=n/2 unnecessary since y(n/2+1) unchanged.
wtemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

Carry out the recurrence.

y1=0.56%(y (j+1)+y(n-j+1)) Calculate the auxiliary function.
y2=(y(j+1)-y(n-j+1))

y(G+1)=yl-wixy2 The values for j and N — j are related.
y(n-j+1)=yl+uikxy2

sum=sum+wr*y2 Carry along this sum for later use in unfolding the

enddo 11 transform.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.3 FFT of Real Functions, Sine and Cosine Transforms 513

call realft(y,n,+1) Calculate the transform of the auxiliary function.
y(n+1)=y(2)
y(2)=sum sum is the value of F in equation (12.3.21).
do12 j=4,n,2
sum=sum+y (j) Equation (12.3.20).
y(j)=sum
enddo 12
return
END

The second important form of the cosine transform is defined by

N-1 . 1
wk(j+ 5)
Fp = Z i cost (12.3.22)
7=0
with inverse
N—-1
2 k(i + 3)
=% ;O F cos — =2 (12.3.23)

Here the prime on the summation symbol means that the term for £ = 0 has a
coefficient of % in front. Thisform arises by extending the given data, defined for
j=0,...,N—1,toj = N,...,2N —1insuchaway that it iseven about the point
N — 1 and periodic. (Itistherefore also even about j = —1.) The form (12.3.23)
is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (55.9).
Thisform of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It isaso the standard form in thefield of data compression and image processing.
The auxiliary function used in this case is similar to equation (12.3.19):

7(j + 3)

N (fj — fv—j—1) j=0,....,.N—1

(12.3.24)

1 .
Y = §(fj + fn—j—1) —sin

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), wefind

7k . mk
F5, = cos WRk — sin ij (12.3.25)

. mk 7k
F2k_1 = sin WRk —+ cos ij + F2k+1 (12326)
Note that equation (12.3.26) gives
1
Fy_1= 5RN/2 (12.3.27)

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down from k = N/2 — 1, using (12.3.27)
to start.

Since the transform is not self-inverting, we have to reverse the above steps
to find the inverse. Here is the routine:

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

514 Chapter 12. Fast Fourier Transform

SUBROUTINE cosft2(y,n,isign)
INTEGER isign,n
REAL y(n)
USES real ft
Calculates the “staggered” cosine transform of a set y(1:n) of real-valued data points.
The transformed data replace the original data in array y. n must be a power of 2. Set
isignto +1 for a transform, and to —1 for an inverse transform. For an inverse transform,
the output array should be multiplied by 2/n.
INTEGER i
REAL sum,suml,yl,y2,ytemp
DOUBLE PRECISION theta,wi,wil,wpi,wpr,wr,wrl,wtemp,PI
Double precision for the trigonometric recurrences.
PARAMETER (PI=3.141592653589793d0)
theta=0.5d0*PI/n Initialize the recurrences.
wr=1.0d0
wi=0.0d0
wri=cos(theta)
wil=sin(theta)
wpr=-2.0d0*wil**2
wpi=sin(2.d0*theta)
if (isign.eq.1)then Forward transform.
don i=1,n/2
y1=0.5%(y (i) +y(n-i+1)) Calculate the auxiliary function.
y2=wil*(y(i)-y(n-i+1))
y(1)=y1+y2
y(n-i+1)=y1-y2
wtemp=wril Carry out the recurrence.
wril=wril*wpr-wil*wpi+wrl
wil=wil*wpr+wtemp*wpi+wil

enddo 11
call realft(y,n,1) Calculate the transform of the auxiliary function.
do 12 i=3,n,2 Even terms.

wtemp=wr

WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
yl=y (i) *wr-y (i+1)*wi
y2=y (i+1)*wr+y (i) *wi
y(i)=y1
y(i+1)=y2
enddo 12
sum=0. 5%y (2) Initialize recurrence for odd terms with %RN/Q.
do 13 i=n,2,-2 Carry out recurrence for odd terms.
suml=sum
sum=sum+y (i)
y(i)=suml
enddo 13
else if(isign.eq.-1)then Inverse transform.
ytemp=y (n)
dou i=n,4,-2 Form difference of odd terms.
y()=y(i-2)-y(i)
enddo 14
y(2)=2.0*ytemp
do 15 i=3,n,2 Calculate Ry and Ij.
wtemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
yi=y (1) *ur+y (i+1) *wi
y2=y (i+1)*wr-y(i)*wi
y(i)=y1
y(i+1)=y2
enddo 15
call realft(y,n,-1)
do 16 i=1,n/2 Invert auxiliary array.
yl=y (L) +y(n-i+1)

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.4 FFT in Two or More Dimensions 515

y2=(0.5/wil) *(y(i)-y(n-i+1))
y(i)=0.5%(y1+y2)
y(n-i+1)=0.5%(y1-y2)
wtemp=wril
wrl=wril*wpr-wil*wpi+wrl
wil=wil*wpr+wtemp*wpi+wil
enddo 16

endif

return

END

An aternative way of implementing this agorithm is to form an auxiliary
function by copying the even elements of f; into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the aternative algorithm without a temporary storage array and we
prefer the above in-place agorithm.

Finally, we mention that there exist fast cosine transforms for small NV that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10-10.

Sorensen, H.V,, Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849-863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455-1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).
Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314-329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004-1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex function h(kq, k2) defined over the two-dimensiona grid
0<k <N;—1, 0<ky <Ny —1,wecan define its two-dimensiona discrete
Fourier transform as a complex function H (ny, n2), defined over the same grid,

Na—1N;—1

H(ni,ng) = Z Z exp(2mikang/Na) exp(2mwiking /N1) h(kq, k2)
ko=0 k1=0
(12.4.1)

By pulling the“ subscripts 2" exponential outside of the sum over k1, or by reversing
the order of summation and pulling the “subscripts 1" outside of the sum over k&,

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

516 Chapter 12. Fast Fourier Transform

we can see instantly that the two-dimensiona FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H(ny,n9) = FFT-on-index-1 (FFT-on-index-2 [h(k1, k2)])

12.4.2
= FFT-on-index-2 (FFT-on-index-1 [h(k1, k2)]) (!

For thisto be practical, of course, both N; and N» should be some efficient length
for an FFT, usualy a power of 2. Programming a two-dimensional FFT, using
(12.4.2) with a one-dimensional FFT routine, isabit clumsier than it seems at first.
Because the one-dimensiona routine reguires that its input be in consecutive order
as aone-dimensional complex array, you find that you are endlessly copying things
out of the multidimensional input array and then copying things back into it. This
is not recommended technique. Rather, you should use a multidimensional FFT
routine, such as the one we give below.

The generdization of (12.4.1) to more than two dimensions, say to L-
dimensions, is evidently

Np—1 N;—1
H(ni,...,np) = Z Z exp(2mikrng /NL) X -
k=0 k1=0 (1243)

X exp(27rik1n1/N1) h,(kl, caey kL)

where n; and k; rangefromOto Ny — 1, ... ,ngp and kg rangefromOto Ny — 1.
How many calls to a one-dimensiona FFT arein (12.4.3)? Quite afew! For each
vaueof ki, ko, ..., kr_1 you FFT to transform the L index. Then for each value of
ki,keo,...,kr—o and ny, you FFT to transform the L — 1 index. And so on. It is
best to rely on someone el se having done the bookkeeping for once and for al.

The inverse transforms of (12.4.1) or (12.4.3) are just what you would expect
them to be: Change the i's in the exponentials to —i's, and put an overal
factor of 1/(Ny x --- x Ng) in front of the whole thing. Most other features
of multidimensional FFTs are also analogous to features aready discussed in the
one-dimensional case:

e Freguencies are arranged in wrap-around order in the transform, but now
for each separate dimension.

e Theinput dataare aso treated as if they were wrapped around. If they are
discontinuous across this periodic identification (in any dimension) then
the spectrum will have some excess power at high frequencies because
of the discontinuity. The fix, if you care, is to remove multidimensional
linear trends.

e |fyouaredoingspatia filtering and are worried about wrap-around effects,
then you need to zero-pad all around the border of the multidimensiona
array. However, be sure to notice how costly zero-padding is in multidi-
mensional transforms. If you use too thick a zero-pad, you are going to
waste a lot of storage, especially in 3 or more dimensions!

e Aliasing occurs as always if sufficient bandwidth limiting does not exist
along one or more of the dimensions of the transform.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.4 FFT in Two or More Dimensions 517

N, columns

array element

column of 2N; real numbers

1 Np/2 -1 1 No/2 -1 1
= = — =+ — = == —
fZ 0 f2 N2A2 NZAZ f2 = 2A2 f2 NZAZ 2 NZAZ
Ny N, N,
col. 1 col. 2 col.7 col.7+1 col.7+2 col. Np

Figure 12.4.1. Storage arrangement of frequenciesin the output H (f1, f2) of a two-dimensional FFT.
Theinput datais atwo-dimensional N1 x Ny array h(t1,t2) (stored by columns of complex numbers).
The output is also stored by complex columns. Each column corresponds to a particular value of fo,
as shown in the figure. Within each column, the arrangement of frequencies f1 is exactly as shown in
Figure 12.2.2 A; and A, are the sampling intervals in the 1 and 2 directions, respectively. The total
number of (real) array elementsis 2N1 No. The program fourn can also do more than two dimensions,
and the storage arrangement generalizes in the obvious way.

Theroutine f ourn that we furnish herewith isa descendant of onewritten by N.
M. Brenner. It requires asinput (i) a scalar, telling the number of dimensions, e.g.,
2; (ii) avector, telling the length of the array in each dimension, e.g., (32,64). Note
that these lengths must all be powers of 2, and are the numbers of complex values
in each direction; (iii) the usua scalar equal to +1 indicating whether you want the
transform or itsinverse; and, finally (iv) the array of data

A few words about the data array: fourn accesses it as a one-dimensiona
array of real numbers, of length equal to twice the product of the lengths of the
L dimensions. It assumes that the array represents an L-dimensional complex
array, in normal FORTRAN order. Norma FORTRAN order means: (i) each complex
value occupies two sequential locations, real part followed by imaginary; (ii)
the first subscript changes most rapidly as one goes through the array; the last
subscript changes least rapidly; (iii) subscriptsrangefrom 1 to their maximum values
(N1, Na, ..., N, respectively), rather thanfromOto Ny — 1, No—1,..., N —1.
Almost all failures to get fourn to work result from improper understanding of
the above ordering of the data array, so teke care!l (Figure 12.4.1 illustrates the
format of the output array.)

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

518 Chapter 12. Fast Fourier Transform

SUBROUTINE fourn(data,nn,ndim,isign)

INTEGER isign,ndim,nn(ndim)

REAL data(*)
Replaces data by its ndim-dimensional discrete Fourier transform, if isign is input as
1. nn(1:ndim) is an integer array containing the lengths of each dimension (number of
complex values), which MUST all be powers of 2. data is a real array of length twice the
product of these lengths, in which the data are stored as in a multidimensional complex
FORTRAN array. If isign is input as —1, data is replaced by its inverse transform times
the product of the lengths of all dimensions.

INTEGER i1,i2,i2rev,i3,i3rev,ibit,idim,ifpl,ifp2,ipl,ip2,

ip3,k1,k2,n,nprev,nrem,ntot
REAL tempi,tempr

DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Double precision for trigonometric re-

ntot=1 currences.

do1n idim=1,ndim Compute total number of complex values.
ntot=ntot*nn(idim)

enddo 11

nprev=1

do 18 idim=1,ndim Main loop over the dimensions.

n=nn(idim)
nrem=ntot/(n*nprev)
ipl=2%*nprev
ip2=ipl*n
ip3=ip2*nrem
i2rev=1
do w1 i2=1,ip2,ipl This is the bit-reversal section of the routine.
if(i2.1t.i2rev)then
do 3 i1=i2,i2+ip1-2,2
do1 i3=il,ip3,ip2
i3rev=i2rev+i3-i2
tempr=data(i3)
tempi=data(i3+1)
data(i3)=data(i3rev)
data(i3+1)=data(i3rev+1)
data(i3rev)=tempr
data(i3rev+1l)=tempi
enddo 12
enddo 13
endif
ibit=ip2/2
if ((ibit.ge.ipl) .and. (i2rev.gt.ibit)) then
i2rev=i2rev-ibit
ibit=ibit/2
goto 1
endif
i2rev=i2rev+ibit
enddo 14
ifpl=ip1l Here begins the Danielson-Lanczos section of the routine.
if (ifpl.1t.ip2)then
ifp2=2x%ifpl

theta=isign#*6.28318530717959d0/ (ifp2/ip1) Initialize for the trig. recur-
wpr=-2.d0*sin(0.5d0*theta) **2 rence

wpi=sin(theta)

wr=1.d0

wi=0.d0

do17 i3=1,ifpl,ipl
do1s i1=i3,i3+ipl1-2,2
do1s i2=i1,ip3,ifp2
k1=i2 Danielson-Lanczos formula:
k2=k1+ifpl
tempr=sngl (wr) *data(k2)-sngl (wi) *data (k2+1)
tempi=sngl (wr)*data(k2+1)+sngl(wi) *data(k2)
data(k2)=data(kl)-tempr
data(k2+1)=data(ki+1)-tempi

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 519

data(kl)=data(kl)+tempr
data(kl+1)=data(ki+1)+tempi
enddo 15
enddo 16
wtemp=wr Trigonometric recurrence.
WI=Wr*wpr-wikxwpi+wr
wi=wi*wpr+wtemp*wpit+wi
enddo 17
ifpl=ifp2
goto 2
endif
nprev=n*nprev
enddo 18
return
END

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

12.5 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. Animageisusually represented as atwo-dimensiona array of pixel intensities,
real (and usualy positive) numbers. One commonly desires to filter high, or low,
frequency spatiadl components from an image; or to convolve or deconvolve the
image with some instrumental point spread function. Use of the FFT is by far the
most efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation
for a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice
that represents the discretization of three-dimensional space. Here the source terms
(mass or charge distribution) and the desired potentials are also real. In two and
three dimensions, with large arrays, memory is often at a premium. It is therefore
important to perform the FFTs, insofar as possible, on the data “in place” We
want aroutinewith functionality similar to the multidimensiona FFT routinefourn
(812.4), but which operates on real, not complex, input data. We give such a
routine in this section. The development is analogous to that of §12.3 leading to
the one-dimensional routine realft. (You might wish to review that material at
this point, particularly equation 12.3.5.)

It is convenient to think of the independent variables nq,...,nz in equation
(12.4.3) as representing an L-dimensiona vector 7 in wave-number space, with
vauesonthelatticeof integers. Thetransform H (nq, . .., ny) isthen denoted H (7).

It iseasy to see that the transform H (77) is periodic in each of its L dimensions.
Specifically, if ﬁl, P,, Ps, ... denote the vectors (N1,0,0,...), (0,N5,0,...),
(0,0, N3, ...), and so forth, then

H@+P)=H@) j=1,...,L (12.5.1)

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

520 Chapter 12. Fast Fourier Transform

Equation (12.5.1) holds for any input data, real or complex. When the dataisrea,
we have the additional symmetry

H(—7) = H(7)* (125.2)

Equations(12.5.1) and (12.5.2) imply that thefull transform can betrivially obtained
from the subset of lattice values 7 that have

N
0§n1§71

0 S n9 S N2 -1
(12.5.3)

OSTLLSNL—I

In fact, this set of values is overcomplete, because there are additional symmetry
relations among the transform values that have n; = 0 and n; = N; /2. However
these symmetries are complicated and their use becomes extremely confusing.
Therefore, we will compute our FFT on the lattice subset of equation (12.5.3),
even though this requires a small amount of extra storage for the answer, i.e, the
transformisnot quite“in place.” (Althoughanin-placetransformisin fact possible,
we have found it virtually impossible to explain to any user how to unscramble its
output, i.e., where to find the real and imaginary components of the transform at
some particular frequency!)

Figure 12.5.1 shows the storage scheme that we will use for the input data
and the output transform. The figure is specialized to the case of two dimensions,
L = 2, but the generalization to higher dimensions is obvious. The input data is
a two-dimensional real array of dimensions N; (called nn1) by N, (caled nn2).
Noticethat the FORTRAN subscripts number from 1 tonn1, and not from0to Ny — 1.
The output spectrum isin two complex arrays, one two-dimensional and the other
one-dimensional. The two-dimensiona one, spec, has dimensionsnn1/2 by nn2.
This is exactly half the size of the input data array; but since it is complex, it is
the same amount of storage. In fact, spec will share storage with (and overwrite)
theinput data array. As the figure shows, spec contains those spectral components
whose first component of frequency, fi, ranges from zero to just short of the
Nyquist frequency f.. The full range of positiveand negative second-component of
frequencies, f», isstored, inwrap-around order (see §12.2), with negativefrequencies
shifted by exactly one period to put them “above” the positive frequencies, as the
figure indicates. The figure also indicates how the additional L — 1 (here, one-)
dimensiond array speq stores only that single value of n, that corresponds to the
Nyquist frequency, but al values of nq, etc.

With this much introduction, the implementing procedure, called r1ft3, is
something of an anticlimax. Theroutineiswrittenfor the case of L = 3 dimensions,
but (we will explain below) it can be used without modification for L = 2 also; and
itisquitetrivial to generadize it to larger L. Look at theinnermost (“do3") loopin
the procedure, and you will see equation (12.3.5) implemented on thefirst transform
index. The case of i1=1 is coded separately, to account for the fact that speq is
to be filled instead of spec (which is here called data since it shares storage with

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 521

nnl, 1 nnl, nn2

REAL dat a(nn1, nn2) Input dataarray

1,1 1, nn2
1 COMPLEX speq'nnzl) f1 =fc nn2
nnl/ 2,1 nnl/ 2, nn2
5 2 o
1] 1 1l
~ o o~
COMPLEX spec(nnl/ 2, nn2)
1,1 f, =[O 1, nn2

Output spectrum
arrays

f1 = —fc

Figure 12.5.1. Input and output data arrangement for r1£+t3 in the case of two-dimensional data. The
input dataarray isareal, two-dimensional array. Theoutputdataarray spec isacomplex, two-dimensional
array whose (1, 1) element containsthe f1 = fo = 0 spectral component; a complete set of f5 values
are stored in wrap-around order, while only positive f; values are stored (others being obtainable by
symmetry). The output array speq contains componentswith f1 equal to the Nyquist frequency.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

522 Chapter 12. Fast Fourier Transform

the input array). The three enclosing do loops (indicesi2, i1, and i3, from inside
to outside) could in fact be done in any order — their actions all commute. We
chose the order shown because of the following considerations: (i) 11 should not be
the inner loop, because if it is, then the recurrence relations on wr and wi become
burdensome. (ii) On virtual-memory machines, i3 should be the outer loop, because
(with FORTRAN order of array storage) thisresultsinthe array data, which might be
very large, being accessed in block sequential order.

Note that the work done in r1£t3 is quite (logarithmically) small, compared
to the associated complex FFT, fourn. For this reason, we alow ourselves the
clarity of using FORTRAN complex arithmetic even when (as in the multiplications
by c1 and c2) there are a few unnecessary operations. The routiner1ft3 is based
on an earlier routine by G.B. Rybicki.

SUBROUTINE rlft3(data,speq,nnl,nn2,nn3,isign)

INTEGER isign,nnl,nn2,nn3

COMPLEX data(nnl1/2,nn2,nn3),speq(nn2,nn3)

USES fourn
Given a two- or three-dimensional real array data whose dimensions are nnl, nn2, nn3
(where nn3 is 1 for the case of a two-dimensional array), this routine returns (for isign=1)
the complex fast Fourier transform as two complex arrays: On output, data contains the
zero and positive frequency values of the first frequency component, while speq contains
the Nyquist critical frequency values of the first frequency component. Second (and third)
frequency components are stored for zero, positive, and negative frequencies, in standard
wrap-around order. For isign=-1, the inverse transform (times nnl*nn2*nn3/2 as a
constant multiplicative factor) is performed, with output data (viewed as a real array)
deriving from input data (viewed as complex) and speq. For inverse transforms on data
not generated first by a forward transform, make sure the complex input data array satisfies
property (12.5.2). The dimensions nnl, nn2, nn3 must always be integer powers of 2.

INTEGER i1,i2,i3,j1,j2,33,nn(3)

DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp

COMPLEX c1,c2,h1,h2,w Note that data is dimensioned as complex, its output

cl=cmplx(0.5,0.0) format.

c2=cmplx(0.0,-0.5%isign)

theta=6.28318530717959d0/dble (isign*nni)

wpr=-2.0d0*sin(0.5d0*theta)**2

wpi=sin(theta)

nn(1)=nn1/2

nn(2)=nn2

nn(3)=nn3

if (isign.eq.1)then Case of forward transform.
call fourn(data,nn,3,isign) Here is where most all of the compute time is spent.
do 12 i3=1,nn3 Extend data periodically into speq.

don i2=1,nn2
speq(i2,i3)=data(1,i2,i3)

enddo 11
enddo 12
endif
do 15 i3=1,nn3
j3=1 Zero frequency is its own reflection, otherwise locate cor-
if (i3.ne.1) j3=nn3-i3+2 responding negative frequency in wrap-around order.
wr=1.0d0 Initialize trigonometric recurrence.
wi=0.0d0

dou il=1,nn1/4+1
jl=nn1/2-i1+2
do 13 i2=1,nn2

jo=1
if (i2.ne.1) j2=nn2-i2+2
if(il.eq.1)then Equation (12.3.5).

hi=cilx*(data(1,i2,i3)+conjg(speq(j2,33)))
h2=c2*(data(1,i2,i3)-conjg(speq(j2,33)))

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 523

Figure 12.5.2. (a) A two-dimensional image with intensities either purely black or purely white. (b) The
sameimage, after it hasbeenlow-passfiltered usingr1£t3. Regionswith fine-scal efeaturesbecomegray.

data(1,i2,i3)=h1+h2
speq(j2, j3)=conjg(hl-h2)
else
hi=ci*(data(il,i2,i3)+conjg(data(j1,j2,33)))
h2=c2*(data(il,i2,i3)-conjg(data(j1,j2,33)))
data(il,i2,i3)=h1+wxh2
data(j1,j2,j3)=conjg(hl-w*h2)
endif
enddo 13
wtemp=wr Do the recurrence.
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
w=cmplx (sngl (wr) ,sngl(wi))
enddo 14
enddo 15
if(isign.eq.-1)then
call fourn(data,nn,3,isign)
endif
return
END

Case of reverse transform.

We now give some fragments from notiona calling programs, to clarify the
use of r1ft3 for two- and three-dimensional data. Note that the routine does not
actually distinguish between two and three dimensions; two istreated like three, but
with the third dimension having length 1. Since the third dimension is the outer
loop, almost no inefficiency is introduced.

The first program fragment FFTs atwo-dimensional dataarray, allowsfor some
processing on it, e.g., filtering, and then takes the inverse transform. Figure 12.5.2
shows an example of the use of this kind of code: A sharp image becomes blurry
when its high-frequency spatial components are suppressed by the factor (here)
max (1 — 6f2/f2,0). The second program example illustrates a three-dimensional
transform, where the three dimensions have different lengths. The third program
example is an example of convolution, as it might occur in a program to compute
the potential generated by a three-dimensional distribution of sources.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

524 Chapter 12. Fast Fourier Transform

PROGRAM exmpli
This fragment shows how one might filter a 256 by 256 digital image.

INTEGER N1,N2,N3

PARAMETER (N1=256,N2=256,N3=1) Note that the third component must be set to 1.

USES rlft3

REAL data(N1,N2)

COMPLEX spec(N1/2,N2),speq(N2)

EQUIVALENCE (data,spec)

R Here the image would be loaded into data.

call rlft3(data,speq,N1,N2,N3,1)

R Here the arrays spec and speq would be multiplied by a suit-

call rlft3(data,speq,N1,N2,N3,-1) able filter function (of frequency).

R Here the filtered image would be unloaded from data.

END

PROGRAM exmpl2
This fragment shows how one might FFT a real three-dimensional array of size 32 by 64
by 16.

INTEGER N1,N2,N3

PARAMETER (N1=32,N2=64,N3=16)

USES rlft3

REAL data(N1,N2,N3)

COMPLEX spec(N1/2,N2,N3),speq(N2,N3)

EQUIVALENCE (data,spec)

ces Here load data.

call rlft3(data,speq,N1,N2,N3,1)

. Here unload spec and speq.

END

PROGRAM exmpl3
This fragment shows how one might convolve two real, three-dimensional arrays of size 32
by 32 by 32, replacing the first array by the result.

INTEGER N

PARAMETER (N=32)

USES rlft3

INTEGER j

REAL fac,datal(N,N,N),data2(N,N,N)

COMPLEX spec1(N/2,N,N),speql(N,N),spec2(N/2,N,N),speq2(N,N),

zpecl (N*N*N/2) ,zpeql (N*N) ,zpec2 (N*N*N/2) ,zpeq2 (N*N)
EQUIVALENCE (datal,specl,zpecl), (data2,spec2,zpec2),
(speql,zpeql), (speq2,zpeq2)

call rlft3(datal,speql,N,N,N,1) FFT both input arrays.

call rlft3(data2,speq2,N,N,N,1)

fac=2./(N*N*N) Factor needed to get normalized inverse.

do 11 j=1,N*N*N/2 The sole purpose of the zpecs and zpegs is to make
zpecl(j)=fac*zpecl(j)*zpec2(j) this a single do-loop instead of three-nested ones.

enddo 11

do12 j=1,N*N
zpeql (j)=fac*zpeql (j) *zpeq2(j)
enddo 12
call rlft3(datal,speql,N,N,N,-1) Inverse FFT the product of the two FFTs.

END
To extend r1£t3 tofour dimensions, you simply add an additional (outer) nested

do loopin i4, analogousto the present 3. (Modifyingtheroutineto do an arbitrary
number of dimensions, asin fourn, isagood programming exercise for the reader.)

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).
Swartztrauber, P. N. 1986, Mathematics of Computation, vol. 47, pp. 323-346.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.6 External Storage or Memory-Local FFTs 525

12.6 External Storage or Memory-Local FFTs

Sometime in your life, you might have to compute the Fourier transform of a really
large data set, larger than the size of your computer’s physical memory. In such a case,
the data will be stored on some external medium, such as magnetic or optical tape or disk.
Needed is an algorithm that makes some manageable number of sequential passes through
the external data, processing it on the fly and outputting intermediate results to other external
media, which can be read on subsequent passes.

In fact, an algorithm of just this description was developed by Singleton [1] very soon
after the discovery of the FFT. The algorithm requires four sequential storage devices, each
capable of holding half of the input data. The first half of the input data is initially on one
device, the second half on another.

Singleton’s algorithm is based on the observation that it is possible to bit-reverse 2
values by the following sequence of operations: On the first pass, values are read alternately
from the two input devices, and written to a single output device (until it holds half the data),
and then to the other output device. On the second pass, the output devices become input
devices, and vice versa. Now, we copy two values from the first device, then two values
from the second, writing them (as before) first to fill one output device, then to fill a second.
Subsequent passes read 4, 8, etc., input values at atime. After completion of pass M — 1,
the data are in bit-reverse order.

Singleton’s next observation is that it is possible to alternate the passes of essentially
this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos
combination formula (12.2.3). The scheme, roughly, is this: One starts as before with half
the input data on one device, half on another. In the first pass, one complex value is read
from each input device. Two combinations are formed, and one is written to each of two
output devices. After this“computing” pass, the devices are rewound, and a “permutation”
passis performed, where groups of values are read from the first input device and alternately
written to the first and second output devices; when the first input device is exhausted, the
secondis similarly processed. This sequenceof computing and permutation passesis repeated
M — K — 1 times, where 2¥ is the size of internal buffer available to the program. The
second phase of the computation consistsof afinal K computation passes. What distinguishes
the second phase from the first is that, now, the permutations are local enough to do in place
during the computation. There are thus no separate permutation passes in the second phase.
In all, there are 2M — K — 2 passes through the data.

Here is an implementation of Singleton’s algorithm, based on [1]:

SUBROUTINE fourfs(iunit,nn,ndim,isign)

INTEGER ndim,nn(ndim),isign,iunit(4),KBF

PARAMETER (KBF=128)

USES fourew
One- or multi-dimensional Fourier transform of a large data set stored on external media.
On input, ndim is the number of dimensions, and nn(1:ndim) contains the lengths of
each dimension (number of complex values), which must be powers of two. iunit(1:4)
contains the unit numbers of 4 sequential files, each large enough to hold half of the data.
The four units must be opened for FORTRAN unformatted access. The input data must be
in FORTRAN normal order, with its first half stored on unit iunit (1), its second half on
iunit (2), in unformatted form, with KBF real numbers per record. isign should be set
to 1 for the Fourier transform, to —1 for its inverse. On output, values in the array iunit
may have been permuted; the first half of the result is stored on iunit(3), the second
half on iunit (4). N.B.: For ndim > 1, the output is stored by rows, i.e., not in FORTRAN
normal order; in other words, the output is the transpose of that which would have been
produced by routine fourn.

INTEGER j,j12,jk,k,kk,n,mm,kc,kd,ks,kr,nr,ns,nv, jx,

mate(4) ,na,nb,nc,nd

REAL tempr,tempi,afa(KBF),afb(KBF) ,afc(KBF)

DOUBLE PRECISION wr,wi,wpr,wpi,wtemp,theta

SAVE mate

DATA mate /2,1,4,3/

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

526 Chapter 12. Fast Fourier Transform

n=1
dou j=1,ndim
n=n*nn(j)
if (nn(j).le.1)
pause ’invalid dimension or wrong ndim in fourfs’
enddo 11
nv=ndim
jk=nn(nv)
mm=n
ns=n/KBF
nr=ns/2
kc=0
kd=KBF/2
ks=n
call fourew(iunit,na,nb,nc,nd)
The first phase of the transform starts here.
continue Start of the computing pass.
theta=3.141592653589793d0/ (isign*n/mm)
wpr=-2.d0*sin(0.5d0*theta) **2
wpi=sin(theta)
wr=1.d0
wi=0.d0
mm=mm/2
dos j12=1,2
kr=0
continue
read (iunit(ma)) (afa(jx),jx=1,KBF)
read (iunit(mb)) (afb(jx),jx=1,KBF)
do12 j=1,KBF,2
tempr=sngl (wr)*afb(j)-sngl(wi)*afb(j+1)
tempi=sngl (wi)*afb(j)+sngl(wr)*afb(j+1)
afb(j)=afa(j)-tempr
afa(j)=afa(j)+tempr
afb(j+1)=afa(j+1)-tempi
afa(j+1)=afa(j+1)+tempi
enddo 12
kc=kc+kd
if (kc.eq.mm) then
kc=0
wtemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
endif
write (iunit(nc)) (afa(jx),jx=1,KBF)
write (iunit(nd)) (afb(jx),jx=1,KBF)
kr=kr+1
if (kr.lt.nr) goto 2
if(j12.eq.1.and.ks.ne.n.and.ks.eq.KBF) then
na=mate(na)
nb=na
endif
if (nr.eq.0) goto 3
enddo 13
call fourew(iunit,na,nb,nc,nd) Start of the permutation pass.
jk=ik/2
if (jk.eq.1) then
mm=n
nv=nv-1
jk=nn(nv)
goto 4
endif
ks=ks/2
if (ks.gt.KBF) then
do1s j12=1,2

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

12.6 External Storage or Memory-Local FFTs 527

do 15 kr=1,ns,ks/KBF
do 14 k=1,ks,KBF
read (iunit(ma)) (afa(jx),jx=1,KBF)
write (iunit(nc)) (afa(jx),jx=1,KBF)
enddo 14
nc=mate (nc)
enddo 15
na=mate (na)
enddo 16
call fourew(iunit,na,nb,nc,nd)
goto 1
else if (ks.eq.KBF) then
nb=na
goto 1
endif
continue
j=1
The second phase of the transform starts here. Now, the remaining permutations are suffi-
ciently local to be done in place.
continue
theta=3.141592653589793d0/ (isign*n/mm)
wpr=-2.d0*sin(0.5d0*theta) **2
wpi=sin(theta)
wr=1.d0
wi=0.d0
mm=mm/ 2
ks=kd
kd=kd/2
dos j12=1,2
do 17 kr=1,ns
read (iunit(ma)) (afc(jx),jx=1,KBF)
kk=1
k=ks+1
continue
tempr=sngl (wr) *af c (kk+ks) -sngl (wi) *afc (kk+ks+1)
tempi=sngl (wi) *afc (kk+ks) +sngl (wr) *afc (kk+ks+1)
afa(j)=afc(kk)+tempr
afb(j)=afc(kk)-tempr
afa(j+1)=afc(kk+1)+tempi
afb(j+1)=afc(kk+1)-tempi
j=j+2
kk=kk+2
if (kk.1lt.k) goto 6
kc=kc+kd
if (kc.eq.mm) then
kc=0
wtemp=wr
WI=Wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
endif
kk=kk+ks
if (kk.le.KBF) then
k=kk+ks
goto 6
endif
if (j.gt.KBF) then
write (iunit(nc)) (afa(jx),jx=1,KBF)
write (iunit(nd)) (afb(jx),jx=1,KBF)
j=1
endif
enddo 17
na=mate (na)
enddo 18
call fourew(iunit,na,nb,nc,nd)

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

528 Chapter 12. Fast Fourier Transform

jk=ik/2

if (jk.gt.1) goto 5

mm=n

if (nv.gt.1) then
nv=nv-1
jk=nn(nv)
if (jk.eq.1) goto 7
goto 5

endif

return

END

SUBROUTINE fourew(iunit,na,nb,nc,nd)

INTEGER na,nb,nc,nd,iunit(4),ii
Utility used by fourfs. Rewinds and renumbers the four files.

dou ii=1,4
rewind (unit=iunit(ii))

enddo 11

ii=iunit(2)

iunit (2)=iunit (4)

iunit(4)=ii

ii=iunit (1)

iunit (1)=iunit(3)

iunit(3)=ii

na=3

nb=4

nc=1

nd=2

return

END

For one-dimensional data, Singleton’s algorithm produces output in exactly the same
order asastandard FFT (e.g., four1). For multidimensional data, the output isthetransposeof
the conventional arrangement (e.g., theoutput of fourn). Thispeculiarity, whichisintrinsic to
the method, is generally only aminor inconvenience. For convolutions, one simply computes
the component-by-component product of two transforms in their nonstandard arrangement,
and then does an inverse transform on the result. Note that, if the lengths of the different
dimensionsare not all the same, then you must reverse the order of the valuesinnn (1:ndim)
(thus giving the transpose dimensions) before performing the inverse transform. Note also
that, just like fourn, performing a transform and then an inverse results in multiplying the
original data by the product of the lengths of all dimensions.

We leave it as an exercise for the reader to figure out how to reorder fourfs’s output
into normal order, taking additional passesthrough the externally stored data. We doubt that
such reordering is ever really needed.

You will likely want to modify fourfs to fit your particular application. For example,
as written, KBF = 2% plays the dual role of being the size of the internal buffers, and the
record size of the unformatted reads and writes. The latter role limits its size to that allowed
by your machine’s 1/O facility. It is a simple matter to perform multiple reads for a much
larger XBF, thus reducing the number of passes by a few.

Another modification of fourfs would be for the case where your virtual memory
machine has sufficient address space, but not sufficient physical memory, to do an efficient
FFT by the conventional algorithm (whose memory references are extremely nonlocal). In
that case, you will need to replace the reads, writes, and rewinds by mappings of the arrays
afa, afb, and afc into your address space. In other words, these arrays are replaced by
referencesto asingle data array, with offsets that get modified wherever fourfs performs an
1/0 operation. The resulting algorithm will have its memory references local within blocks
of size KBF. Execution speed is thereby sometimes increased enormously, albeit at the cost
of requiring twice as much virtual memory as an in-place FFT.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

529

12.6 External Storage or Memory-Local FFTs

CITED REFERENCES AND FURTHER READING:

Singleton, R.C. 1967, IEEE Transactions on Audio and Electroacoustics, vol. AU-15, pp. 91-97.

(1

Oppenheim, A.V., and Schafer, R.W. 1989, Discrete-Time Signal Processing (Englewood Cliffs,

NJ: Prentice-Hall), Chapter 9.

Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)

Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs
visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

