
LECTURE 12: STOCHASTIC DIFFERENTIAL EQUATIONS, DIFFUSION

PROCESSES, AND THE FEYNMAN-KAC FORMULA

1. Existence and Uniqueness of Solutions to SDEs

It is frequently the case that economic or financial considerations will suggest that a stock price,
exchange rate, interest rate, or other economic variable evolves in time according to a stochastic
differential equation of the form

(1) dXt = α(t,Xt) dt + β(t,Xt) dWt

where Wt is a standard Brownian motion and α and β are given functions of time t and the current
state x. More generally, when several related economic variables X 1, X2, . . . , XN are considered, the
vector Xt = (X1

t , X2
t , . . . , XN

t )T may evolve in time according to a system of stochastic differential
equations of the form

(2) dX i
t = αi(t,Xt) dt +

d
∑

j=1

βij(t,Xt) dW j
t ,

where Wt = (W 1
t ,W 2

t , . . . ,W d
t ) is a d−dimensional Brownian motion. Notice that this system of

equations may be written in vector form as (1), where now Xt and α(t, x) are N−vectors with

entries X i
t and αi(t, x), respectively; dWt is the d−vector of increments dW j

t of the component

Brownian motions W j
t ; and β(t, x) is the N × d−matrix with entries βij(t, x).

In certain cases, such as the Black-Scholes model for the behavior of a stock price, where α(t, x) =
rtx and β(t, x) = σtx with rt and σt deterministic (nonrandom) functions of t, it is possible to guess
a solution, and then to verify, using Itô’s formula, that the guess does indeed obey (1). If we knew
that for each initial condition X0 there is at most one solution to the stochastic differential equation
(1), then we could conclude that our guess must be that solution. How do we know that solutions
to (1) are unique? Unfortunately, it is not always the case that they are!

Example 1: (Courtesy of Itô and Watanabe, 1978) Consider the stochastic differential equation

(3) dXt = 3X
1/3
t dt + 3X

2/3
t dWt

with the initial condition X0 = 0. Clearly, the process Xt ≡ 0 is a solution. But so is

(4) Xt = W 3
t .

�

The problem in this example is that the coefficients α(t, x) = 3x1/3 and β(t, x) = 3x2/3, although
continuous in x, are not smooth at x = 0. Fortunately, mild smoothness hypotheses on the
coefficients α(t, x) and β(t, x) ensure uniqueness of solutions.

Definition 1. The function f(t, x) is locally Lipschitz in the space variable(s) x if, for every integer
n, there exists a constant Cn such that, for all x, y, and t no larger than n in absolute value1,

(5) |f(t, x) − f(t, y)| ≤ Cn|x − y|.

1If x = (x1, x2, . . . , xn) is a vector, then its absolute value is defined to be |x| =
p

P

i
x2

i
.

1



In practice, one rarely needs to verify this condition, because the following is true, by the
mean value theorem of calculus: If f(t, x) is continuously differentiable, then it locally Lipschitz.
Occasionally one encounters situations where one of the coefficients in a stochastic differential
equation has “corners” (for instance, the function f(x) = |x|); such functions are locally Lipschitz
but not continuously differentiable.

Theorem 1. Suppose that the functions αi(t, x) and βij(t, x) are all locally Lipschitz in the space
variable x. Then for each initial condition X0 = x0, there is at most one solution to the system of
stochastic differential equations (2).

Are there always solutions to stochastic differential equations of the form (1)? No! In fact,
existence of solutions for all time t ≥ 0 is not guaranteed even for ordinary differential equations
(that is, differential equations with no random terms). It is important to understand why this is
so. A differential equation (or a system of differential equations) prescribes how the state vector
Xt will evolve in any small time interval dt, for as long as the state vector remains finite. However,
there is no reason why the state vector must remain finite for all times t ≥ 0.

Example 2: Consider the ordinary differential equation

(6)
dx

dt
=

1

1 − t
for 0 ≤ t < 1.

The solution for the initial condition x0 is

(7) x(t) = x0 +

∫ t

0
(1 − s)−1 ds = x0 − log(1 − t) for 0 ≤ t < 1.

As t approaches 1, x(t) converges to ∞. �

Example 3: The previous example shows that if the coefficients in a differential equation depend
explicitly on t then solutions may “explode” in finite time. This example shows that explosion of
solutions may occur even if the differential equation is autonomous, that is, if the coefficients have
no explicit time dependence. The differential equation is

(8)
dx

dt
= x2.

The general solution is

(9) x(t) = −(t − C)−1.

For the initial condition x(0) = x0 > 0, the value of C must be C = 1/x0. Consequently, the
solution x(t) explodes as t approaches 1/x0. �

Observe that in Example 2, the coefficient α(t, x) = x2 is not only time-independent, but con-
tinuously differentiable, and therefore locally Lipschitz. Hence, the hypotheses of Theorem 1 do
not guarantee existence of solutions for all t. The next theorem gives useful sufficient conditions
for the existence of solutions for all t.



Theorem 2. Assume that the coefficients in the system (1) of stochastic differential equations
satisfy the following global Lipschitz and growth conditions: for some C < ∞,

|αi(t, x) − αi(t, y)| ≤ C|x − y| for all t ∈ R and x, y ∈ R
N(10)

|βij(t, x) − βij(t, y)| ≤ C|x − y| for all t ∈ R and x, y ∈ R
N

|αi(t, x)| ≤ C|x| for all t ∈ R and x ∈ R
N , and

|βij(t, x)| ≤ C|x| for all t ∈ R and x ∈ R
N .

Then for each x0 ∈ R
N there is a (unique) solution to the system (1) such that X0 = x0.

The existence and uniqueness theorems 1 and 2 stated above were proved by Itô in 1951. The
proofs follow the lines of the classical proofs for existence and uniqueness of solutions of ordinary
differential equations, with appropriate modifications for the random terms. See, for instance,
Karatzas & Shreve for details.

More properties of the Ornstein-Uhlenbeck process are given in the exercises.

2. The Ornstein-Uhlenbeck Process

In the parlance of professional probability, a diffusion process is a continuous-time stochastic
process that satisfies an autonomous (meaning that the coefficients α and β do not depend explicitly
on the time variable t) stochastic differential equation of the form (1). Such processes are necessarily
(strong) Markov processes.2 Apart from Brownian motion, perhaps the most important diffusion
process is the Ornstein-Uhlenbeck process, known also in finance circles as the Vasicek model.
The Ornstein-Uhlenbeck process is the prototypical mean-reverting process: although random, the
process exhibits a pronounced tendency toward an equilibrium value, just as an oscillating pendulum
or spring is always pulled toward its rest position. In financial applications, the Ornstein-Uhlenbeck
process is often used to model quantities that tend to fluctuate about equilibrium values, such as
interest rates or volatilities of stock prices. The stochastic differential equation for the Ornstein-
Uhlenbeck process is

(11) dYt = −α(Yt − µ) dt + σ dWt,

where α, µ ∈ R and σ > 0 are parameters. Observe that, if σ = 0 then this becomes an ordinary
differential equation with an attractive rest point at µ. (Exercise: Find the general solution when
σ = 0, and verify that as t → ∞ every solution curve converges to µ.) The term σ dWt allows for
the possibility of random fluctuations about the rest position µ; however, if Yt begins to randomly
wander very far from µ then the “mean-reversion” term −α(Yt − µ) dt becomes larger, forcing Yt

back toward µ.
The coefficients of the stochastic differential equation (11) satisfy the hypotheses of Theorem 2,

and so for every possible initial state y0 ∈ R there is a unique solution Yt. In fact, it is possible to
give an explicit representation of the solution. Let’s try the simplest case, where µ = 0. To guess
such a representation, try a combination of ordinary and stochastic (Itô) integrals; more generally,
try a combination of nonrandom functions and Itô integrals:

Yt = A(t)

(

y0 +

∫ t

0
B(s) dWs

)

,

2A thorough discussion of such issues is given in the XXX-rated book Multidimensional Diffusion Processes be
Stroock and Varadhan. For a friendlier introduction, try Steele’s new book Stochastic Calculus with Financial

Applications.



where A(0) = 1. If A(t) is differentiable and B(t) is continuous, then

dYt = A′(t)

(

y0 +

∫ t

0
B(s) dWs

)

dt + A(t)B(t) dWt

=
A′(t)

A(t)
Yt dt + A(t)B(t) dWt.

Matching coefficients with (11) shows that A′(t)/A(t) = −α and A(t)B(t) = σ. Since A(0) = 1,
this implies that A(t) = exp {−αt} and B(t) = σ exp {αt}. Thus, for any initial condition Y0 = y0,
the solution of (11) is given by

(12) Yt = exp {−αt} y0 + σ exp {−αt}

∫ t

0
exp {αs} dWs

The explicit formula (12) allows us to read off a large amount of important information about the
Ornstein-Uhlenbeck process. First, recall that it is always the case that the integral of a nonrandom
function f(s) against dWs is a normal (Gaussian) random variable, with mean zero and variance
∫

f(s)2 ds. Thus, for each t,

(13) Yt ∼ Normal

(

y0e
−αt, σ2 1 − e−2αt

2α

)

.

As t → ∞, the mean and variance converge (rapidly!) to 0 and σ2/2α, respectively, and so

(14) Yt
D
−→ Normal

(

0,
σ2

2α

)

.

This shows that the Ornstein-Uhlenbeck process has a stationary (or equilibrium, or steady-state)
distribution, and that it is the Gaussian distribution with the paramaters shown above. In fact,
formula (12) implies even more. Consider two different initial states y0 and y′0, and let Yt and
Y ′

t be the solutions (12) to the stochastic differential equation (11) with these initial conditions,
respectively. Then

(15) Yt − Y ′
t = exp {−αt} (y0 − y′0).

Thus, the difference between the two solutions Yt and Y ′
t decays exponentially in time, at rate α.

For this reason α is sometimes called the relaxation parameter.

3. Diffusion Equations and the Feynman-Kac Formula

Diffusion processes (specifically, Brownian motion) originated in physics as mathematical models
of the motions of individual molecules undergoing random collisions with other molecules in a gas or
fluid. Long before the mathematical foundations of the subject were laid3, Albert Einstein realized
that the microscopic random motion of molecules was ultimately responsible for the macroscopic
physical phenomenon of diffusion, and made the connection between the volatility parameter σ
of the random process and the diffusion constant in the partial differential equation governing
diffusion.4 The connection between the differential equations of diffusion and heat flow and the

3around 1920, by Norbert Wiener, who proved that there is a probability distribution (measure) P on the space
of continuous paths such that, if one chooses a path Bt at random from this distribution then the resulting stochastic
process is a Brownian motion, as defined in Lecture 5.

4This observation led to the first accurate determination of Avagadro’s number, and later, in 1921, to a Nobel
prize in physics for Mr Einstein.



random process of Brownian motion has been a recurring theme in mathematical research ever
since.

In the 1940s, Richard Feynman discovered that the Schrodinger equation (the differential equa-
tion governing the time evolution of quantum states in quantum mechanics) could be solved by
(a kind of) averaging over paths, an observation which led him to a far-reaching reformulation of
the quantum theory in terms of “path integrals”.5 Upon learning of Feynman’s ideas, Mark Kac
(a mathematician at Cornell University, where Feynman was, at the time, an Assistant Professor
of Physics) realized that a similar representation could be given for solutions of the heat equation
(and other related diffusion equations) with external cooling terms. This representation is now
known as the Feynman-Kac formula. Later it became evident that the expectation occurring in
this representation is of the same type that occurs in derivative security pricing.

The simplest heat equation with a cooling term is

(16)
∂u

∂t
=

1

2

∂2u

∂x2
− K(x)u,

where K(x) is a function of the space variable x representing the amount of external cooling at
location x.

Theorem 3. (Feynman-Kac Formula) Let K(x) be a nonnegative, continuous function, and let
f(x) be bounded and continuous. Suppose that u(t, x) is a bounded function that satisfies the partial
differential equation (16) and the initial condition

(17) u(0, x) = lim
(t,y)→(0,x)

u(t, y) = f(x).

Then

(18) u(t, x) = Ex exp

{

−

∫ t

0
K(Ws) ds

}

f(Wt),

where, under the probability measure P x, the process {Wt}t≥0 is Brownian motion started at x.

The hypotheses given are not the most general under which the theorem remains valid, but
suffice for many important applications. Occasionally one encounters functions K(x) and f(x) that
are not continuous everywhere, but have only isolated discontinuities; the Feynman-Kac formula
remains valid for such functions, but the initial condition (17) holds only at points x where f is
continuous.

An obvious consequence of the formula is uniqueness of solutions to the Cauchy problem (the
partial differential equation (16) together with the initial condition (17).

Corollary 1. Under the hypotheses of Theorem 3, there is at most one solution of the heat equation
(16) with initial condition (17), specifically, the function u defined by the expectation (18).

�

The Feynman-Kac formula may also be used as the basis for an existence theorem, but this is
not so simple, and since it is somewhat tangential to our purposes, we shall omit it.

5The theory is spelled out in considerable detail in the book Quantum Mechanics and Path Integrals by Feynman
and Hibbs. For a nontechnical explanation, read Feynman’s later book QED, surely one of the finest popular
expositions of a scientific theory ever written.



Proof of the Feynman-Kac Formula. Fix t > 0, and consider the stochastic process

Ys = e−R(s)u(t − s,Ws), where

R(s) = exp

{

−

∫ s

0
K(Wr) dr

}

with s now serving as the time parameter. Because u(t, x) is, by hypothesis, a solution of the
heat equation (16), it is continuously differentiable once in t and twice in x. Moreover, since u is
bounded, so is the process Yt. By Itô’s theorem,

dYs = − K(Ws)e
−R(s)u(t − s,Ws) ds

− ut(t − s,Ws)e
−R(s) ds

+ ux(t − s,Ws)e
−R(s) dWs

+ (1/2)uxx(t − s,Ws)e
−R(s) ds.

Since u satisfies the partial differential equation (16), the ds terms in the last expression sum to
zero, leaving

(19) dYs = ux(t − s,Ws)e
−R(s) dWs.

Thus, Ys is a martingale up to time t.6 By the “Conservation of Expectation” law for martingales,
it follows that

(20) Y0 = u(t, x) = ExYt = Exe−R(t)u(0,Wt) = Exe−R(t)f(Wt).

As we have remarked, the hypotheses of Theorem 3 may be relaxed considerably, but this is
a technically demanding task. The primary difficulty has to do with convergence issues: when
f is an unbounded function the expectation in the Feynman-Kac formula (18) need not even be
well-defined. Nonuniqueness of solutions to the Cauchy problem is also an obstacle. Consider, for
instance, the simple case where f ≡ 0 and K ≡ 0; then the function

(21) v(t, x) =
∞
∑

n=0

x2n

(2n)!

dn

dtn
e−1/t2

is a solution of the heat equation (16) that satisfies the initial condition (17). This example should
suffice to instill, if not fear, at least caution in anyone using the Feynman-Kac formula, because it
implies nonuniqueness of solutions to the Cauchy problem for every initial condition. To see this,
observe that if u(t, x) is a solution to the heat equation (16) with initial condition u(0, x) = f(x),
then so is u(t, x)+v(t, x). Notice, however, that the function v(t, x) grows exponentially as x → ∞.
In many applications, the solution u of interest grows subexponentially in the space variable x. The
following result states that, under mild hypotheses on the functions f and K, there is only one
solution to the Cauchy problem that grows subexponentially in x.

Proposition 1. Let f and K be piecewise continuous functions such that K ≥ 0 and f is of
subexponential growth. Then the function u(t, x) defined by the Feynman-Kac formula (18) satisfies

6To make this argument airtight, one must verify that the process ux(t − s, Ws) is of class H2 up to time t − ε,
for any ε > 0. This may be accomplished by showing that the partial derivative ux(s, x) remains bounded for x ∈ R

and s ≥ ε, for any ε > 0. Details are omitted. One then applies the Conservation of Expectation law at t − ε, and
uses the boundedness of u and the dominated convergence theorem to complete the proof.



the heat equation (16) and the initial condition

(22) lim
(t,y)→(0,x)

u(t, y) = f(x)

at every x where f is continuous. Moreover, the function u defined by (18) is the unique solution
of the Cauchy problem that is of subexponential growth in the space variable x, specifically, such
that for each T < ∞ and ε > 0,

(23) lim
x→∞

sup
0≤t≤T

sup
|y|≤x

|u(t, y)|

exp {εx}
= 0.

See Karatzas & Shreve for a proof of the first statement, and consult your local applied
mathematician for the second.

The Feynman-Kac formula and the argument given above both generalize in a completely
straightforward way to d−dimensional Brownian motion.

Theorem 4. Let K : R
d → [0,∞) and f : R

d → R be continuous functions, with f bounded.
Suppose that u(t, x) is a bounded function that satisfies the partial differential equation

∂u

∂t
=

1

2

d
∑

i=1

∂2u

∂x2
i

− Ku(24)

=
1

2
∆u − Ku

and the initial condition

(25) )u(0, x) = f(x).

Assume that, under the probability measure P x the process Wt is a d−dimensional Brownian motion
started at x. Then

(26) u(t, x) = Ex exp

{

−

∫ t

0
K(Ws) ds

}

f(Wt).

Moreover, the function u defined by (26) is the only solution to the heat equation (24) satisfying
the initial condition (25) that grows subexponentially in the space variable x.

4. Generalizations of the Feynman-Kac Formula

The Feynman-Kac formula is now over 50 years old; thus, it should come as no surprise that
the mathematical literature is rich in generalizations and variations. Two types of generalizations
are of particular usefulness in financial applications: (1) those in which the Brownian motion Wt is
replaced by another diffusion process, and (2) those where the Brownian motion (or more generally
diffusion process) is restricted to stay within a certain region of space.

4.1. Feynman-Kac for other diffusion processes. Let P x be a family of probability measures
on some probability space, one for each possible initial point x, under which the stochastic process
Xt is a diffusion process started at x with local drift µ(x) and local volatility σ(x). That is, suppose
that under each P x the process Xt obeys the stochastic differential equation and initial condition

dXt = µ(Xt) dt + σ(Xt) dWt(27)

X0 = x.



Define the infinitesimal generator of the process Xt to be the differential operator

(28) G =
1

2
σ2(x)

d2

dx2
+ µ(x)

d

dx
.

Theorem 5. Assume that α(t, x) = µ(x) and β(t, x) = σ(x) satisfy the global Lipschitz and
growth hypotheses of Theorem 2. Let f(x) and K(x) be continuous functions such that K ≥ 0 and
f(x) = O(|x|) as |x| → ∞. Then the function u(t, x) defined by

(29) u(t, x) = Ex exp

{

−

∫ t

0
K(Xs) ds

}

f(Xt)

satisfies the diffusion equation

(30)
∂u

∂t
= Gu − Ku

and the initial condition u(0, x) = f(x). Moreover, u is the only solution to the Cauchy problem
that is of at most polynomial growth in x.

Exercise: Mimic the argument used to prove Theorem 3 to prove this in the special case where
f,K, µ, and σ are all bounded functions.

Example: Consider once again the Black-Scholes problem of pricing a European call option with
strike price C on a stock whose share price obeys the stochastic differential equation

(31) dSt = rSt dt + σSt dWt

where the short rate r and the stock volatility σ are constant. The risk-neutral price of the call at
time t = 0 is given by the expectation

(32) V0 = Exe−rT f(ST )

where T is the expiration time, S0 = x is the initial share price of the stock, and f(x) = (x−C)+.
This expectation is of the form that occurs in the Feynman-Kac formula (37), with the identification
K(x) ≡ r. Therefore, if v(t, x) is defined by

(33) v(t, x) = Exe−rtf(St)

then v must satisfy the diffusion equation

(34) vt = rxvx + (1/2)σ2x2vxx − rv

with the initial condition v(0, x) = f(x). Observe that equation (34) is the backward (time-
reversed) form of the Black-Scholes equation. It is possible to solve this initial value problem
by making the substitution y = ex and then solving the resulting constant-coefficient PDE by
intelligent guesswork. (Exercise: Try it! Rocket scientists should be comfortable with this kind
of calculation. And, of course, financial engineers should be capable of intelligent guesswork.) One
then arrives at the Black-Scholes formula.

4.2. Feynman-Kac for Multidimensional Diffusion Processes. Just as the Feynman-Kac
theorem for one-dimensional Brownian motion extends naturally to multidimensional Brownian
motion, so does the Feynman-Kac theorem for one-dimensional diffusion processes extend to mul-
tidimensional diffusions. A d−dimensional diffusion process Xt follows a stochastic differential



equation of the form (27), but where Xt and µ(x) are d−vectors, Wt is an N−dimensional Brown-
ian motion, and σ(x) is a d×N matrix-valued function of x. The generator of the diffusion process
Xt is the differential operator

(35) G =
1

2

d
∑

i=1

d
∑

i′=1





N
∑

j=1

σij(x)σi′j(x)





∂2

∂xi∂xi′
+

d
∑

i=1

µi(x)
∂

∂xi
.

Note that the terms in this expression correspond to terms in the multidimensional Itô formula.
In fact, if Xt obeys the stochastic differential equation (27) and u(t, x) is sufficiently differentiable,
then the Itô formula reads

(36) du(t,Xt) = ut(t,Xt) dt + Gu(t,Xt) dt + terms involving dW j
t

Theorem 6. Assume that the coefficient α(t, x) = µ(x) and β(t, x) = σ(x) in the stochastic
differential equation (27) satisfy the global Lipschitz and growth hypotheses of Theorem 2. Let f(x)
and K(x) be continuous functions such that K ≥ 0 and f(x) = O(|x|) as |x| → ∞. Assume that
under P x the process Xt has initial state x ∈ R

d. Then the function u(t, x) defined by

(37) u(t, x) = Ex exp

{

−

∫ t

0
K(Xs) ds

}

f(Xt)

satisfies the diffusion equation

(38)
∂u

∂t
= Gu − Ku

and the initial condition u(0, x) = f(x). Moreover, u is the only solution to the Cauchy problem
that is of at most polynomial growth in x.

4.3. Feynman-Kac Localized. Certain exotic options pay off only when the price process of the
underlying asset reaches (or fails to reach) an agreed “knockin” (or “knockout”) value before the
expiration of the option. The expectations that occur as arbitrage prices of such contracts are then
evaluated only on the event that knockin has occurred (or knockout has not occurred). There are
Feynman-Kac theorems for such expectations. The function u(t, x) defined by the expectation (see
below) satisfies a heat equation of the same type as (16), but only in the domain where payoff
remains a possibility; in addition, there is a boundary condition at the knockin point(s). Following
is the simplest instance of such a theorem.

Assume that, under the probability measure P x the process Wt is a 1−dimensional Brownian
motion started at W0 = x. Let J = (a, b) be an open interval of R, and define

(39) τ = τJ = min {t ≥ 0 : Wt 6∈ J}

to be the time of first exit from J .

Theorem 7. Let K : [a, b] → [0,∞) and f : (a, b) → R be continuous functions such that f has
compact support (that is, there is a closed interval I contained in (a, b) such that f(x) = 0 for all
x 6∈ I). Then

(40) u(t, x) = Ex exp

{

−

∫ t

0
K(Ws) ds

}

f(Wt)1 {t < τ}

is the unique bounded solution of the heat equation

(41)
∂u

∂t
=

1

2

d2u

dx2
− Ku ∀ x ∈ J and t > 0



with boundary and initial conditions

u(t, a) = 0 (BC)a(42)

u(t, b) = 0 (BC)b

u(0, x) = f(x) (IC).

Proof. Exercise. �

5. Application of the Feynman-Kac Theorems

In financial applications, the Feynman-Kac theorems are most useful in problems where the
expectation giving the arbitrage price of a contract cannot be evaluated in closed form. One
must then resort to numerical approximations. Usually, there are two avenues of approach: (1)
simulation; or (2) numerical solution of a PDE (or system of PDEs). The Feynman-Kac theorems
provide the PDEs.

It is not our business in this course to discuss methods for the solution of PDEs. Nevertheless,
we cannot leave the subject of the Feynman-Kac formula without doing at least one substantial
example. This example will show how the method of eigenfunction expansion works, in one of the
simplest cases. The payoff will be an explicit formula for the transition probabilities of Brownian
motion restricted to an interval.

5.1. Transition probabilities for Brownian motion in an interval. As in section 4.3 above,
consider one-dimensional Brownian motion with “killing” (or “absorption” at the endpoints of an
interval J . For simplicity, take J = (0, 2π). Recall that τ = τJ is the time of first exit from J by
the process Wt. We are interested in the expectation

(43) u(t, x) = Exf(Wt)1 {t < τ} ,

where f : J → R is a continuous function with compact support in J . This expectation is an
instance of the expectation in equation (40), with K(x) ≡ 0. By Theorem 7, the function u
satisfies the heat equation (41), with K = 0. Our objective is to find a solution to this differential
equation that also satisfies the initial and boundary conditions (42).

Our strategy is based on the superposition principle. Without the constraints of the initial and
boundary conditions, there are infinitely many solutions to the heat equation, as we have already
seen (look again at equation (21)). Because the the heat equation is linear, any linear combination
of solutions is also a solution. Thus, one may attempt to find a solution that satisfies the infinitely
and boundary conditions by looking at superpositions of simpler solutions.

What are the simplest bounded solutions of the heat equation? Other than the constants,
probably the simplest are the exponentials

(44) u(t, x : θ) := exp {iθx} exp
{

−θ2t/2
}

.

By themselves, these solutions are of no use, as they are complex-valued, and the function u(t, x)
defined by (43) is real-valued. However, the functions u(t, x; θ) come naturally in pairs, indexed
by ±θ. Adding and subtracting the functions in these pairs leads to another large simple class of
solutions:

v(t, x; θ) = (sin θx)e−θ2t/2 and(45)

w((t, x; θ) = (cos θx)e−θ2t/2(46)



These are real-valued. Moreover, if θ = n/2 for integer n then the functions v(t, x; θ) satisfy the
boundary conditions in (42). This suggest that we look for the desired solution among the (infinite)
linear combinations

(47) u(t, x) =

∞
∑

n=0

anv(t, x;n/2) =

∞
∑

n=0

ane−n2t/2 sin(nx/2)

Since each term satisfies both the heat equation and the boundary conditions, so will the sum
(provided the interchange of derivatives and infinite sum can be justified – we won’t worry about
such details here). Thus, we need only find coefficients an so that the initial condition u(0, x) = f(x)
is satisfied. But

(48) u(0, x) =

∞
∑

n=−∞

an sin(nx/2)

is a Fourier series! Thus, if we match the coefficients an with the corresponding Fourier coefficients
of f , the initial condition will be met. The Fourier coefficients of f are defined by

(49) an :=
1

2π

∫ 2π

0
f(x) sinnxdx

Therefore, the solution is given by

(50) u(t, x) =

∞
∑

n=0

e−n2t/2 sin(nx/2)

(

1

2π

∫ 2π

0
f(x) sinny dy

)

,

or alternatively,

(51) u(t, x) =

∫ 2π

0

(

∞
∑

n=0

e−n2t/2 sin(nx/2) sin(ny/2)

)

f(y) dy

Finally, compare the integral formula (51) with the expectation equation (43). In both formulas,
the function f is integrated against a kernel: in (43), against a probability density, and in (51),
against an infinite series of sinewaves. Since these formulas apply for all continuous functions f
with support in (0, 2π), it follows that the kernels must be identical. Thus, we have proved the
following interesting formula:

(52) P x {Wt ∈ dy and t < τ} =
∞
∑

n=0

e−n2t/2 sin(nx/2) sin(ny/2).

6. Exercises

1. Linear systems of stochastic differential equations. Let Wt be a standard d−dimensional
Brownian motion, and let A be a (nonrandom) d × d matrix. Consider the stochastic differential
equation

(53) dXt = AXt dt + dWt,

where Xt is a d−vector-valued process.

(A) Find an explicit formula for the solution when the initial condition is X0 = x, and show that
the process Xt is Gaussian.

(B) Under what conditions on the matrix A will the process Xt have a stationary distribution?



Hint: You will need to know something about the matrix-valued exponential function eAt. This
is defined by

(54) eAt =

∞
∑

n=0

(At)n

n!

What is (d/dt)eAt?

2. Transition probabilities of the Ornstein-Uhlenbeck process. Consider the Ornstein-
Uhlenbeck process Yt defined by equation (12). Let Ft be the σ−algebra consisting of all events
observable by time t. Show that

(55) P (Yt+s ∈ dy | Fs) = ft(Ys, y) dy

for some probability density ft(x, y), and identify ft(x, y).

3. Brownian representation of the Ornstein-Uhlenbeck process. Let Wt be a standard
one-dimensional Brownian motion. Define

(56) Yt = e−tWe2t .

Show that the process Yt is a Markov process with exactly the same transition probabilities as the
Ornstein-Uhlenbeck process.

4. Ornstein-Uhlenbeck process and Brownian motion with quadratic cooling. Let Yt be
the Ornstein-Uhlenbeck process, with relaxation parameter α = 1 and diffusion parameter σ = 1,
and let Wt be one-dimensional Brownian motion. Let f : R → R be any bounded continuous
function. Show that for any t > 0,

(57) Exf(Yt) = Exf(Wt) exp

{

−
1

2
(Wt − x)2 −

1

2

∫ t

0
(Ws − x)2 ds

}

Note: The superscript x on the expectation operators indicates that Y0 = x and W0 = x. (Beware
that the formula above may have incorrect factors of 2, wrong minus signs, and other similar
mistakes.)


