LECTURE 2

Systems of First Order ODEs with Constant Coefficients

Okay, now with our review of linear algebra completed, we can begin to solve systems of homogeneous, first
order, differential equations.

Recall that an ordinary differential equation is a differential equation in which there is only one underlying
variable. An ordinary differential equation is linear if it can be written in the form

dny dnfly dy
g TPn1 () g () o Ao (Dy =g (8)
where p,—1(t),...,p1(t),po () and g (t) are functions of the underlying variable x. A linear first order

differential equation is one of the form

Y +pt)y=g(t)

Recall that the general solution of such an equation is given by

y(t)=%/u(t)g(t)dt+£

1 ( p(t)

B (t) = exp ( [ dt)

The very easiest case is when the function p (¢) is just a constant —X and g (t) = 0. In the case, we have

where

Y=y = y=0e

There are a couple of ways to generalize this simplest example of a first order ordinary differential equations;
one can consider higher order ordinary linear differental equations, or one can consider linear differential
equations where there is more than one underlying variable (i.e., a first order, linear, partial differential
equation). We will begin this course by considering first order ordinary differential equations in which more
than one unknown function occurs.

DEFINITION 2.1. Annxn system of first order linear ODEs is a set of n differential equations involving
n unknown functions x1, ... ,T,, of the form

dx
d_tl —an (@1 (t) — a2 (@2 (t) =+ = awn (t) zn (£) = g1 (¢)
d
2~z ()1 (1) = aze ()72 (1) = -+ = azo () aa (1) = 92 (1)
dyn
dt — Qnl (t) T (t) — Qp2 (t) ) (t) — - — Anpn (t) Tn (t) = 0gn (t)
We say that such a system is homogeneous if each of the functions g1 (t),...,gn (t) is just the constant

function 0. We say that such a systems has constant coefficients if each of the coefficient functions
a;; (t), 1 <1i,5 <n, is a constant function.
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Alternatively, an n x n homogeneous linear system of first order ODFEs is a system of differential equations
of the form

d d x a11 e A1n T
X
_— = A_X < — . —
dt dt ‘
Tn ap1 - [£277%) T,

EXAMPLE 2.2. Suppose A is a diagonal n X n matrix

AN O e 0
A= |0 X :
' 0
0 0 An
Then the homogeneous linear system
dx
Z_A
it~

is easily solved. For the differential equations governing the n unknown functions are completely independent
of each other and easily solved

dzy

= = Mz = a1 (t) =ceMt | ¢ a constant
% =MZn = x,(t)= cne™t . ¢, a constant
The general solution is thus
creMt
x(t) = :
cpetnt

REMARK 2.3. When the coefficient matrix A is diagonal, we say that the system % = Ax is decoupled.

Let’s now consider the general case of an n X n homogeneous linear system with constant coefficients.
x1 ail 0 Qi T
d | .
M) =)=
dt :
T, ap1 - Anp T,

We will solve such systems by simply making a change of variables so that the differential equations com-
pletely decouple and then solve the corresponding decoupled system as in the preceding example.

Here’s a sketch of how this will work. Suppose we had an invertible matrix C such that

A 0O - 0
0 X -+ 0
C'AC=D=| . L
0 0 - A\
D being a diagonal matrix. Then as above we could simply write down the general solution of z = Dz as
z1 =0y ettt
2o = 026)‘2t

Zn = Cnexnt
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Let z (t) be such a solution, and consider the vector x (t) obtained by multiplying z (¢) from the left by the
matrix C

x=Cz
Then
dx d d ) 1 1
T :E(Cz):CEz:Cz:C(DZ):C(C AC)z:(CC )ACz:IACz:A(Cz):Ax

In other words, x = Cz will be a solution of our original differential equation.
y = Ay

Thus, systems of the form (1) can be easily solved if we can find an invertible matrix C such that C"1AC
is a diagonal matrix.

Here is the general procedure: to solve a homogeous linear system of ODEs with constant coefficients

dx
22 _A
a0

(i) Compute the eigenvalues and eigenvectors of the coefficient matrix A
(ii) Use the eigenvalues and eigenvectors of A to, respectively, construct the diagonal matrix D and the
change of basis matrix C such that

D=C'AC «— A=cCcDC!

(iii) Write down the general solution of the decoupled system

creMt

dz

— =Dz = z=
dt ')\
cpetnt

(iv) The solution of the original (coupled) system will be
x=Cz
EXAMPLE 2.4. Find the general solution of the following system of differential equations

dn
dt

dzs
dt

=1+ X2

=4z + 29
The matrix formulation of this problem would be
% (11 T
% 4 1 To

And so we'll begin by finding a matrix C that diagonalizes A = [

=
—_ =
| I

Flrst we find the eigenvalues of A

O=det(A-AD)=(1-XN>-4=1-22+X2—4=X2-21-3=A+1)(A-3)
= A=-1,3

Next, we find the corresponding eigenvectors
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{8}@*(3)1” 9 - } {2 } = [ Zivl—;v?}

1 1 1
— — _ —— — 2 ~ !
= 2v1—v3=0 = 1 21}2 = V=19 [ 1 } Uy [ 9 }

(In the last step, we simply absorbed an ugly factor of 1/2 into a (redefined) free parameter v = %Ug.)

A=-—1:

RSN by | S El vt
4[]
Having found the eigenvectors and eigenvalues of A we can now write down the matrices C and D

il ER Y LA Y

(NI

= 2v14+1v=0 = vi=——vy = v:vz[l

The general solution of

will be

And so the general solution of %% = Ay will be

o [11 aed ] [ e’ + et
y=Cz= [ 2 -2 ] [ coe”t | T | 2¢1€3t — 2c9e7t

1 _ 1
01€3t|:2:|+026 t{_2]

Analysis of Solutions: Above we expressed the general solution of

][]

in terms of two linearly independent solutions

X2 (£) = e { 12]

Notice in either case the “trajectories” x;(t) of a solution are just simple half lines (they’re just scalar
multiples of constant vectors).

A more general trajectory will curve about in the (x1, z2)-plane. To get in idea of what these other solutions
should look like, it is convenient to plot the direction field associated with the system.

Here’s how that works. If
dx

X _ A
a0



1. FUNDAMENTAL MATRIX 5

is our system of ODEs, with A a constant matrix, then knowing that a solution passes through a given x
means we know the tangent vector to the solution curve at that point - because all we have to do is evaluate
the right hand side of (*) at x (that is, carry out the matrix multiplication Ax).

So pick a grid of points {x1,...,xx} in the (z1, z2)-plane, construct a table

X1 AX1

X9 AX2

Xk Axk
and then plot each of the points x1,...,x; and then attach to each of these points a small arrow in the
direction of, respectively, Axy,...,Ax;. You will get something looking like this:

\ANNSN—=A ST

VAN~ AS 777777
V VAN N~—AS ST
LU vN~N—A77777777717
lll} Ny ST
b }\Hﬁ////ff////
LTINS A777771171717
LUl INA7 77770771107
A N R S VAV A A A N A
SSNrEASEY ineansany
- - 1
N
Buniy i

"

/////ZK//%/%\%1 [ ]
NN NN NNV ?
NN NNV !
[ 11117777~
[ 1177777 A e~NAN
1117 AN

The figure above is actually the direction field plot for differential equation in Example 2.4.

1. Fundamental Matrix

As in the preceding example, we can always express the general solution of an n x n linear system

EX:AX

as a linear combination of fundamental solutions

() x(t) = erxM (8) + eox® () + -+ c,x?) (1)
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where the vector-valued functions x(?) (t) are linearly independent vector-valued functions of t. Here linearly
independent is just the usual notion

0=c;xW (t) + cox?) t)+-- cepx® t) = ca1=0,c=0,...,¢,=0

which amounts the condition that

x t x t ceeoxY (¢
0 £ det 2'<) 2'<) | 2.() v
D@1 22w - M)

Another way of presenting the general solution is in terms of a fundamental matriz ®. This done by
arranging the n linearly independent vector solutions as the colums of a matrix

| | |
dt)=| xM @) x@@) - x ()
| | |

and then representing the general solution as the matrix product of ® (¢) with an arbitary n-dimensional
constant column vectors

| | | “
xt)=®t)c= | xV (@) x@P @) -+ xM ()
| | |
Of course it is a familar identity of matrix multiplication that
| | | “
W@y x@ @) - x (@) : = ¢ xM) (t) + cox? (t)+ - cpx? (t)
| | | cn

so writing x (t) = ® (t) c is essentially the same thing as (*). However, it is sometimes to useful to think
of ®(t) as a time dependent matrix which transports a constant vector ¢ corresponding to certain initial
vector to its position at time t.

2. Complex Eigenvalues

Consider now the system

We have

-1 —i- 4

and so the roots of the characteristic polynomial are

-1+ \/(1)2 —4(1)(5/4)
A= 2(1)

_1_
det[ 2~ A 1)\}:)\2+/\+§

—1++/—4 1. 1
= =—c+i, —5—1
2 2 2

The corresponding eigenvectors are:
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SR REN B thS

1
~ o[

X:{ L } [ Z;j_*;j ] — epel-3Hi)t [ : } +eael =30 [ L }

This is a correct formula for the general solution; however, the answer is given in terms of a pair of complex
vectors mulipliplied by a pair of complex exponential functions. Often what one really wants is a pair of
independent real vector solutions. Here’s how to get such a pair.

So we’ll have

We have, by the Euler formula,

e(=3E) — =3¢ (cos (t) £ sin (1))

[ 1 1 } crel—z+i)t B cre(=2 it +cze(7%7i)t
it cze(féfi)t B z'cle(*%“)t — z'cze( i)t
_ [ (c1+ c2) cos (t) + i (c1 — ¢2) sin () }
i(cy — cg)cos(t) — (e1 + ¢2) sin (t)

and so

So if we take ¢; = ¢ = % we get one totally real solution

X () = e~ [ cos (1) }

—sin (¢)

and if we take ¢y = —cp = we get a separate totally real solution

X (1) = e~ 3t [ sin (t) ]

cos (t)

2 ’

The trajectories of both these solutions are spirials

1_
0.8
0.6

0.4

0.2

By the way, the direction field plot for the original system is
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3. Non-diagonalizable Systems

Consider now the system

In this case, we have

det(A—)\I):det[ 1=

We thus have a single eigenvalue

The corresponding eigenspace is

NW%(F}234§D:NMW%[? T}>:NM%([

So we have only one eigenvector.

(2)

A

[ ]

The corresponding fundamental solution will be

x(t) = e [

3]

There are other solutions though. As an ansatz for a second solution consider

x (t) = te*& + e*'n
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[ 4]

and 7 is some vector to be determined. Plugging this x (¢) into the differential equation yields

where

d
e2te 4 2t 4 2e%y = d_)t( =A (teth + eZtn) = 2te®'¢ + 2T A

where on the right we used A¢ = 2¢. Cancelling the 2te?'¢ terms on both sides and then dividing by e
yields

§+2n=An
or

3) (A—2L)n=¢

On the other hand, working backwards from (3) we see that if 7 satisfies

(A-2)n=¢
then
(4) x (t) = te**¢ + €'
will be a solution of
dx
— =A
7 x (1)

The solution of (3) can be easily found using row reduction:
1-2 -1 1 -1 —1]1 1
[AQIM][ 1 3—2‘—1][1 1‘—1}[0

m+n=-1
— { 0=0

il e RN A Y A

If we now plug this 7 into (4) we get

x?) (t) = te?e + * ([ (1) ] +m$>

where 7, is arbitrary.

Notice that the last term
mete
is just a constant multiple of our original solution (2)
xW (1) = e¢

So we can drop the n;e?*¢ when we write the general solution

dx
— =Ax (¢t
5 = Ax(®)
as a linear combination of x(M) (¢) and x(® (t). We thus arrive at
Ccll—}: =Ax(t) = x(t)=(c1 +tcx)e? { _11 ] ) [ (1) }
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Let me know summarize the method of solving of systems of the form

(5) P _ Ax(t)

7 , with A non-diagonalizable.

e Find the eigenvectors and eigenvalues of A.

e Because A is assumed to be non-diagonalizable, there is going to be an eigenvalue r of A that occurs
with multiplicity k& (meaning the characteristic polynomial det (A — AI) has a factor of the form
(A —1)"), but for which there are not k linearly independent eigenvectors.

e There will, however, be one eigenvector of A with eigenvalue X. Call it £1). It will be the solution
of (A—rI)¢=0.

e Once you find £V successively solve

(A —rI)¢® =¢l=Y

This will furnish you with a set of generalized eigenvectors corresponding the eigenvalue r.
e The solutions of (5) corresponding the eigenvalue A = r will be of the form

A 1. .
xD () = eme® 4 temte® 4. Etlf(l) , 1=1,2,...,k



