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The Tangent and Velocity Problems ● ● ● ● ● ● ● ● ● ● ●

In this section we see how limits arise when we attempt to find the tangent to a curve
or the velocity of an object.

The Tangent Problem

The word tangent is derived from the Latin word tangens, which means “touching.”
Thus, a tangent to a curve is a line that touches the curve. In other words, a tangent
line should have the same direction as the curve at the point of contact. How can this
idea be made precise?

For a circle we could simply follow Euclid and say that a tangent is a line that inter-
sects the circle once and only once as in Figure 1(a). For more complicated curves this
definition is inadequate. Figure l(b) shows two lines and passing through a point 
on a curve . The line intersects only once, but it certainly does not look like what
we think of as a tangent. The line , on the other hand, looks like a tangent but it inter-
sects twice.

To be specific, let’s look at the problem of trying to find a tangent line to the
parabola in the following example.

EXAMPLE 1 Find an equation of the tangent line to the parabola at the 
point .

SOLUTION We will be able to find an equation of the tangent line as soon as we
know its slope . The difficulty is that we know only one point, , on , whereas 
we need two points to compute the slope. But observe that we can compute an 
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In A Preview of Calculus (page 2) we saw how the
idea of a limit underlies the various branches of 
calculus. Thus, it is appropriate to begin our study of
calculus by investigating limits and their properties.
The special type of limit that is used to find tangents 

and velocities gives rise to the central idea in differen-
tial calculus, the derivative. We see how derivatives
can be interpreted as rates of change in various situa-
tions and learn how the derivative of a function gives
information about the original function.

Locate tangents interactively and explore
them numerically.
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/ What Is a Tangent?



approximation to by choosing a nearby point on the parabola (as in Fig-
ure 2) and computing the slope of the secant line .

We choose so that . Then

For instance, for the point we have

The tables in the margin show the values of for several values of close to 1.
The closer is to , the closer is to 1 and, it appears from the tables, the closer

is to 2. This suggests that the slope of the tangent line should be .
We say that the slope of the tangent line is the limit of the slopes of the secant

lines, and we express this symbolically by writing

and

Assuming that the slope of the tangent line is indeed 2, we use the point-slope
form of the equation of a line (see Appendix B) to write the equation of the tangent
line through as

Figure 3 illustrates the limiting process that occurs in this example. As 
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approaches along the parabola, the corresponding secant lines rotate about and
approach the tangent line t.

Many functions that occur in science are not described by explicit equations; they
are defined by experimental data. The next example shows how to estimate the slope
of the tangent line to the graph of such a function.

EXAMPLE 2 The flash unit on a camera operates by storing charge on a capacitor 
and releasing it suddenly when the flash is set off. The data at the left describe the
charge Q remaining on the capacitor (measured in microcoulombs) at time t (meas-
ured in seconds after the flash goes off ). Use the data to draw the graph of this 
function and estimate the slope of the tangent line at the point where t � 0.04.
[Note: The slope of the tangent line represents the electric current flowing from the
capacitor to the flash bulb (measured in microamperes).]

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that
approximates the graph of the function.

Given the points and on the graph, we find that
the slope of the secant line PR is

The table at the left shows the results of similar calculations for the slopes of other
secant lines. From this table we would expect the slope of the tangent line at

to lie somewhere between �742 and �607.5. In fact, the average of the
slopes of the two closest secant lines is

So, by this method, we estimate the slope of the tangent line to be �675.
Another method is to draw an approximation to the tangent line at P and measure

the sides of the triangle ABC, as in Figure 4. This gives an estimate of the slope of
the tangent line as

� � AB �
� BC � � �

80.4 � 53.6

0.06 � 0.02
� �670

1
2 ��742 � 607.5� � �674.75

t � 0.04

mPR �
100.00 � 67.03

0.00 � 0.04
� �824.25

R�0.00, 100.00�P�0.04, 67.03�
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t Q

0.00 100.00
0.02 81.87
0.04 67.03
0.06 54.88
0.08 44.93
0.10 36.76

▲ The physical meaning of the answer 
in Example 2 is that the electric current
flowing from the capacitor to the flash
bulb after 0.04 second is about �670
microamperes.

R

(0.00, 100.00) �824.25
(0.02, 81.87) �742.00
(0.06, 54.88) �607.50
(0.08, 44.93) �552.50
(0.10, 36.76) �504.50

mPR

In Module 2.1 you can see how
the process in Figure 3 works for

five additional functions.



The Velocity Problem

If you watch the speedometer of a car as you travel in city traffic, you see that the 
needle doesn’t stay still for very long; that is, the velocity of the car is not constant.
We assume from watching the speedometer that the car has a definite velocity at each
moment, but how is the “instantaneous” velocity defined? Let’s investigate the example
of a falling ball.

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the 
CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 
5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that
the distance fallen by any freely falling body is proportional to the square of the
time it has been falling. (This model for free fall neglects air resistance.) If the dis-
tance fallen after seconds is denoted by and measured in meters, then Galileo’s
law is expressed by the equation

The difficulty in finding the velocity after 5 s is that we are dealing with a single
instant of time so no time interval is involved. However, we can approximate
the desired quantity by computing the average velocity over the brief time interval
of a tenth of a second from to :

The following table shows the results of similar calculations of the average velocity
over successively smaller time periods.

It appears that as we shorten the time period, the average velocity is becoming
closer to 49 m�s. The instantaneous velocity when is defined to be the limit-
ing value of these average velocities over shorter and shorter time periods that start
at . Thus, the (instantaneous) velocity after 5 s is

v � 49 m�s

t � 5

t � 5

 �
4.9�5.1�2 � 4.9�5�2

0.1
� 49.49 m�s

 �
s�5.1� � s�5�

0.1

 average velocity �
distance traveled

time elapsed

t � 5.1t � 5

�t � 5�

s�t� � 4.9t 2

s�t�t
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The CN Tower in Toronto is currently the
tallest freestanding building in the world.

Time interval Average velocity (m�s)

53.9
49.49
49.245
49.049
49.00495 � t � 5.001

5 � t � 5.01
5 � t � 5.05
5 � t � 5.1
5 � t � 6



You may have the feeling that the calculations used in solving this problem are very
similar to those used earlier in this section to find tangents. In fact, there is a close con-
nection between the tangent problem and the problem of finding velocities. If we draw
the graph of the distance function of the ball (as in Figure 5) and we consider the
points and on the graph, then the slope of the
secant line is

which is the same as the average velocity over the time interval . Therefore,
the velocity at time (the limit of these average velocities as approaches 0) must
be equal to the slope of the tangent line at (the limit of the slopes of the secant lines).

Examples 1 and 3 show that in order to solve tangent and velocity problems we
must be able to find limits. After studying methods for computing limits in the next
four sections, we will return to the problems of finding tangents and velocities in
Section 2.6.
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(c) Use a graph of the function to estimate the slope of 
the tangent line at P. (This slope represents the rate 
at which the water is flowing from the tank after
15 minutes.)

2. A cardiac monitor is used to measure the heart rate of a
patient after surgery. It compiles the number of heartbeats
after t minutes. When the data in the table are graphed, the
slope of the tangent line represents the heart rate in beats
per minute.

1. A tank holds 1000 gallons of water, which drains from the 
bottom of the tank in half an hour. The values in the table
show the volume V of water remaining in the tank (in gal-
lons) after t minutes.

(a) If P is the point on the graph of V, find the
slopes of the secant lines PQ when Q is the point on the
graph with , 10, 20, 25, and 30.

(b) Estimate the slope of the tangent line at P by averaging
the slopes of two secant lines.

t � 5

�15, 250�

Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●2.1

t (min) 5 10 15 20 25 30

V (gal) 694 444 250 111 28 0

t (min) 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080



The Limit of a Function ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Having seen in the preceding section how limits arise when we want to find the tan-
gent to a curve or the velocity of an object, we now turn our attention to limits in gen-
eral and methods for computing them.

2.2

6. If an arrow is shot upward on the moon with a velocity of
58 m�s, its height in meters after seconds is given by

(a) Find the average velocity over the given time intervals:
(i) [1, 2] (ii) [1, 1.5]

(iii) [1, 1.1] (iv) [1, 1.01]
(v) [1, 1.001]

(b) Find the instantaneous velocity after one second.

7. The displacement (in feet) of a certain particle moving in 
a straight line is given by , where is measured in 
seconds.
(a) Find the average velocity over the following time 

periods:
(i) [1, 3] (ii) [1, 2]

(iii) [1, 1.5] (iv) [1, 1.1]
(b) Find the instantaneous velocity when .
(c) Draw the graph of as a function of and draw the

secant lines whose slopes are the average velocities
found in part (a).

(d) Draw the tangent line whose slope is the instantaneous
velocity from part (b).

8. The position of a car is given by the values in the table.

(a) Find the average velocity for the time period beginning
when and lasting
(i) 3 s (ii) 2 s (iii) 1 s

(b) Use the graph of as a function of to estimate the
instantaneous velocity when .

The point lies on the curve .
(a) If is the point , find the slope of the

secant line (correct to four decimal places) for
, 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9.

Do the slopes appear to be approaching a limit?

; (b) Use a graph of the curve to explain why the slopes of
the secant lines in part (a) are not close to the slope 
of the tangent line at .

(c) By choosing appropriate secant lines, estimate the slope
of the tangent line at .P

P

x � 2
PQ

�x, sin�10��x��Q
y � sin�10��x�P�1, 0�9.

t � 2
ts

t � 2

ts
t � 1

ts � t 3�6

h � 58t � 0.83t 2.
t

100 ■ CHAPTER 2 LIMITS AND DERIVATIVES

t (seconds) 0 1 2 3 4 5

s (feet) 0 10 32 70 119 178

The monitor estimates this value by calculating the slope 
of a secant line. Use the data to estimate the patient’s heart
rate after 42 minutes using the secant line between the
points with the given values of t.
(a) t � 36 and t � 42
(b) t � 38 and t � 42
(c) t � 40 and t � 42
(d) t � 42 and t � 44

What are your conclusions?

The point lies on the curve .
(a) If is the point , use your calculator to

find the slope of the secant line (correct to six 
decimal places) for the following values of :

(i) 0.5 (ii) 0.9
(iii) 0.99 (iv) 0.999
(v) 1.5 (vi) 1.1

(vii) 1.01 (viii) 1.001
(b) Using the results of part (a), guess the value of the 

slope of the tangent line to the curve at .
(c) Using the slope from part (b), find an equation of the

tangent line to the curve at .

4. The point lies on the curve .
(a) If is the point , use your calculator to find the

slope of the secant line (correct to six decimal
places) for the following values of :

(i) 1.5 (ii) 1.9
(iii) 1.99 (iv) 1.999
(v) 2.5 (vi) 2.1

(vii) 2.01 (viii) 2.001
(b) Using the results of part (a), guess the value of the slope

of the tangent line to the curve at .
(c) Using the slope from part (b), find an equation of the

tangent line to the curve at .
(d) Sketch the curve, two of the secant lines, and the

tangent line.

If a ball is thrown into the air with a velocity of 40 ft�s, its
height in feet after seconds is given by .
(a) Find the average velocity for the time period beginning

when and lasting
(i) 0.5 s (ii) 0.1 s

(iii) 0.05 s (iv) 0.01 s
(b) Find the instantaneous velocity when t � 2.

t � 2

y � 40t � 16t 2t
5.

P�2, ln 2�

P�2, ln 2�

x
PQ

�x, ln x�Q
y � ln xP�2, ln 2�

P(1, 12)

P(1, 1
2)

x
PQ

�x, x��1 � x��Q
y � x��1 � x�P(1, 12)3.



Let’s investigate the behavior of the function defined by for
values of near 2. The following table gives values of for values of close to 2,
but not equal to 2.

From the table and the graph of (a parabola) shown in Figure 1 we see that when
is close to 2 (on either side of 2), is close to 4. In fact, it appears that we can

make the values of as close as we like to 4 by taking sufficiently close to 2. We
express this by saying “the limit of the function as approaches
2 is equal to 4.” The notation for this is

In general, we use the following notation.

Definition We write

and say “the limit of , as approaches , equals ”

if we can make the values of arbitrarily close to (as close to L as we
like) by taking x to be sufficiently close to (on either side of ) but not 
equal to .

Roughly speaking, this says that the values of become closer and closer to the
number as approaches the number (from either side of ) but .

An alternative notation for

is as

which is usually read “ approaches as approaches .”
Notice the phrase “but ” in the definition of limit. This means that in find-

ing the limit of as approaches , we never consider . In fact, need
not even be defined when . The only thing that matters is how is defined
near .a

fx � a
f �x�x � aaxf �x�

x � a
axLf �x�

xl af �x�l L

lim
x l a

 f �x� � L

x � aaaxL
f �x�

a
aa

Lf �x�

Laxf �x�

lim
x l a

 f �x� � L

1

lim
x l

 

2
 �x 2 � x � 2� � 4

xf �x� � x 2 � x � 2
xf �x�

f �x�x
f

xf �x�x
f �x� � x 2 � x � 2f
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x

3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

f �x�x

1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

f �x�

4

ƒ
approaches

4.

x

y

2
As x approaches 2,

y=≈- x+2

0

FIGURE 1



Figure 2 shows the graphs of three functions. Note that in part (c), is not
defined and in part (b), . But in each case, regardless of what happens at ,

.

EXAMPLE 1 Guess the value of .

SOLUTION Notice that the function is not defined when
, but that doesn’t matter because the definition of says that we

consider values of that are close to but not equal to . The tables at the left give
values of (correct to six decimal places) for values of that approach 1 (but are
not equal to 1). On the basis of the values in the table, we make the guess that

Example 1 is illustrated by the graph of in Figure 3. Now let’s change slightly
by giving it the value 2 when and calling the resulting function :

This new function still has the same limit as approaches 1 (see Figure 4).

0
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x-1
≈-1
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aax
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FIGURE 2 lim ƒ=L in all three cases
x    a

limx l a f �x� � L
af �a� � L

f �a�
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0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

f �x�x � 1

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

f �x�x � 1



EXAMPLE 2 Find .

SOLUTION The table lists values of the function for several values of near 0.

As approaches 0, the values of the function seem to approach and so
we guess that

In Example 2 what would have happened if we had taken even smaller values of 
The table in the margin shows the results from one calculator; you can see that some-
thing strange seems to be happening.

If you try these calculations on your own calculator you might get different values,
but eventually you will get the value 0 if you make sufficiently small. Does this mean
that the answer is really 0 instead of ? No, the value of the limit is , as we will show

| in the next section. The problem is that the calculator gave false values because
is very close to 3 when is small. (In fact, when t is sufficiently small, a cal-

culator’s value for is to as many digits as the calculator is capable
of carrying.)

Something similar happens when we try to graph the function

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show
quite accurate graphs of and when we use the trace mode (if available), we can esti-
mate easily that the limit is about . But if we zoom in too far, as in parts (c) and (d),
then we get inaccurate graphs, again because of problems with subtraction.

0.1

0.2

0.1

0.2

(a) �_5, 5� by �_0.1, 0.3� (b) �_0.1, 0.1� by �_0.1, 0.3� (c) �_10–^, 10– ^� by �_0.1, 0.3� (d) �_10–&, 10– & � by �_0.1, 0.3�

FIGURE 5
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f �t� �
st 2 � 9 � 3

t 2

3.000. . .st 2 � 9
tst 2 � 9

1
6

1
6

t

t?

lim
t l 0

 
st 2 � 9 � 3

t 2 �
1

6

0.1666666 . . .t

t

lim
t l 0

 
st 2 � 9 � 3

t 2
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t

�1.0 0.16228
�0.5 0.16553
�0.1 0.16662
�0.05 0.16666
�0.01 0.16667

st 2 � 9 � 3

t 2

t

�0.0005 0.16800
�0.0001 0.20000
�0.00005 0.00000
�0.00001 0.00000

st 2 � 9 � 3

t 2



EXAMPLE 3 Find .

SOLUTION Again the function is not defined when . Using a
calculator (and remembering that, if , means the sine of the angle whose
radian measure is ), we construct the following table of values correct to eight
decimal places. From the table and the graph in Figure 6 we guess that

This guess is in fact correct, as will be proved in Section 3.4 using a geometric 
argument.

EXAMPLE 4 Find .

SOLUTION Once again the function is undefined at 0. Evaluating the
function for some small values of , we get

Similarly, On the basis of this information we might be
tempted to guess that

| but this time our guess is wrong. Note that although for any
integer , it is also true that for infinitely many values of that approach 0.
[In fact, when 

and, solving for , we get .] The graph of is given in Figure 7.fx � 2��4n � 1�x

�

x
�

�

2
� 2n�

sin���x� � 1
xf �x� � 1n

f �1�n� � sin n� � 0

lim
x l 0

 sin 
�

x
� 0

f �0.001� � f �0.0001� � 0.

 f �0.01� � sin 100� � 0 f �0.1� � sin 10� � 0

 f ( 1
4 ) � sin 4� � 0 f ( 1

3) � sin 3� � 0

 f ( 1
2 ) � sin 2� � 0 f �1� � sin � � 0

x
f �x� � sin���x�

lim 
xl 0

 sin 
�

x

0 x_1 1

y
sin x

x
y=1

FIGURE 6

lim
x l 0

 
sin x

x
� 1

x
sin xx � �

x � 0f �x� � �sin x��x

lim
x l 0

 
sin x

x
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x

�1.0 0.84147098
�0.5 0.95885108
�0.4 0.97354586
�0.3 0.98506736
�0.2 0.99334665
�0.1 0.99833417
�0.05 0.99958339
�0.01 0.99998333
�0.005 0.99999583
�0.001 0.99999983

sin x

x

▲ Computer Algebra Systems
Computer algebra systems (CAS) have
commands that compute limits. In order
to avoid the types of pitfalls demon-
strated in Examples 2, 4, and 5, they
don’t find limits by numerical experimen-
tation. Instead, they use more sophisti-
cated techniques such as computing
infinite series. If you have access to a
CAS, use the limit command to compute
the limits in the examples of this section
and to check your answers in the exer-
cises of this chapter.



The broken lines indicate that the values of oscillate between 1 and 
infinitely often as approaches 0. (Use a graphing device to graph and zoom in
toward the origin several times. What do you observe?)

Since the values of do not approach a fixed number as approaches 0,

EXAMPLE 5 Find .

SOLUTION As before, we construct a table of values.

From the table it appears that

But if we persevere with smaller values of , the second table suggests that

Later we will see that and then it follows that the limit is 0.0001.

| Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It
is easy to guess the wrong value if we use inappropriate values of , but it is difficult
to know when to stop calculating values. And, as the discussion after Example 2
shows, sometimes calculators and computers give the wrong values. Later, however,
we will develop foolproof methods for calculating limits.

x

lim
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 cos 5x � 1
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1
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x 3 �
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x 3 �
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10,000�
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 sin 
�

x
  does not exist
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y=sin(π/x)
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1

_1
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FIGURE 7
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Listen to the sound of this function trying to
approach a limit.

Resources / Module 2
/ Basics of Limits 

/ Sound of a Limit that Does 
Not Exist

x

1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

x3 �
cos 5x

10,000

x

0.005 0.00010009
0.001 0.00010000

x3 �
cos 5x

10,000

Module 2.2 helps you explore
limits at points where graphs

exhibit unusual behavior.



EXAMPLE 6 The Heaviside function is defined by

[This function is named after the electrical engineer Oliver Heaviside (1850–1925)
and can be used to describe an electric current that is switched on at time .] Its
graph is shown in Figure 8.

As approaches 0 from the left, approaches 0. As approaches 0 from the
right, approaches 1. There is no single number that approaches as
approaches 0. Therefore, does not exist.

One-Sided Limits

We noticed in Example 6 that approaches 0 as approaches 0 from the left and
approaches 1 as approaches 0 from the right. We indicate this situation sym-

bolically by writing

and

The symbol “ ” indicates that we consider only values of that are less than 0.
Likewise, “ ” indicates that we consider only values of that are greater than 0.

Definition We write

and say the left-hand limit of as approaches [or the limit of as
approaches from the left] is equal to if we can make the values of 

as close to L as we like by taking x to be sufficiently close to a and x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require to be
less than . Similarly, if we require that be greater than , we get “the right-hand
limit of as approaches is equal to ” and we write

Thus, the symbol “ ” means that we consider only . These definitions are
illustrated in Figure 9.

0 x

y

L

xa0 x

y

ƒ
L

x a

ƒ

x    a+x    a_
FIGURE 9 (a) lim  ƒ=L (b) lim  ƒ=L

x � axl a�

lim
x l a�

 f �x� � L

Laxf �x�
axa

x

f �x�Lax
f �x�axf �x�

lim
x l a�

 f �x� � L

2

ttl 0�

ttl 0�

lim
t l 0�

 H�t� � 1lim
t l 0�

 H�t� � 0

tH�t�
tH�t�

lim t l 0 H�t�
tH�t�H�t�

tH�t�t

t � 0

H�t� � 	0

1

if t � 0

if t 	 0

H
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FIGURE 8
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By comparing Definition l with the definitions of one-sided limits, we see that the
following is true.

if and only if and

EXAMPLE 7 The graph of a function is shown in Figure 10. Use it to state the 
values (if they exist) of the following:

(a) (b) (c)

(d) (e) (f)

SOLUTION From the graph we see that the values of approach 3 as x approaches 2
from the left, but they approach 1 as x approaches 2 from the right. Therefore

(a) and (b)

(c) Since the left and right limits are different, we conclude from (3) that
does not exist.

The graph also shows that

(d) and (e)

(f) This time the left and right limits are the same and so, by (3), we have

Despite this fact, notice that 

EXAMPLE 8 Find if it exists.

SOLUTION As becomes close to 0, also becomes close to 0, and becomes 
very large. (See the table at the left.) In fact, it appears from the graph of the func-
tion shown in Figure 11 that the values of can be made arbitrarily
large by taking close enough to 0. Thus, the values of do not approach a
number, so does not exist.

FIGURE 11

y= 1
≈

0

y

x

lim x l 0 �1�x 2 �
f �x�x

f �x�f �x� � 1�x 2

1�x 2x 2x

lim
x l 0

 
1

x 2

t�5� � 2.

lim
x l 5

 t�x� � 2

lim
x l 5�

 t�x� � 2lim
x l 5�

 t�x� � 2

limx l 2 t�x�

lim
x l 2�

 t�x� � 1lim
x l 2�

 t�x� � 3

t�x�

lim
x l 5

 t�x�lim
x l 5�

 t�x�lim
x l 5�

 t�x�

lim
x l 2

 t�x�lim
x l 2�

 t�x�lim
x l 2�

 t�x�

t

lim
x l a�

 f �x� � Llim
x l a�

 f �x� � Llim
x l a

 f �x� � L3
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FIGURE 10
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At the beginning of this section we considered the function 
and, based on numerical and graphical evidence, we saw that

According to Definition 1, this means that the values of can be made as close to
4 as we like, provided that we take sufficiently close to 2. In the following example
we use graphical methods to determine just how close is sufficiently close.

EXAMPLE 9 If , how close to 2 does have to be to ensure that
is within a distance 0.1 of the number 4?

SOLUTION If the distance from to 4 is less than 0.1, then lies between 3.9 and
4.1, so the requirement is that

Thus, we need to determine the values of such that the curve lies
between the horizontal lines and . We graph the curve and lines near
the point in Figure 12. With the cursor, we estimate that the -coordinate of
the point of intersection of the line and the curve is about
1.966. Similarly, the curve intersects the line when . So, rounding
to be safe, we conclude that

when

Therefore, is within a distance 0.1 of 4 when is within a distance 0.03
of 2.

The idea behind Example 9 can be used to formulate the precise definition of a
limit that is discussed in Appendix D.

xf �x�

1.97 � x � 2.033.9 � x2 � x � 2 � 4.1

x � 2.033y � 4.1
y � x2 � x � 2y � 3.9

x�2, 4�
y � 4.1y � 3.9

y � x2 � x � 2x

3.9 � x2 � x � 2 � 4.1

f �x�f �x�

f �x�
xf �x� � x2 � x � 2

x
f �x�

lim
x l 2

�x2 � x � 2� � 4

f �x� � x2 � x � 2
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(c) (d)

(e)

For the function whose graph is given, state the value of
the given quantity, if it exists. If it does not exist, explain
why.
(a) (b) lim

x l 3�
 f �x�lim

x l 0
 f �x�

f4.

y

0 x2 4

4

2

f �5�

lim
x l 5

 f �x�lim
x l 1

 f �x�1. Explain in your own words what is meant by the equation

Is it possible for this statement to be true and yet ?
Explain.

2. Explain what it means to say that

and

In this situation is it possible that exists? 
Explain.

3. Use the given graph of to state the value of the given
quantity, if it exists. If it does not exist, explain why.
(a) (b) lim

x l 1�
 f �x�lim

x l 1�
 f �x�

f

limx l 1 f �x�

lim
x l 1�

 f �x� � 7lim
x l 1�

 f �x� � 3

f �2� � 3

lim
x l 2

 f �x� � 5
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FIGURE 12
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(c) (d)

(e)

5. For the function whose graph is given, state the value of
the given quantity, if it exists. If it does not exist, explain
why.
(a) (b) (c)

(d) (e) (f)

(g) (h)

6. Sketch the graph of the following function and use it to
determine the values of for which exists:

; Use the graph of the function to state
the value of each limit, if it exists. If it does not exist,
explain why.

(a) (b)

(c)

8. A patient receives a 150-mg injection of a drug every
4 hours. The graph shows the amount of the drug in 
the bloodstream after hours. (Later we will be able to
compute the dosage and time interval to ensure that the con-
centration of the drug does not reach a harmful level.) Find

and

and explain the significance of these one-sided limits.

lim
tl 12�

 f �t�lim
tl 12�

 f �t�

t
f �t�

lim
x l 0 

 f �x�

lim
x l 0� 

 f �x�lim
x l 0� 

 f �x�

f �x� � 1��1 � e1�x �7.

f �x� � 	2 � x

x

�x � 1�2

if x � �1

if �1 � x � 1

if x 	 1

limx l a f �x�a

y

t2 4

4

2

lim 
tl 4

 t�t�t�2�

lim
t l 2

 t�t�lim
t l 2�

 t�t�lim
t l 2�

 t�t�
lim
t l 0

 t�t�lim
t l 0�

 t�t�lim
t l 0�

 t�t�

t

y

0 x2 4

4

2

f �3�

lim
x l 3

 f �x�lim
x l 3�

 f �x�

9–10 ■ Sketch the graph of an example of a function that 
satisfies all of the given conditions.

, , ,

,

10. , ,

, , is undefined

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

11–14 ■ Evaluate the function at the given numbers (correct to
six decimal places). Use the results to guess the value of the
limit, or explain why it does not exist.

11. ;

x � 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 1.8, 1.6, 1.4, 1.2, 1.1, 1.01;

12. ;

, 1.2, 1.1, 1.01, 1.001;

13. ;

, , , , ;

14. ;

x � 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001;

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 15. (a) By graphing the function and zoom-
ing in toward the point where the graph crosses the 
y-axis, estimate the value of .

(b) Check your answer in part (a) by evaluating for
values of x that approach 0.

f �x�
lim xl 0 f �x�

f �x� � �tan 4x��x

lim
x l 0�

 x ln�x � x2 �

t�x� � x ln�x � x2 �

lim
x l 0

 
ex � 1 � x

x 2

�0.01�0.05�0.1�0.5x ��1

f �x� �
ex � 1 � x

x 2

lim
t l 1

 
s3 t � 1

st � 1

t � 1.5

F�t� �
s3 t � 1

st � 1

lim
x l 1

 
x � 1

x 3 � 1

t�x� � x � 1

x 3 � 1

f �0�f �2� � 1lim
x l 2�

 f �x� � 1

lim
x l 2�

 f �x� � 0lim
x l 0�

 f �x� � �1lim
x l 0�

 f �x� � 1

f ��2� � 1f �3� � 3

lim
x l �2

 f �x� � 2lim
x l 3�

 f �x� � 2lim
x l 3�

 f �x� � 49.

f

4 8 12 16 t

f(t)

150

0

300
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Calculating Limits Using the Limit Laws ● ● ● ● ● ● ● ● ●

In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw
that such methods don’t always lead to the correct answer. In this section we use the
following properties of limits, called the Limit Laws, to calculate limits.

Limit Laws Suppose that is a constant and the limits

exist. Then

1.

2.

3.

4.

5. lim
x l a

 
 f �x�
t�x� �

lim
x l a 

f �x�

lim
x l a

 t�x�   if lim
x l a

 t�x� � 0

lim
x l a

 � f �x�t�x�� � lim
x l a

 f �x� � lim
x l a

 t�x�

lim
x l a

 �cf �x�� � c lim
x l a

 f �x�

lim
x l a

 � f �x� � t�x�� � lim
x l a

 f �x� � lim
x l a

 t�x�

lim
x l a

 � f �x� � t�x�� � lim
x l a

 f �x� � lim
x l a

 t�x�

lim
x l a

 t�x�andlim
x l a

 f �x�

c

2.3

20. (a) Evaluate for , 0.5, 0.1, 0.05,
0.01, and 0.005.

(b) Guess the value of .

(c) Evaluate for successively smaller values of until
you finally reach values for . Are you still confi-
dent that your guess in part (b) is correct? Explain why
you eventually obtained 0 values. (In Section 4.5 a
method for evaluating the limit will be explained.)

; (d) Graph the function h in the viewing rectangle 
by . Then zoom in toward the point where the
graph crosses the y-axis to estimate the limit of as x
approaches 0. Continue to zoom in until you observe
distortions in the graph of h. Compare with the results
of part (c).

; 21. Use a graph to determine how close to 0 we have to take 
to ensure that is within a distance 0.2 of the number 1.
What if we insist that be within 0.1 of 1?

; (a) Use numerical and graphical evidence to guess the value
of the limit

(b) How close to 1 does have to be to ensure that the
function in part (a) is within a distance 0.5 of its limit?

x

lim
xl 1

 x3 � 1

sx � 1

22.

ex
ex

x

h�x�
�0, 1�

��1, 1�

h�x�0
xh�x�

lim 
xl 0

 
tan x � x

x 3

x � 1h�x� � �tan x � x��x 3; 16. (a) Estimate the value of

by graphing the function . State your
answer correct to two decimal places.

(b) Check your answer in part (a) by evaluating for 
values of x that approach 0.

(a) Estimate the value of the limit to five
decimal places. Does this number look familiar?

; (b) Illustrate part (a) by graphing the function
.

18. The slope of the tangent line to the graph of the exponential
function at the point is . Esti-
mate the slope to three decimal places.

19. (a) Evaluate the function for 1,
0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the value of

(b) Evaluate for � 0.04, 0.02, 0.01, 0.005, 0.003,
and 0.001. Guess again.

xf �x�

lim 
xl 0

 
x 2 �
2x

1000�
x �f �x� � x 2 � �2x�1000�

limx l 0 �2x � 1��x�0, 1�y � 2x

y � �1 � x�1�x

lim xl 0 �1 � x�1�x17.

f �x�

y � �6x � 2x ��x

lim 
xl 0

 
6x � 2x

x
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These five laws can be stated verbally as follows:

Sum Law 1. The limit of a sum is the sum of the limits.

Difference Law 2. The limit of a difference is the difference of the limits.

Constant Multiple Law 3. The limit of a constant times a function is the constant times the limit of the 
function.

Product Law 4. The limit of a product is the product of the limits.

Quotient Law 5. The limit of a quotient is the quotient of the limits (provided that the limit of
the denominator is not 0).

It is easy to believe that these properties are true. For instance, if is close to 
and is close to , it is reasonable to conclude that is close to .
This gives us an intuitive basis for believing that Law 1 is true. All of these laws can
be proved using the precise definition of a limit. In Appendix E we give the proof of
Law 1.

EXAMPLE 1 Use the Limit Laws and the graphs of and t in Figure 1 to evaluate the
following limits, if they exist.

(a) (b) (c)

SOLUTION
(a) From the graphs of and t we see that

Therefore, we have

(by Law 1)

(by Law 3)

(b) We see that . But does not exist because the left and
right limits are different:

So we can’t use Law 4. The given limit does not exist since the left limit is not equal
to the right limit.

(c) The graphs show that

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does
not exist because the denominator approaches 0 while the numerator approaches a
nonzero number.

lim
x l 2

 t�x� � 0andlim
x l 2

 f �x� � 1.4

lim
x l 1�

 t�x� � �1lim
x l 1�

 t�x� � �2

lim x l 1 t�x�limx l 1 f �x� � 2

� 1 � 5��1� � �4

� lim
x l �2

 f �x� � 5 lim
x l �2

 t�x�

lim
x l �2

  � f �x� � 5t�x�� � lim
x l �2

 f �x� � lim
x l �2

 �5t�x��

lim
x l �2

 t�x� � �1andlim
x l �2

 f �x� � 1

f

lim
x l 2

 
 f �x�
t�x�lim

x l 1
 � f �x�t�x��lim

x l �2
 � f �x� � 5t�x��

f

L � Mf �x� � t�x�Mt�x�
Lf �x�
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If we use the Product Law repeatedly with , we obtain the following
law.

Power Law 6. where is a positive integer

In applying these six limit laws we need to use two special limits:

7. 8.

These limits are obvious from an intuitive point of view (state them in words or
draw graphs of and ).

If we now put in Law 6 and use Law 8, we get another useful special
limit.

9. where is a positive integer

A similar limit holds for roots as follows.

10. where is a positive integer

(If is even, we assume that .)

More generally, we have the following law.

Root Law 11. where is a positive integer

[If is even, we assume that ]

EXAMPLE 2 Evaluate the following limits and justify each step.

(a) (b)

SOLUTION

(a) (by Laws 2 and 1)

(by 3)

(by 9, 8, and 7)

(b) We start by using Law 5, but its use is fully justified only at the final stage when
we see that the limits of the numerator and denominator exist and the limit of the 

 � 39

 � 2�52 � � 3�5� � 4

 � 2 lim
x l

 

5
 x 2 � 3 lim

x l
 

5
 x � lim

x l
 

5
 4
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x l

 

5
 �2x 2 � 3x � 4� � lim

x l
 

5
 �2x 2 � � lim

x l
 

5
 �3x� � lim

x l
 

5
 4

lim
x l
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x 3 � 2x 2 � 1

5 � 3x
lim
x l

 

5
 �2x 2 � 3x � 4�

lim
x l

 

a
 f �x� � 0.n

nlim 
x l

 

a
sn f �x) � sn lim

x l
 

a
 f �x)

a � 0n

nlim
x l

 

a
 sn x � sn a

nlim
x l

 

a
 xn � an

f �x� � x
y � xy � c

lim
x l

 

a
 x � alim

x l
 

a
 c � c

nlim
x l

 

a
 � f �x��n � [ lim

x l
 

a
 f �x�]n

t�x� � f �x�
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Explore limits like these interactively.
Resources / Module 2

/ The Essential Examples 
/ Examples D and E



denominator is not 0.

(by Law 5)

(by 1, 2, and 3)

(by 9, 8, and 7)

NOTE ● If we let , then . In other words, we would
have gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly,
direct substitution provides the correct answer in part (b). The functions in Example
2 are a polynomial and a rational function, respectively, and similar use of the Limit
Laws proves that direct substitution always works for such functions (see Exercises 39
and 40). We state this fact as follows.

Direct Substitution Property If is a polynomial or a rational function and is in
the domain of , then

Functions with the Direct Substitution Property are called continuous at a and will
be studied in Section 2.4. However, not all limits can be evaluated by direct substitu-
tion, as the following examples show.

EXAMPLE 3 Find .

SOLUTION Let . We can’t find the limit by substituting 
because isn’t defined. Nor can we apply the Quotient Law because the limit of
the denominator is 0. Instead, we need to do some preliminary algebra. We factor
the numerator as a difference of squares:

The numerator and denominator have a common factor of . When we take the
limit as approaches 1, we have and so . Therefore, we can cancel
the common factor and compute the limit as follows:

 � 1 � 1 � 2

 � lim
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ◆ 113

▲ Newton and Limits
Isaac Newton was born on Christmas
Day in 1642, the year of Galileo’s
death. When he entered Cambridge 
University in 1661 Newton didn’t know
much mathematics, but he learned
quickly by reading Euclid and Descartes
and by attending the lectures of Isaac
Barrow. Cambridge was closed because
of the plague in 1665 and 1666, and
Newton returned home to reflect on what
he had learned. Those two years were
amazingly productive for at that time he
made four of his major discoveries:
(1) his representation of functions as sums
of infinite series, including the binomial
theorem; (2) his work on differential and
integral calculus; (3) his laws of motion
and law of universal gravitation; and 
(4) his prism experiments on the nature of
light and color. Because of a fear of con-
troversy and criticism, he was reluctant to
publish his discoveries and it wasn’t until
1687, at the urging of the astronomer
Halley, that Newton published Principia
Mathematica. In this work, the greatest
scientific treatise ever written, Newton set
forth his version of calculus and used it to
investigate mechanics, fluid dynamics,
and wave motion, and to explain the
motion of planets and comets.

The beginnings of calculus are found
in the calculations of areas and volumes
by ancient Greek scholars such as
Eudoxus and Archimedes. Although
aspects of the idea of a limit are implicit
in their “method of exhaustion,” Eudoxus
and Archimedes never explicitly formu-
lated the concept of a limit. Likewise,
mathematicians such as Cavalieri, 
Fermat, and Barrow, the immediate 
precursors of Newton in the development
of calculus, did not actually use limits. It
was Isaac Newton who was the first to
talk explicitly about limits. He explained
that the main idea behind limits is that
quantities “approach nearer than by any
given difference.” Newton stated that the
limit was the basic concept in calculus,
but it was left to later mathematicians like
Cauchy to clarify his ideas about limits.



The limit in this example arose in Section 2.1 when we were trying to find the tan-
gent to the parabola at the point .

EXAMPLE 4 Find where 

SOLUTION Here is defined at and , but the value of a limit as 
approaches 1 does not depend on the value of the function at 1. Since 
for , we have

Note that the values of the functions in Examples 3 and 4 are identical except when
(see Figure 2) and so they have the same limit as approaches 1.

EXAMPLE 5 Evaluate .

SOLUTION If we define 

then, as in Example 3, we can’t compute by letting since is
undefined. But if we simplify algebraically, we find that

(Recall that we consider only when letting approach 0.) Thus

EXAMPLE 6 Find .

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the denomi-
nator is 0. Here the preliminary algebra consists of rationalizing the numerator:

This calculation confirms the guess that we made in Example 2 in Section 2.2.

 � lim
t l

 

0
 

1

st 2 � 9 � 3
�

1

slim
t l

 

0
 �t 2 � 9� � 3

�
1

3 � 3
�

1

6

 � lim
t l

 

0
 

�t 2 � 9� � 9

t 2(st 2 � 9 � 3) � lim
t l

 

0
 

t 2

t 2(st 2 � 9 � 3)

 lim
t l

 

0
 
st 2 � 9 � 3

t 2 � lim
t l

 

0
 
st 2 � 9 � 3

t 2 �
st 2 � 9 � 3

st 2 � 9 � 3

lim
t l

 

0
 
st 2 � 9 � 3

t 2

lim
h l

 

0
 
�3 � h�2 � 9

h
� lim

h l
 

0
 �6 � h� � 6

hh � 0

F�h� �
�9 � 6h � h 2 � � 9

h
�

6h � h 2

h
� 6 � h

F�h�
F�0�h � 0lim h l 0 F�h�

F�h� �
�3 � h�2 � 9

h

lim
h l

 

0
 
�3 � h�2 � 9

h

xx � 1

lim
x l

 

1
 t�x� � lim

x l
 

1
 �x � 1� � 2

x � 1
t�x� � x � 1

xt�1� � �x � 1t

t�x� � 	x � 1

�

if x � 1

if x � 1

lim
x l

 

1
 t�x�

�1, 1�y � x 2
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FIGURE 2
The graphs of the functions f (from
Example 3) and g (from Example 4)
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Some limits are best calculated by first finding the left- and right-hand limits. The
following theorem is a reminder of what we discovered in Section 2.2. It says that a
two-sided limit exists if and only if both of the one-sided limits exist and are equal.

Theorem if and only if

When computing one-sided limits we use the fact that the Limit Laws also hold for
one-sided limits.

EXAMPLE 7 Show that .

SOLUTION Recall that

Since for , we have

For we have and so 

Therefore, by Theorem 1,

EXAMPLE 8 Prove that does not exist.

SOLUTION

Since the right- and left-hand limits are different, it follows from Theorem 1 that
does not exist. The graph of the function is shown in

Figure 4 and supports the limits that we found.

EXAMPLE 9 The greatest integer function is defined by the largest integer 
▲ Other notations for are and . that is less than or equal to . (For instance, , , , ,

) Show that does not exist.lim xl3 �x
��
1
2
 � �1.

�s2 
 � 1��
 � 3�4.8
 � 4�4
 � 4x⎣x⎦�x��x


�x
 �

1

_1

x

y

0

y=
|x|

x

f �x� � � x ��xlim xl 0 � x ��x

 lim
x l

 

0�
 � x �

x
� lim

x l
 

0�
 
�x

x
� lim

x l
 

0�
 ��1� � �1

 lim
x l

 

0�
 � x �

x
� lim

x l
 

0�
 
x

x
� lim

x l
 

0�
 1 � 1

lim
x l

 

0
 � x �

x

lim
x l

 

0
 � x � � 0

lim
x l

 

0�
 � x � � lim

x l
 

0�
 ��x� � 0

� x � � �xx � 0

lim
x l

 

0�
 � x � � lim

x l
 

0�
 x � 0

x � 0� x � � x
▲ The result of Example 7 looks 
plausible from Figure 3.

� x � � 	x

�x

if x 	 0

if x � 0

lim
x l

 

0
 � x � � 0

lim
x l

 

a�
 f �x� � L � lim

x l
 

a�
 f �x�lim

x l
 

a
 f �x� � L1
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SOLUTION The graph of the greatest integer function is shown in Figure 5. Since
for , we have

Since for , we have

Because these one-sided limits are not equal, does not exist by 
Theorem 1.

The next two theorems give two additional properties of limits. Both can be proved
using the precise definition of a limit in Appendix D.

Theorem If when is near (except possibly at ) and the
limits of and both exist as approaches , then

The Squeeze Theorem If when is near (except pos-
sibly at ) and

then

The Squeeze Theorem, sometimes called the Sandwich Theorem or the Pinching
Theorem, is illustrated by Figure 6. It says that if is squeezed between and

near , and if and have the same limit at , then is forced to have the same
limit at .

EXAMPLE 10 Show that .

SOLUTION First note that we cannot use

because does not exist (see Example 4 in Section 2.2). However,
since 

we have, as illustrated by Figure 7,

�x 2 � x 2 sin 
1

x
� x 2

�1 � sin 
1

x
� 1

limx l 0 sin�1�x�

lim
x l

 

0
 x 2 sin 

1

x
� lim

x l
 

0
 x 2 � lim

x l
 

0
sin 

1

x

lim
x l

 

0
 x 2 sin 

1

x
� 0

aL
taLhfah�x�

f �x�t�x�

lim
x l

 

a
 t�x� � L

lim
x l

 

a
 f �x� � lim

x l
 

a
 h�x� � L

a
axf �x� � t�x� � h�x�3

lim
x l

 

a
 f �x� � lim

x l
 

a
 t�x�

axtf
aaxf �x� � t�x�2

limx l 3 �x


lim
x l

 

3�
 �x
 � lim

x l
 

3�
 2 � 2

2 � x � 3�x
 � 2

lim
x l

 

3�
 �x
 � lim

x l
 

3�
 3 � 3

3 � x � 4�x
 � 3
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We know that 

Taking , , and in the Squeeze Theorem, we
obtain

lim
x l

 

0
 x 2 sin 

1

x
� 0

h�x� � x 2t�x� � x 2 sin�1�x�f �x� � �x 2

lim
x l

 

0
 �x 2 � 0andlim

x l
 

0
 x 2 � 0

1
xy=≈ sin

y=≈

y=_≈

0 x

y

FIGURE 7
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(c) (d)

(e) (f)

3–7 ■ Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).

3. 4.

5.

7.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

8. (a) What is wrong with the following equation?

(b) In view of part (a), explain why the equation

is correct.

lim
x l

 

2
 
x 2 � x � 6

x � 2
� lim

x l
 

2
 �x � 3�

x 2 � x � 6

x � 2
� x � 3

lim
x l

 

1
 
 1 � 3x

1 � 4x2 � 3x4�3

lim
u l

 

�2
 su 4 � 3u � 66.lim

t l
 

�2
 �t � 1�9�t 2 � 1�

lim
x l

 

2
 

2x2 � 1

x2 � 6x � 4
lim
x l

 

4
 �5x 2 � 2x � 3�

lim
x l

 

1
 s3 � f �x�lim

x l
 

2
 x 3f �x�

lim
x l

 

�1
 
 f �x�
t�x�lim

x l
 

0
 � f �x�t�x��1. Given that

find the limits that exist. If the limit does not exist, explain
why.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

2. The graphs of and t are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why.

(a) (b) lim
x l

 

1
 � f �x� � t�x��lim

x l
 

2
 � f �x� � t�x��

x1

y

y=ƒ
1

0 x

y

1

y=©
1

f

lim
x l

 

a
 

2 f �x�
h�x� � f �x�

lim
x l

 

a
 
 f �x�
t�x�

lim
x l

 

a
 
t�x�
f �x�

lim
x l

 

a
 
 f �x�
h�x�

lim
x l

 

a
 

1

f �x�
lim
x l

 

a
 s3 h�x�

lim
x l

 

a
 � f �x��2lim

x l
 

a
 � f �x� � h�x��

lim
x l

 

a
 h�x� � 8lim

x l
 

a
 t�x� � 0lim

x l
 

a
 f �x� � �3
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29–32 ■ Find the limit, if it exists. If the limit does not exist,
explain why.

30.

31. 32.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

33. Let

(a) Evaluate each of the following limits, if it exists.

(i) (ii) (iii)

(iv) (v) (vi)

(b) Sketch the graph of .

34. Let .

(a) Find

(i) (ii)

(b) Does exist?
(c) Sketch the graph of .

(a) If the symbol denotes the greatest integer function
defined in Example 9, evaluate
(i) (ii) (iii)

(b) If n is an integer, evaluate
(i) (ii)

(c) For what values of does exist?

36. Let .
(a) Sketch the graph of 
(b) If is an integer, evaluate

(i) (ii)

(c) For what values of does exist?

37. If , show that exists but is
not equal to .

38. In the theory of relativity, the Lorentz contraction formula

expresses the length L of an object as a function of its
velocity with respect to an observer, where is the
length of the object at rest and c is the speed of light. Find

and interpret the result. Why is a left-hand limit
necessary?

39. If is a polynomial, show that .

40. If r is a rational function, use Exercise 39 to show that
for every number a in the domain of r.limx l a r�x� � r�a�

lim xl a p�x� � p�a�p

lim vlc� L

L0v

L � L0s1 � v 2�c 2

f �2�
limx l 2 f �x�f �x� � �x
 � ��x


limx l a f �x�a

lim
x l

 

n�
 f �x�lim

x l
 

n�
 f �x�

n
f.

f �x� � x � �x


limx l a �x
a

lim
x l n� 

 �x
lim
x l

 

n�
 �x


lim
x l

 

�2.4
 �x
lim

x l
 

�2
 �x
lim

x l
 

�2�
 �x


� 
35.

F

limx l 1 F�x�

lim
x l

 

1�
 F�x�lim

x l
 

1�
 F�x�

F�x� �
x 2 � 1

� x � 1 �

t
lim

x l
 

�1
 t�x�lim

x l
 

�1� 
t�x�lim

xl�1�
 t�x�

lim
x l

 

0
 t�x�lim

x l
 

1
 t�x�lim

x l
 

1�
 t�x�

t�x� � 	�x

1 � x 2

x � 1

if x � �1

if �1 � x � 1

if x � 1

lim
x l

 

0�
 
1

x
�

1

� x � �lim
x l

 

0�
1

x
�

1

� x � �
lim
x l

 

2
 � x � 2 �

x � 2
lim

x l
 

�4
 � x � 4 �29.

9–20 ■ Evaluate the limit, if it exists.

9. 10.

11. 12.

14.

16.

17. 18.

19. 20.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 21. (a) Estimate the value of

by graphing the function .
(b) Make a table of values of for x close to 0 and guess

the value of the limit.
(c) Use the Limit Laws to prove that your guess is correct.

; 22. (a) Use a graph of

to estimate the value of to two decimal
places.

(b) Use a table of values of to estimate the limit to four
decimal places.

(c) Use the Limit Laws to find the exact value of the limit.

; 23. Use the Squeeze Theorem to show that
. Illustrate by graphing the

functions , and 
on the same screen.

; 24. Use the Squeeze Theorem to show that

Illustrate by graphing the functions and (in the nota-
tion of the Squeeze Theorem) on the same screen.

If for all , find .

26. If for , evaluate .

27. Prove that 

28. Prove that .lim
x l

 

0�
 sx esin���x� � 0

lim
x l

 

0
 x 4 cos 

2

x
� 0.

limx l 1 f �x�0 � x � 23x � f �x� � x 3 � 2

limx l �1 f �x�x1 � f �x� � x 2 � 2x � 225.

hf, t,
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 sx 3 � x 2 sin 
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x
� 0

h�x� � x 2f �x� � �x 2, t�x� � x 2 cos 20�x
limx l 0 x

2 cos 20�x � 0

f �x�

limx l 0 f �x�

f �x� �
s3 � x � s3

x

f �x�
f �x� � x�(s1 � 3x � 1)

lim
x l

 

0
 

x

s1 � 3x � 1

lim
t l

 

0
 �1

t
�

1

t 2 � t�lim
x l

 

�4
 

1

4
�

1

x

4 � x

lim
h l

 

0
 
�3 � h��1 � 3�1

h
lim
x l
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sx � 2 � 3

x � 7

lim
x l

 

2
 
x 4 � 16

x � 2
lim
h l

 

0
 
�2 � h�3 � 8

h
15.

lim
h l

 

0
 
s1 � h � 1

h
lim

t l
 

�3
 

t 2 � 9

2t 2 � 7t � 3
13.

lim
x l
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x 3 � 1

x 2 � 1
lim
x l

 

2
 
x 2 � x � 6

x � 2

lim
x l

 

�4
 
x 2 � 5x � 4

x2 � 3x � 4
lim
x l
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x 2 � x � 6

x � 2
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Continuity ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

We noticed in Section 2.3 that the limit of a function as approaches can often 
be found simply by calculating the value of the function at . Functions with this 
property are called continuous at a. We will see that the mathematical definition of
continuity corresponds closely with the meaning of the word continuity in everyday
language. (A continuous process is one that takes place gradually, without interrup-
tion or abrupt change.)

Definition A function is continuous at a number a if

If is not continuous at a, we say is discontinuous at a, or has a discontinuity
at a. Notice that Definition l implicitly requires three things if is continuous at a:

1. is defined (that is, a is in the domain of )

2. exists

3.

The definition says that is continuous at if approaches as x approaches
a. Thus, a continuous function has the property that a small change in x produces
only a small change in . In fact, the change in can be kept as small as we
please by keeping the change in sufficiently small.

Physical phenomena are usually continuous. For instance, the displacement or
velocity of a vehicle varies continuously with time, as does a person’s height. But dis-
continuities do occur in such situations as electric currents. [See Example 6 in Sec-
tion 2.2, where the Heaviside function is discontinuous at because does
not exist.]

Geometrically, you can think of a function that is continuous at every number in an
interval as a function whose graph has no break in it. The graph can be drawn with-
out removing your pen from the paper.

lim tl 0 H�t�0

x
f �x�f �x�

f
f �a�f �x�af

lim
x l

 

a
 f �x� � f �a�

lim
x l

 

a
 f �x�

ff �a�

f
fff

lim
x l

 

a
 f �x� � f �a�

f1

a
ax

2.4

point of intersection of the two circles, and R is the point of
intersection of the line PQ and the -axis. What happens to
R as shrinks, that is, as ?

x

y

0

P Q

C™

C¡
R

r l 0�C2

x
Show by means of an example that 
may exist even though neither nor 
exists.

42. Show by means of an example that may
exist even though neither nor 
exists.

Is there a number a such that

exists? If so, find the value of a and the value of the limit.

44. The figure shows a fixed circle with equation
and a shrinking circle with radius 

and center the origin. P is the point , Q is the upper�0, r�
rC2�x � 1�2 � y 2 � 1

C1

lim
xl�2

 
3x 2 � ax � a � 3

x 2 � x � 2

43.

limx l a t�x�limx l a f �x�
limx l a � f �x�t�x��

limx l a t�x�limx l a f �x�
limx l a � f �x� � t�x��41.
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▲ As illustrated in Figure 1, if is con-
tinuous, then the points on the
graph of approach the point 
on the graph. So there is no gap in the
curve.

�a, f �a��f
�x, f �x��

f

f(a)

x0

y

a

y=ƒ

ƒ
approaches

f(a).

As x approaches a,

FIGURE 1
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EXAMPLE 1 Figure 2 shows the graph of a function . At which numbers is discon-
tinuous? Why?

SOLUTION It looks as if there is a discontinuity when because the graph has a
break there. The official reason that is discontinuous at 1 is that is not defined.

The graph also has a break when a � 3, but the reason for the discontinuity is
different. Here, is defined, but does not exist (because the left and
right limits are different). So is discontinuous at 3.

What about ? Here, is defined and exists (because the left
and right limits are the same). But

So is discontinuous at 5.

Now let’s see how to detect discontinuities when a function is defined by a formula.

EXAMPLE 2 Where are each of the following functions discontinuous?

(a) (b)

(c) (d)

SOLUTION
(a) Notice that is not defined, so is discontinuous at 2.

(b) Here is defined but

does not exist. (See Example 8 in Section 2.2.) So is discontinuous at 0.

(c) Here is defined and

exists. But 

so is not continuous at 2.

(d) The greatest integer function has discontinuities at all of the integers
because does not exist if is an integer. (See Example 9 and Exercise 35
in Section 2.3.)

Figure 3 shows the graphs of the functions in Example 2. In each case the graph
can’t be drawn without lifting the pen from the paper because a hole or break or jump
occurs in the graph. The kind of discontinuity illustrated in parts (a) and (c) is called
removable because we could remove the discontinuity by redefining at just the f

nlimx l n �x

f �x� � �x


f

lim
x l

 

2
 f �x� � f �2�

lim
x l

 

2
 f �x� � lim

x l
 

2
 
x 2 � x � 2

x � 2
� lim

x l
 

2
 
�x � 2��x � 1�

x � 2
� lim

x l
 

2
 �x � 1� � 3

f �2� � 1

f

lim
x l

 

0
 f �x� � lim

x l
 

0
 

1

x 2

f �0� � 1

ff �2�

f �x� � �x
f �x� � 	 x 2 � x � 2

x � 2
if x � 2

1 if x � 2

f �x� � 	 1

x 2 if x � 0

1 if x � 0

f �x� �
x 2 � x � 2

x � 2

f

lim
x l

 

5
 f �x� � f �5�

limx l 5 f �x�f �5�a � 5
f

lim xl 3 f �x�f �3�

f �1�f
a � 1

ff
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single number 2. [The function is continuous.] The discontinuity in part
(b) is called an infinite discontinuity. The discontinuities in part (d) are called jump
discontinuities because the function “jumps” from one value to another.

Definition A function is continuous from the right at a number a if

and is continuous from the left at a if

EXAMPLE 3 At each integer , the function shown in Figure 3(d) is con-
tinuous from the right but discontinuous from the left because

but

Definition A function is continuous on an interval if it is continuous at
every number in the interval. (If is defined only on one side of an endpoint
of the interval, we understand continuous at the endpoint to mean continuous
from the right or continuous from the left.)

EXAMPLE 4 Show that the function is continuous on the 
interval 

SOLUTION If , then using the Limit Laws, we have

(by Laws 2 and 7)

(by 11)

(by 2, 7, and 9)

 � f �a�

 � 1 � s1 � a 2

 � 1 � slim
x l

 

a
 �1 � x 2 �

 � 1 � lim
x l

 

a
 s1 � x 2

 lim
x l

 

a
 f �x� � lim

x l
 

a
 (1 � s1 � x 2 )

�1 � a � 1

��1, 1�.
f �x� � 1 � s1 � x 2

f
f3

lim
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 f �x� � lim

x l
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 � n � 1 � f �n�

lim
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 f �x� � lim
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 � n � f �n�

f �x� � �x
n

lim
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 f �x� � f �a�

f
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 f �x� � f �a�

f2

(b) ƒ=�1/≈ if x≠0
1 if x=0

1 2 x
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1 1
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1
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(a) ƒ=
≈-x-2
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if x≠2
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≈-x-2
x-2 (d) ƒ=[x]

FIGURE 3
Graphs of the functions

t�x� � x � 1
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Thus, by Definition l, is continuous at if . Similar calculations show
that

and

so is continuous from the right at �1 and continuous from the left at 1. Therefore,
according to Definition 3, is continuous on .

The graph of is sketched in Figure 4. It is the lower half of the circle

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a func-
tion as we did in Example 4, it is often convenient to use the next theorem, which
shows how to build up complicated continuous functions from simple ones.

Theorem If and are continuous at and is a constant, then the follow-
ing functions are also continuous at :

1. 2. 3.

4. 5. if

Proof Each of the five parts of this theorem follows from the corresponding Limit
Law in Section 2.3. For instance, we give the proof of part 1. Since and are
continuous at , we have

Therefore

(by Law 1)

This shows that is continuous at .

It follows from Theorem 4 and Definition 3 that if and are continuous on an
interval, then so are the functions , and (if is never 0) . The
following theorem was stated in Section 2.3 as the Direct Substitution Property.

Theorem
(a) Any polynomial is continuous everywhere; that is, it is continuous on

.
(b) Any rational function is continuous wherever it is defined; that is, it is

continuous on its domain.

� � ��
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a
 � f � t��x� � lim

x l
 

a
 � f �x� � t�x��

lim
x l

 

a
 t�x� � t�a�andlim

x l
 

a
 f �x� � f �a�

a
tf

t�a� � 0
 f

tft

cff � tf � t
a

catf4

x 2 � �y � 1�2 � 1

f
��1, 1�f

f

lim
x l

 

1�
 f �x� � 1 � f �1�lim

x l
 

�1�
 f �x� � 1 � f ��1�

�1 � a � 1af
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Proof
(a) A polynomial is a function of the form

where are constants. We know that

(by Law 7)

and (by 9)

This equation is precisely the statement that the function is a continuous 
function. Thus, by part 3 of Theorem 4, the function is continuous.
Since is a sum of functions of this form and a constant function, it follows from
part 1 of Theorem 4 that is continuous.

(b) A rational function is a function of the form

where and are polynomials. The domain of is . We
know from part (a) that and are continuous everywhere. Thus, by part 5 of
Theorem 4, is continuous at every number in .

As an illustration of Theorem 5, observe that the volume of a sphere varies contin-
uously with its radius because the formula shows that is a polynomial
function of . Likewise, if a ball is thrown vertically into the air with a velocity of
50 ft�s, then the height of the ball in feet after seconds is given by the formula

. Again this is a polynomial function, so the height is a continuous
function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits
very quickly, as the following example shows. Compare it with Example 2(b) in Sec-
tion 2.3.

EXAMPLE 5 Find .

SOLUTION The function

is rational, so by Theorem 5 it is continuous on its domain, which is . 
Therefore

It turns out that most of the familiar functions are continuous at every number in
their domains. For instance, Limit Law 10 (page 112) is exactly the statement that root
functions are continuous.

 �
��2�3 � 2��2�2 � 1

5 � 3��2�
� �

1

11

 lim
x l

 

�2
 
x 3 � 2x 2 � 1

5 � 3x
� lim

x l
 

�2
 f �x� � f ��2�

{x � x � 5
3}

f �x� �
x 3 � 2x 2 � 1

5 � 3x

lim
x l

 

�2
 
x 3 � 2x 2 � 1

5 � 3x

h � 50t � 16t 2
t

r
VV�r� � 4

3 �r 3

Df
QP

D � �x � � � Q�x� � 0�fQP

f �x� �
P�x�
Q�x�

P
P

t�x� � cxm
f �x� � xm

m � 1, 2, . . . , nlim
x l

 

a
 xm � a m

lim
x l

 

a
 c0 � c0

c0, c1, . . . , cn

P�x� � cnxn � cn�1xn�1 � � � � � c1x � c0 
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From the appearance of the graphs of the sine and cosine functions (Figure 18 in
Section 1.2), we would certainly guess that they are continuous. We know from the
definitions of and that the coordinates of the point P in Figure 5 are

. As , we see that P approaches the point and so 
and . Thus

Since and , the equations in (6) assert that the cosine and sine
functions are continuous at 0. The addition formulas for cosine and sine can then be
used to deduce that these functions are continuous everywhere (see Exercises 43 and 44).

It follows from part 5 of Theorem 4 that

is continuous except where cos x � 0. This happens when x is an odd integer mul-
tiple of , so y� tan x has infinite discontinuities when ,
and so on (see Figure 6).

The inverse function of any continuous function is also continuous. (The graph of
is obtained by reflecting the graph of f about the line . So if the graph of f

has no break in it, neither does the graph of .) Thus, the inverse trigonometric func-
tions are continuous.

In Section 1.5 we defined the exponential function so as to fill in the holes
in the graph of where x is rational. In other words, the very definition of 
makes it a continuous function on �. Therefore, its inverse function is con-
tinuous on .

Theorem The following types of functions are continuous at every number
in their domains:

polynomials rational functions root functions

trigonometric functions inverse trigonometric functions

exponential functions logarithmic functions

EXAMPLE 6 Where is the function continuous?f �x� �
ln x � tan�1x

x 2 � 1

7

�0, 
�
y � loga x

y � a xy � a x
y � a x

f �1
y � xf �1

FIGURE 6
y=tan x

__
x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

x � ���2, �3��2, �5��2��2

tan x �
sin x

cos x

sin 0 � 0cos 0 � 1

lim
� l

 

0
 cos � � 1       lim

� l
 

0
 sin � � 06

sin � l 0
cos � l 1�1, 0�� l 0�cos �, sin ��

cos �sin �
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FIGURE 5

▲ Another way to establish the limits in
(6) is to use the Squeeze Theorem with
the inequality (for ),
which is proved in Section 3.4.

� � 0sin � � �

▲ The inverse trigonometric functions are
reviewed in Appendix C.



SOLUTION We know from Theorem 7 that the function is continuous for
and is continuous on �. Thus, by part 1 of Theorem 4,

is continuous on . The denominator, , is a poly-
nomial, so it is continuous everywhere. Therefore, by part 5 of Theorem 4, is con-
tinuous at all positive numbers x except where . So is continuous on
the intervals and .

EXAMPLE 7 Evaluate .

SOLUTION Theorem 7 tells us that is continuous. The function in the denom-
inator, , is the sum of two continuous functions and is therefore con-
tinuous. Notice that this function is never 0 because for all and so

everywhere. Thus, the ratio

is continuous everywhere. Hence, by definition of a continuous function,

Another way of combining continuous functions and to get a new continuous
function is to form the composite function . This fact is a consequence of the fol-
lowing theorem.

Theorem If is continuous at and then 
In other words,

Intuitively, this theorem is reasonable because if is close to , then is close
to , and since is continuous at , if is close to , then is close to 

EXAMPLE 8 Evaluate .

SOLUTION Because is a continuous function, we can apply Theorem 8:

 � arcsin 
1

2
�

�

6

 � arcsin
lim
x l

 

1
 

1

1 � sx�
 � arcsin
lim

x l
 

1
 

1 � sx

(1 � sx) (1 � sx)�
 lim
x l

 

1
 arcsin
1 � sx

1 � x � � arcsin
lim
xl1

 
1 � sx

1 � x �
arcsin

lim
x l

 

1
 arcsin
1 � sx

1 � x �
f �b�.f �t�x��bt�x�bfb

t�x�ax

lim
x l

 

a
 f �t�x�� � f (lim

x l
 

a
 t�x�)

lim
x l

 

a
 f �t�x�� � f �b�.lim

x l
 

a
 t�x� � b, bf8

f � t
tf

lim
x l

 

�

sin x

2 � cos x
� lim

x l
 

�  
f �x� � f ��� �

sin �

2 � cos �
�

0

2 � 1
� 0

f �x� �
sin x

2 � cos x

2 � cos x � 0
xcos x 	 �1

y � 2 � cos x
y � sin x

lim
x l

 

�
 

sin x

2 � cos x

�1, 
��0, 1�
fx 2 � 1 � 0

f
y � x 2 � 1�0, 
�y � ln x � tan�1x

y � tan�1xx � 0
y � ln x
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▲ This theorem says that a limit symbol
can be moved through a function symbol
if the function is continuous and the limit
exists. In other words, the order of these
two symbols can be reversed.



Theorem If is continuous at and is continuous at , then the com-
posite function given by is continuous at .

This theorem is often expressed informally by saying “a continuous function of a
continuous function is a continuous function.”

Proof Since is continuous at , we have

Since is continuous at , we can apply Theorem 8 to obtain

which is precisely the statement that the function is continuous at ;
that is, is continuous at .

EXAMPLE 9 Where are the following functions continuous?
(a) (b)

SOLUTION
(a) We have , where

Now is continuous on since it is a polynomial, and is also continuous every-
where. Thus, is continuous on by Theorem 9.

(b) We know from Theorem 7 that is continuous and 
is continuous (because both and are continuous). Therefore, by
Theorem 9, is continuous wherever it is defined. Now 
is defined when . So it is undefined when , and this hap-
pens when . Thus, F has discontinuities when x is an odd mul-
tiple of and is continuous on the intervals between these values (see Figure 7).

An important property of continuous functions is expressed by the following theo-
rem, whose proof is found in more advanced books on calculus.

The Intermediate Value Theorem Suppose that is continuous on the closed
interval and let be any number between and . Then there
exists a number in such that .

The Intermediate Value Theorem states that a continuous function takes on every
intermediate value between the function values and . It is illustrated by
Figure 8. Note that the value can be taken on once [as in part (a)] or more than once
[as in part (b)].

N
f �b�f �a�

f �c� � N�a, b�c
f �b�f �a�N�a, b�

f10

�
x � ��, �3�, . . .

cos x � �11 � cos x � 0
ln�1 � cos x�F�x� � f �t�x��

y � cos xy � 1
t�x� � 1 � cos xf �x� � ln x

�h � f � t
f�t

f �x� � \sin xandt�x� � x 2

h�x� � f �t�x��

F�x� � ln�1 � cos x�h�x� � sin�x 2 �

af � t
ah�x� � f �t�x��

lim
x l

 

a
 f �t�x�� � f �t�a��

b � t�a�f

lim
xl a

 t�x� � t�a�

at

a� f � t� �x� � f �t�x��f � t
t�a�fat9
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If we think of a continuous function as a function whose graph has no hole or
break, then it is easy to believe that the Intermediate Value Theorem is true. In geo-
metric terms it says that if any horizontal line is given between and

as in Figure 9, then the graph of can’t jump over the line. It must intersect
somewhere.

It is important that the function in Theorem 10 be continuous. The Intermediate
Value Theorem is not true in general for discontinuous functions (see Exercise 32).

One use of the Intermediate Value Theorem is in locating roots of equations as in
the following example.

EXAMPLE 10 Show that there is a root of the equation

between 1 and 2.

SOLUTION Let . We are looking for a solution of the given
equation, that is, a number between 1 and 2 such that . Therefore, we take

, , and in Theorem 10. We have

and

Thus , that is, is a number between and . Now is
continuous since it is a polynomial, so the Intermediate Value Theorem says there 
is a number between 1 and 2 such that . In other words, the equation

has at least one root in the interval .
In fact, we can locate a root more precisely by using the Intermediate Value 

Theorem again. Since

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

so a root lies in the interval .�1.22, 1.23�

f �1.23� � 0.056068 � 0andf �1.22� � �0.007008 � 0

f �1.3� � 0.548 � 0andf �1.2� � �0.128 � 0

�1, 2�c4x 3 � 6x 2 � 3x � 2 � 0
f �c� � 0c

ff �2�f �1�N � 0f �1� � 0 � f �2�

 f �2� � 32 � 24 � 6 � 2 � 12 � 0

 f �1� � 4 � 6 � 3 � 2 � �1 � 0

N � 0b � 2a � 1
f �c� � 0c

f �x� � 4x 3 � 6x 2 � 3x � 2

4x 3 � 6x 2 � 3x � 2 � 0

f
y � N

fy � f �b�
y � f �a�y � N

(b)

0 x

y

f(b)

N

f(a)

a c£ b

y=ƒ

c™c¡

(a)

0 x

y

f(b)

N

f(a)

a c b

y=ƒ

FIGURE 8
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We can use a graphing calculator or computer to illustrate the use of the Interme-
diate Value Theorem in Example 10. Figure 10 shows the graph of in the viewing
rectangle by and you can see the graph crossing the -axis between 
1 and 2. Figure 11 shows the result of zooming in to the viewing rectangle 
by .

In fact, the Intermediate Value Theorem plays a role in the very way these graph-
ing devices work. A computer calculates a finite number of points on the graph and
turns on the pixels that contain these calculated points. It assumes that the function is
continuous and takes on all the intermediate values between two consecutive points.
The computer therefore connects the pixels by turning on the intermediate pixels.

0.2

_0.2

1.2 1.3

FIGURE 10

3

_3

_1 3

FIGURE 11

��0.2, 0.2�
�1.2, 1.3�

x��3, 3���1, 3�
f
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4. From the graph of , state the intervals on which is 
continuous.

5. Sketch the graph of a function that is continuous every-
where except at x � 3 and is continuous from the left at 3.

6. Sketch the graph of a function that has a jump discontinuity
at and a removable discontinuity at , but is con-
tinuous elsewhere.

A parking lot charges $3 for the first hour (or part of an
hour) and $2 for each succeeding hour (or part), up to a
daily maximum of $10.
(a) Sketch a graph of the cost of parking at this lot as a

function of the time parked there.

7.

x � 4x � 2

y

x_4 2 4 6_2 8

tt1. Write an equation that expresses the fact that a function 
is continuous at the number 4.

2. If is continuous on , what can you say about its
graph?

(a) From the graph of , state the numbers at which is
discontinuous and explain why.

(b) For each of the numbers stated in part (a), determine
whether is continuous from the right, or from the left,
or neither.

y

x_4 2 4 6_2 0

f

ff3.

��
, 
�f

f
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; 23–24 ■ Locate the discontinuities of the function and illustrate
by graphing. 

24.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

25–28 ■ Use continuity to evaluate the limit.

25.

27. 28.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Find the numbers at which the function

is discontinuous. At which of these points is continuous
from the right, from the left, or neither? Sketch the graph 
of .

30. The gravitational force exerted by Earth on a unit mass at a
distance r from the center of the planet is

where M is the mass of Earth, R is its radius, and G is the
gravitational constant. Is F a continuous function of r?

For what value of the constant is the function continu-
ous on ?

32. Suppose that a function is continuous on [0, 1] except at
0.25 and that and . Let N � 2. Sketch
two possible graphs of , one showing that might not sat-
isfy the conclusion of the Intermediate Value Theorem and
one showing that might still satisfy the conclusion of the
Intermediate Value Theorem (even though it doesn’t satisfy
the hypothesis).

33. If , show that there is a number such
that .

34. Use the Intermediate Value Theorem to prove that there is a
positive number such that . (This proves the exis-
tence of the number .)

35–38 ■ Use the Intermediate Value Theorem to show that
there is a root of the given equation in the specified interval.

, �0, 1�x 3 � 3x � 1 � 035.

s2
c 2 � 2c

f �c� � 10
cf �x� � x 3 � x 2 � x

f

ff
f �1� � 3f �0� � 1

f

f �x� � 	cx � 1

cx 2 � 1

if x � 3

if x � 3

��
, 
�
fc31.

if r 	 R
GM

r 2

F�r� �

GMr

R 3 if r � R

f

f

f �x� � 	x � 2

ex

2 � x

if x � 0

if 0 � x � 1

if x � 1

29.

lim
x l

 

2
 arctan
 x 2 � 4

3x 2 � 6x�lim
x l

 

1
 ex2�x

lim
x l

 

�
 sin�x � sin x�26.lim

x l
 

4
 
5 � sx

s5 � x

y � ln�tan2x�y �
1

1 � e 1�x23.

(b) Discuss the discontinuities of this function and their 
significance to someone who parks in the lot.

8. Explain why each function is continuous or discontinuous.
(a) The temperature at a specific location as a function of

time
(b) The temperature at a specific time as a function of the

distance due west from New York City
(c) The altitude above sea level as a function of the distance

due west from New York City
(d) The cost of a taxi ride as a function of the distance 

traveled
(e) The current in the circuit for the lights in a room as a

function of time

9. If and are continuous functions with and
, find .

10–11 ■ Use the definition of continuity and the properties of
limits to show that the function is continuous at the given 
number.

10. ,

,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

12. Use the definition of continuity and the properties of 
limits to show that the function is 
continuous on the interval .

13–16 ■ Explain why the function is discontinuous at the given
number. Sketch the graph of the function.

13.

14.

16.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17–22 ■ Explain, using Theorems 4, 5, 7, and 9, why the func-
tion is continuous at every number in its domain. State the
domain.

17. 18.

20.

21. 22.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

H�x� � cos(esx )G�t� � ln�t 4 � 1�

F�x� � sin�1�x 2 � 1�f �x� � e x sin 5x19.

f �t� � 2t � s25 � t 2F�x� �
x

x 2 � 5x � 6

a � 1f �x� � 	1 � x2

4 � x

if x � 1

if x 	 1

a � �3f �x� � 	 x 2 � x � 12

x � 3

�5

  if x � �3

  if x � �3

15.

a � 1f �x� � 	 1

x � 1

2

if x � 1

if x � 1

a � 2f �x� � ln � x � 2 �

��4, 4�
f �x� � xs16 � x2

a � �1f �x� � �x � 2x 3 �411.

a � 4f �x� � x 2 � s7 � x

t�3�lim xl 3 �2 f �x� � t�x�� � 4
f �3� � 5tf
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Limits Involving Infinity ● ● ● ● ● ● ● ● ● ● ● ● ● ●

In this section we investigate the global behavior of functions and, in particular,
whether their graphs approach asymptotes, vertical or horizontal.

Infinite Limits

In Example 8 in Section 2.2 we concluded that

does not exist

by observing from the table of values and the graph of in Figure 1, that the
values of can be made arbitrarily large by taking close enough to 0. Thus, the
values of do not approach a number, so does not exist.

FIGURE 1

y= 1
≈

0

y

x

limx l 0 �1�x 2 �f �x�
x1�x2
y � 1�x2

lim
x l

 

0
 

1

x 2

2.5

equivalent statement is that

Use (6) to show that this is true.

44. Prove that cosine is a continuous function.

Is there a number that is exactly 1 more than its cube?

46. (a) Show that the absolute value function is
continuous everywhere.

(b) Prove that if is a continuous function on an interval,
then so is .

(c) Is the converse of the statement in part (b) also true? 
In other words, if is continuous, does it follow that 

is continuous? If so, prove it. If not, find a counter-
example.

47. A Tibetan monk leaves the monastery at 7:00 A.M. and 
takes his usual path to the top of the mountain, arriving at
7:00 P.M. The following morning, he starts at 7:00 A.M. at
the top and takes the same path back, arriving at the mon-
astery at 7:00 P.M. Use the Intermediate Value Theorem to
show that there is a point on the path that the monk will
cross at exactly the same time of day on both days.

f
� f �

� f �
f

F�x� � � x �
45.

lim
h l

 

0
 sin�a � h� � sin a

36. ,

37. ,

38. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

39–40 ■ (a) Prove that the equation has at least one real root.
(b) Use your calculator to find an interval of length 0.01 that
contains a root.

39.

40.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 41–42 ■ (a) Prove that the equation has at least one real root.
(b) Use your graphing device to find the root correct to three
decimal places.

42.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

43. To prove that sine is continuous we need to show that
for every real number a. If we let

, then and . So an hl 0&?xl ax � a � hh � x � a
lim xl a sin x � sin a

arctan x � 1 � x100e�x�100 � 0.01x241.

x 5 � x 2 � 2x � 3 � 0

e x � 2 � x

�1, 2�ln x � e�x

�0, 1�cos x � x

�1, 2�x 2 � sx � 1
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x

�1 1
�0.5 4
�0.2 25
�0.1 100
�0.05 400
�0.01 10,000
�0.001 1,000,000

1

x2



To indicate this kind of behavior we use the notation

| This does not mean that we are regarding as a number. Nor does it mean that the
limit exists. It simply expresses the particular way in which the limit does not exist:

can be made as large as we like by taking close enough to 0.
In general, we write symbolically

to indicate that the values of become larger and larger (or “increase without
bound”) as approaches .

Definition The notation

means that the values of can be made arbitrarily large (as large as we
please) by taking sufficiently close to (on either side of ) but not equal to .

Another notation for is

as

Again, the symbol is not a number, but the expression is often read
as

“the limit of , as approaches , is infinity”

or “ becomes infinite as approaches ”

or “ increases without bound as approaches ”

This definition is illustrated graphically in Figure 2.
Similarly, as shown in Figure 3,

means that the values of are as large negative as we like for all values of that
are sufficiently close to , but not equal to .

The symbol can be read as “the limit of , as approaches
, is negative infinity” or “ decreases without bound as approaches .” As an

example we have

Similar definitions can be given for the one-sided infinite limits

lim
x l

 

a�
 f �x� � �
lim

x l
 

a�
 f �x� � �


lim
x l

 

a�
 f �x� � 
lim

x l
 

a�
 f �x� � 


lim
x l

 

0
 
�

1

x 2� � �


axf �x�a
xf �x�limx l a f �x� � �


aa
xf �x�

lim
x l

 

a
 f �x� � �


axf �x�

axf �x�

axf �x�

lim xl a f �x� � 



xl af �x�l 


limx l a f �x� � 


aaax
f �x�

lim
x l

 

a
 f �x� � 


1

ax
f �x�

lim
x l

 

a
 f �x� � 


x1�x 2




lim
x l

 

0
 

1

x 2 � 
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▲ A more precise version of Definition 1
is given in Appendix D, Exercise 16.

FIGURE 2
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y=ƒ
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0 x

y

x=a

y=ƒ
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FIGURE 3
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remembering that “ ” means that we consider only values of that are less than
, and similarly “ ” means that we consider only . Illustrations of these

four cases are given in Figure 4.

Definition The line is called a vertical asymptote of the curve
if at least one of the following statements is true:

For instance, the -axis is a vertical asymptote of the curve because
. In Figure 4 the line is a vertical asymptote in each of the 

four cases shown.

EXAMPLE 1 Find and .

SOLUTION If is close to 3 but larger than 3, then the denominator is a small
positive number and is close to 6. So the quotient is a large positive
number. Thus, intuitively we see that

Likewise, if is close to 3 but smaller than 3, then is a small negative number
but is still a positive number (close to 6). So is a numerically large
negative number. Thus

The graph of the curve is given in Figure 5. The line is a
vertical asymptote.

Two familiar functions whose graphs have vertical asymptotes are and
. From Figure 6 we see thaty � ln x

y � tan x

x � 3y � 2x��x � 3�

  lim
x l

 

3�
 

2x

x � 3
� �


2x��x � 3�2x
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and so the line (the y-axis) is a vertical asymptote. In fact, the same is true for
provided that . (See Figures 11 and 12 in Section 1.6.)

Figure 7 shows that

and so the line is a vertical asymptote. In fact, the lines ,
n an integer, are all vertical asymptotes of .

EXAMPLE 2 Find .

SOLUTION We introduce a new variable, . Then and 
as because is a continuous function. So, by (3),

we have

Limits at Infinity

In computing infinite limits, we let approach a number and the result was that the
values of became arbitrarily large (positive or negative). Here we let become arbi-
trarily large (positive or negative) and see what happens to .

Let’s begin by investigating the behavior of the function defined by

as becomes large. The table at the left gives values of this function correct to six 
decimal places, and the graph of has been drawn by a computer in Figure 8.
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■ The problem-solving strategy for
Example 2 is Introduce Something 
Extra (see page 88). Here, the some-
thing extra, the auxiliary aid, is the 
new variable .t

x

0 �1
0
0.600000
0.800000
0.882353
0.923077
0.980198
0.999200
0.999800
0.999998�1000

�100
�50
�10
�5
�4
�3
�2
�1

f �x�



As grows larger and larger you can see that the values of get closer and
closer to 1. In fact, it seems that we can make the values of as close as we like to
1 by taking sufficiently large. This situation is expressed symbolically by writing

In general, we use the notation

to indicate that the values of approach as becomes larger and larger.

Definition Let be a function defined on some interval . Then

means that the values of can be made as close to as we like by taking 
sufficiently large.

Another notation for is

as

The symbol does not represent a number. Nonetheless, the expression
is often read as 

“the limit of , as approaches infinity, is ”

or “the limit of , as becomes infinite, is ”

or “the limit of , as increases without bound, is ”

The meaning of such phrases is given by Definition 4.
Geometric illustrations of Definition 4 are shown in Figure 9. Notice that there are

many ways for the graph of to approach the line (which is called a horizon-
tal asymptote).

Referring back to Figure 8, we see that for numerically large negative values of ,
the values of are close to 1. By letting decrease through negative values with-xf �x�

x

x
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0

y=ƒ

y=L
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Examples illustrating lim ƒ=L
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▲ A more precise version of Definition 4
is given in Appendix D.



out bound, we can make as close to 1 as we like. This is expressed by writing

In general, as shown in Figure 10, the notation

means that the values of can be made arbitrarily close to by taking sufficiently
large negative.

Again, the symbol does not represent a number, but the expression
is often read as

“the limit of , as x approaches negative infinity, is L”

Definition The line is called a horizontal asymptote of the curve
if either 

For instance, the curve illustrated in Figure 8 has the line as a horizontal
asymptote because 

An example of a curve with two horizontal asymptotes is . (See Figure 11.)
In fact,

so both of the lines and are horizontal asymptotes. (This follows
from the fact that the lines are vertical asymptotes of the graph of tan.)

EXAMPLE 3 Find the infinite limits, limits at infinity, and asymptotes for the function
whose graph is shown in Figure 12.

SOLUTION We see that the values of become large as from both sides, so

Notice that becomes large negative as x approaches 2 from the left, but large
positive as x approaches 2 from the right. So

Thus, both of the lines and are vertical asymptotes.x � 2x � �1
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As x becomes large, we see that approaches 4. But as x decreases through
negative values, approaches 2. So

This means that both and are horizontal asymptotes.

EXAMPLE 4 Find and .

SOLUTION Observe that when is large, is small. For instance,

In fact, by taking large enough, we can make as close to 0 as we please.
Therefore, according to Definition 4, we have 

Similar reasoning shows that when is large negative, is small negative, so we
also have

It follows that the line (the -axis) is a horizontal asymptote of the curve
. (This is an equilateral hyperbola; see Figure 13.)

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infin-
ity. It can be proved that the Limit Laws listed in Section 2.3 (with the exception of
Laws 9 and 10) are also valid if “ ” is replaced by “ ” or “ .” In
particular, if we combine Law 6 with the results of Example 4 we obtain the follow-
ing important rule for calculating limits.

If is a positive integer, then

EXAMPLE 5 Evaluate

SOLUTION To evaluate the limit at infinity of a rational function, we first divide both
the numerator and denominator by the highest power of that occurs in the denomi-
nator. (We may assume that , since we are interested only in large values of .) xx � 0

x
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5≈+4x+1

In this case the highest power of is , and so, using the Limit Laws, we have

[by (7)]

A similar calculation shows that the limit as is also . Figure 14 illustrates
the results of these calculations by showing how the graph of the given rational
function approaches the horizontal asymptote .

EXAMPLE 6 Compute .

SOLUTION We first multiply numerator and denominator by the conjugate radical:

The Squeeze Theorem could be used to show that this limit is 0. But an easier
method is to divide numerator and denominator by . Doing this and remembering
that for , we obtain

Figure 15 illustrates this result.
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The graph of the natural exponential function has the line y� 0 (the x-axis)
as a horizontal asymptote. (The same is true of any exponential function with base

.) In fact, from the graph in Figure 16 and the corresponding table of values, we
see that

Notice that the values of approach 0 very rapidly.

EXAMPLE 7 Evaluate .

SOLUTION If we let , we know from Example 4 that as .
Therefore, by (8),

EXAMPLE 8 Evaluate .

SOLUTION As x increases, the values of sin x oscillate between 1 and �1 infinitely
often. Thus, does not exist.

Infinite Limits at Infinity

The notation

is used to indicate that the values of become large as becomes large. Similar
meanings are attached to the following symbols:

From Figures 16 and 17 we see that

but, as Figure 18 demonstrates, becomes large as at a much faster rate
than .y � x 3
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EXAMPLE 9 Find .

| SOLUTION Note that we cannot write

The Limit Laws can’t be applied to infinite limits because is not a number 
( can’t be defined). However, we can write

because both and become arbitrarily large.

EXAMPLE 10 Find .

SOLUTION We divide numerator and denominator by (the highest power of that
occurs in the denominator):

because and as .xl 
3�x � 1l �1x � 1l 
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1. Explain in your own words the meaning of each of the 
following.
(a) (b)

(c) (d)

(a) Can the graph of intersect a vertical asymp-
tote? Can it intersect a horizontal asymptote? Illustrate
by sketching graphs.

(b) How many horizontal asymptotes can the graph of
have? Sketch graphs to illustrate the 

possibilities.

3. For the function whose graph is given, state the following.

x

y

1

1

f

y � f �x�

y � f �x�2.
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2
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(a) (b)

(c) (d)

(e) (f) The equations of the asymptotes

4. For the function t whose graph is given, state the following.

(a) (b)

(c) (d)

(e) (f) The equations of the asymptotes
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24.

25. 26.

27.

29.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 30. (a) Graph the function

How many horizontal and vertical asymptotes do you
observe? Use the graph to estimate the values of the
limits

and

(b) By calculating values of , give numerical estimates
of the limits in part (a).

(c) Calculate the exact values of the limits in part (a). Did
you get the same value or different values for these two
limits? [In view of your answer to part (a), you might
have to check your calculation for the second limit.]

; 31–32 ■ Find the horizontal and vertical asymptotes of each 
curve. Check your work by graphing the curve and estimating
the asymptotes.

32.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 33. (a) Estimate the value of

by graphing the function .
(b) Use a table of values of to guess the value of the

limit.
(c) Prove that your guess is correct.

; 34. (a) Use a graph of

to estimate the value of to one decimal
place.

(b) Use a table of values of to estimate the limit to four
decimal places.

(c) Find the exact value of the limit.
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 (s9x 2 � x � 3x)23.

5–8 ■ Sketch the graph of an example of a function that 
satisfies all of the given conditions.

5. is odd

6.

8.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 9. Guess the value of the limit

by evaluating the function for 
and . Then use a graph of 

to support your guess.

10. Determine and 

(a) by evaluating for values of that
approach 1 from the left and from the right,

(b) by reasoning as in Example 1, and

; (c) from a graph of .

; 11. Use a graph to estimate all the vertical and horizontal
asymptotes of the curve

; 12. (a) Use a graph of

to estimate the value of correct to two 
decimal places.

(b) Use a table of values of to estimate the limit to 
four decimal places.

13–29 ■ Find the limit.
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by graphing both functions in the viewing rectangles
by and by .

(b) Two functions are said to have the same end behavior if
their ratio approaches 1 as . Show that P and Q
have the same end behavior.

Let and be polynomials. Find

if the degree of is (a) less than the degree of and 
(b) greater than the degree of .

40. Make a rough sketch of the curve ( an integer) for
the following five cases:

(i) (ii) , odd
(iii) , even (iv) , odd
(v) , even

Then use these sketches to find the following limits.
(a) (b)

(c) (d)

Find if

for all .

42. In the theory of relativity, the mass of a particle with 
velocity is

where is the rest mass of the particle and is the speed
of light. What happens as ?

43. (a) A tank contains 5000 L of pure water. Brine that con-
tains 30 g of salt per liter of water is pumped into the
tank at a rate of 25 L�min. Show that the concentration
of salt after minutes (in grams per liter) is

(b) What happens to the concentration as ?

44. In Chapter 7 we will be able to show, under certain assump-
tions, that the velocity of a falling raindrop at time t is

where t is the acceleration due to gravity and is the ter-
minal velocity of the raindrop.
(a) Find .

; (b) Graph if and . How long
does it take for the velocity of the raindrop to reach 99%
of its terminal velocity?
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��10,000, 10,000���10, 10���2, 2���2, 2�
35. Match each function in (a)–(f) with its graph (labeled

I–VI). Give reasons for your choices.

(a) (b)

(c) (d)

(e) (f)

36. Find a formula for a function that has vertical asymptotes
and and horizontal asymptote .

37. Find a formula for a function that satisfies the following 
conditions:

, , ,

,

; 38. By the end behavior of a function we mean a description of
what happens to its values as and as .
(a) Describe and compare the end behavior of the 

functions

Q�x� � 3x 5P�x� � 3x 5 � 5x 3 � 2x

x l �
x l 


lim
x l

 

3�
 f �x� � �
lim

x l
 

3�
 f �x� � 


f �2� � 0lim
x l

 

0
 f �x� � �
lim

x l
 

�

 f �x� � 0

f

y � 1x � 3x � 1

x0

y

1 x0

y

1

III IV

x0

y

1 x0

y

1

V VI

x0

y

1 x0

y

1

I II

y �
x

x 2 � 1
y �

x

�x � 1�2

y �
1

x 2 � 1
y �

1

�x � 1�2

y �
x

x � 1
y �

1

x � 1
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; (b) By graphing the function in part (a) and the line 
on a common screen, find a number such that

when

What if 1.9 is replaced by 1.99?

x � N
4x 2 � 5x

2x 2 � 1
� 1.9

N
y � 1.945. (a) Show that .

; (b) By graphing and y � 0.1 on a common
screen, discover how large you need to make x so that

.
(c) Can you solve part (b) without using a graphing device?

46. (a) Show that .lim
x l

 



 
4x 2 � 5x

2x 2 � 1
� 2

e �x�10 � 0.1

y � e �x�10
limx l 
 e�x�10 � 0
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Tangents, Velocities, and Other Rates of Change ● ● ● ● ● ● ●

In Section 2.1 we guessed the values of slopes of tangent lines and velocities on the
basis of numerical evidence. Now that we have defined limits and have learned tech-
niques for computing them, we return to the tangent and velocity problems with the
ability to calculate slopes of tangents, velocities, and other rates of change.

Tangents

If a curve has equation and we want to find the tangent to at the point
, then we consider a nearby point , where , and compute the

slope of the secant line :

Then we let approach along the curve by letting approach . If 
approaches a number , then we define the tangent t to be the line through with
slope . (This amounts to saying that the tangent line is the limiting position of the
secant line as approaches . See Figure 1.)

Definition The tangent line to the curve at the point is
the line through with slope

provided that this limit exists.

m � lim
x l

 

a
 
 f �x� � f �a�

x � a

P
P�a, f �a��y � f �x�1

FIGURE 1

0 x

y

P

t
Q

Q

Q

0 x

y

a x

P{a, f(a)}

ƒ-f(a)

x-a

Q{x, ƒ}

PQPQ
m

Pm
mPQaxCPQ

mPQ �
 f �x� � f �a�

x � a

PQ
x � aQ�x, f �x��P�a, f �a��

Cy � f �x�C

2.6



In our first example we confirm the guess we made in Example 1 in Section 2.1.

EXAMPLE 1 Find an equation of the tangent line to the parabola at the 
point .

SOLUTION Here we have and , so the slope is

Using the point-slope form of the equation of a line, we find that an equation of the
tangent line at is

We sometimes refer to the slope of the tangent line to a curve at a point as the slope
of the curve at the point. The idea is that if we zoom in far enough toward the point,
the curve looks almost like a straight line. Figure 2 illustrates this procedure for 
the curve in Example 1. The more we zoom in, the more the parabola looks
like a line. In other words, the curve becomes almost indistinguishable from its tan-
gent line.

There is another expression for the slope of a tangent line that is sometimes easier
to use. Let

Then

so the slope of the secant line is

mPQ �
 f �a � h� � f �a�

h

PQ

x � a � h

h � x � a

FIGURE 2
Zooming in toward the point (1, 1) on the parabola y=≈

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1

y � x 2

y � 2x � 1ory � 1 � 2�x � 1�

�1, 1�

 � lim
x l

 

1
 �x � 1� � 1 � 1 � 2

 � lim
x l

 

1
 
�x � 1��x � 1�

x � 1

 m � lim
x l

 

1
 
 f �x� � f �1�

x � 1
� lim

x l
 

1
 
x 2 � 1

x � 1

f �x� � x 2a � 1

P�1, 1�
y � x 2
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▲ Point-slope form for a line through the
point with slope :

y � y1 � m�x � x1�

m�x1, y1�



(See Figure 3 where the case is illustrated and is to the right of . If it hap-
pened that , however, would be to the left of .)

Notice that as approaches , approaches (because ) and so the
expression for the slope of the tangent line in Definition 1 becomes

EXAMPLE 2 Find an equation of the tangent line to the hyperbola at the
point .

SOLUTION Let . Then the slope of the tangent at is

Therefore, an equation of the tangent at the point is 

which simplifies to

The hyperbola and its tangent are shown in Figure 4.

Velocities

In Section 2.1 we investigated the motion of a ball dropped from the CN Tower and
defined its velocity to be the limiting value of average velocities over shorter and
shorter time periods.

In general, suppose an object moves along a straight line according to an equation
of motion , where is the displacement (directed distance) of the object from
the origin at time . The function that describes the motion is called the position ft

ss � f �t�

x � 3y � 6 � 0

y � 1 � �
1
3 �x � 3�

�3, 1�

 � lim
h l

 

0
 

�h

h�3 � h�
� lim

h l
 

0
 �

1

3 � h
� �

1

3

 � lim
h l

 

0
 

3

3 � h
� 1

h
� lim

h l
 

0
 

3 � �3 � h�
3 � h

h

 m � lim
h l

 

0
 
 f �3 � h� � f �3�

h

�3, 1�f �x� � 3�x

�3, 1�
y � 3�x

m � lim
h l

 

0
 
 f �a � h� � f �a�

h
2

h � x � a0hax

0 x

y

a a+h

P{a, f(a)}
f(a+h)-f(a)

h

Q{a+h, f(a+h)}

t

FIGURE 3
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FIGURE 4
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function of the object. In the time interval from to the change in
position is . (See Figure 5.) The average velocity over this time inter-
val is

which is the same as the slope of the secant line in Figure 6.

Now suppose we compute the average velocities over shorter and shorter time
intervals . In other words, we let approach . As in the example of the
falling ball, we define the velocity (or instantaneous velocity) at time to
be the limit of these average velocities:

This means that the velocity at time is equal to the slope of the tangent line at
(compare Equations 2 and 3).
Now that we know how to compute limits, let’s reconsider the problem of the fall-

ing ball.

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the 
CN Tower, 450 m above the ground.
(a) What is the velocity of the ball after 5 seconds?
(b) How fast is the ball traveling when it hits the ground?

SOLUTION We first use the equation of motion to find the velocity
after seconds:

(a) The velocity after 5 s is m�s.

(b) Since the observation deck is 450 m above the ground, the ball will hit the
ground at the time when , that is,

This gives

The velocity of the ball as it hits the ground is therefore

v�t1� � 9.8t1 � 9.8�450

4.9
� 94 m�s

t1 ��450

4.9
� 9.6 sandt 2

1 �
450

4.9

 4.9t 2
1 � 450

s�t1� � 450t1

v�5� � �9.8��5� � 49

 � lim
h l

 

0
 4.9�2a � h� � 9.8a

 � lim
h l

 

0
 
4.9�a 2 � 2ah � h 2 � a 2 �

h
� lim

h l
 

0
 
4.9�2ah � h 2 �

h

 v�a� � lim
h l

 

0
 
 f �a � h� � f �a�

h
� lim

h l
 

0
 
4.9�a � h�2 � 4.9a 2

h

av�a�
s � f �t� � 4.9t 2

P
t � a

v�a� � lim
h l

 

0
 
 f �a � h� � f �a�

h
3

t � av�a�
0h�a, a � h�

PQ

average velocity �
displacement

time
�

 f �a � h� � f �a�
h

f �a � h� � f �a�
t � a � ht � a
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▲ Recall from Section 2.1: The distance
(in meters) fallen after seconds is .4.9t 2t

FIGURE 5
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Other Rates of Change

Suppose is a quantity that depends on another quantity . Thus, is a function of 
and we write . If changes from to , then the change in (also called the
increment of ) is

and the corresponding change in is

The difference quotient

is called the average rate of change of y with respect to x over the interval 
and can be interpreted as the slope of the secant line in Figure 7.

By analogy with velocity, we consider the average rate of change over smaller and
smaller intervals by letting approach and therefore letting approach . The
limit of these average rates of change is called the (instantaneous) rate of change of
y with respect to x at , which is interpreted as the slope of the tangent to the
curve at :

EXAMPLE 4 Temperature readings (in degrees Celsius) were recorded every hour
starting at midnight on a day in April in Whitefish, Montana. The time is measured
in hours from midnight. The data are given in the table at the left.
(a) Find the average rate of change of temperature with respect to time

(i) from noon to 3 P.M.
(ii) from noon to 2 P.M.

(iii) from noon to 1 P.M.
(b) Estimate the instantaneous rate of change at noon.

SOLUTION
(a) (i) From noon to 3 P.M. the temperature changes from 14.3 °C to 18.2 °C, so

while the change in time is h. Therefore, the average rate of change
of temperature with respect to time is

(ii) From noon to 2 P.M. the average rate of change is 


T


x
�

T�14� � T�12�
14 � 12

�
17.3 � 14.3

2
� 1.5 �C�h


T


x
�

3.9

3
� 1.3 �C�h


x � 3


T � T�15� � T�12� � 18.2 � 14.3 � 3.9 �C

x
T

� lim
x2

 l
 

x1

 
 f �x2� � f �x1�

x2 � x1
 instantaneous rate of change � lim


x l
 

0
 

y


x
4

P�x1, f �x1��y � f �x�
x � x1

0
xx1x2

PQ
�x1, x2�


y


x
�

 f �x2� � f �x1�
x2 � x1


y � f �x2 � � f �x1�

y


x � x2 � x1

x
xx2x1xy � f �x�

xyxy

. .

0 6.5 13 16.0
1 6.1 14 17.3
2 5.6 15 18.2
3 4.9 16 18.8
4 4.2 17 17.6
5 4.0 18 16.0
6 4.0 19 14.1
7 4.8 20 11.5
8 6.1 21 10.2
9 8.3 22 9.0

10 10.0 23 7.9
11 12.1 24 7.0
12 14.3

T ��C�x �h�T ��C�x �h�

▲ A Note on Units
The units for the average rate of change

are the units for divided by
the units for , namely, degrees Celsius
per hour. The instantaneous rate of
change is the limit of the average rates
of change, so it is measured in the same
units: degrees Celsius per hour.


x

T
T�
x
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average rate of change � mPQ

instantaneous rate of change �
slope of tangent at P

0 x
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(iii) From noon to 1 P.M. the average rate of change is 

(b) We plot the given data in Figure 8 and use them to sketch a smooth curve that
approximates the graph of the temperature function. Then we draw the tangent at the
point where and, after measuring the sides of triangle , we estimate
that the slope of the tangent line is

Therefore, the instantaneous rate of change of temperature with respect to time at
noon is about 1.9 °C�h.

The velocity of a particle is the rate of change of displacement with respect to time.
Physicists are interested in other rates of change as well—for instance, the rate of
change of work with respect to time (which is called power). Chemists who study a
chemical reaction are interested in the rate of change in the concentration of a reac-
tant with respect to time (called the rate of reaction). A steel manufacturer is inter-
ested in the rate of change of the cost of producing tons of steel per day with respect
to (called the marginal cost). A biologist is interested in the rate of change of the
population of a colony of bacteria with respect to time. In fact, the computation of
rates of change is important in all of the natural sciences, in engineering, and even in
the social sciences. Further examples will be given in Section 3.3.

All these rates of change can be interpreted as slopes of tangents. This gives added
significance to the solution of the tangent problem. Whenever we solve a problem
involving tangent lines, we are not just solving a problem in geometry. We are also
implicitly solving a great variety of problems involving rates of change in science and
engineering.

x
x

FIGURE 8
0 x

T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2

4

6

8

10

12

14

16

18

C

P

A

B

� BC �
� AC � �

10.3

5.5
� 1.9

ABCx � 12P

 �
16.0 � 14.3

1
� 1.7 �C�h

 

T


x
�

T�13� � T�12�
13 � 12

SECTION 2.6 TANGENTS, VELOCITIES, AND OTHER RATES OF CHANGE ◆ 147

▲ Another method is to average 
the slopes of two secant lines. See
Example 2 in Section 2.1.
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10.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

(a) Find the slope of the tangent to the curve
at the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

12. (a) Find the slope of the tangent to the curve at
the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

13. The graph shows the position function of a car. Use the
shape of the graph to explain your answers to the following
questions.
(a) What was the initial velocity of the car?
(b) Was the car going faster at or at ?
(c) Was the car slowing down or speeding up at , and ?
(d) What happened between and ?

14. Valerie is driving along a highway. Sketch the graph of the
position function of her car if she drives in the following
manner: At time t � 0, the car is at mile marker 15 and is
traveling at a constant speed of 55 mi�h. She travels at this
speed for exactly an hour. Then the car slows gradually over
a 2-minute period as Valerie comes to a stop for dinner.
Dinner lasts 26 min; then she restarts the car, gradually
speeding up to 65 mi�h over a 2-minute period. She drives
at a constant 65 mi�h for two hours and then over a 
3-minute period gradually slows to a complete stop.

If a ball is thrown into the air with a velocity of 40 ft�s, its
height (in feet) after seconds is given by .
Find the velocity when .

16. If an arrow is shot upward on the moon with a velocity of
58 m�s, its height (in meters) after seconds is given by

.
(a) Find the velocity of the arrow after one second.
(b) Find the velocity of the arrow when .
(c) When will the arrow hit the moon?
(d) With what velocity will the arrow hit the moon?

t � a

H � 58t � 0.83t 2
t

t � 2
y � 40t � 16t 2t

15.

t

s

A

0

B

C

D E

ED
CA, B

CB

(4, 12 )
�1, 1�

x � a
y � 1�sx

�2, 1�
�1, �2�

x � ay � x 3 � 4x � 1
11.

�0, 0�y � 2x��x � 1�2,1. A curve has equation .
(a) Write an expression for the slope of the secant line

through the points and .
(b) Write an expression for the slope of the tangent line 

at P.

2. Suppose an object moves with position function .
(a) Write an expression for the average velocity of the

object in the time interval from to .
(b) Write an expression for the instantaneous velocity at 

time .

Consider the slope of the given curve at each of the five
points shown. List these five slopes in decreasing order and
explain your reasoning.

; 4. Graph the curve in the viewing rectangles by
, by , and by .

What do you notice about the curve as you zoom in toward
the point ?

5. (a) Find the slope of the tangent line to the parabola
at the point 

(i) using Definition 1
(ii) using Equation 2

(b) Find an equation of the tangent line in part (a).

; (c) Graph the parabola and the tangent line. As a check on
your work, zoom in toward the point (�3, 3) until the
parabola and the tangent line are indistinguishable.

6. (a) Find the slope of the tangent line to the curve at
the point 
(i) using Definition 1

(ii) using Equation 2
(b) Find an equation of the tangent line in part (a).

; (c) Graph the curve and the tangent line in successively
smaller viewing rectangles centered at (�1, �1) until
the curve and the line appear to coincide.

7–10 ■ Find an equation of the tangent line to the curve at the
given point.

7.

8.

(1, 1�y � sx ,9.

��1, 3�y � 2x 3 � 5x,

�3, 2�y � �x � 1���x � 2�,

��1, �1�
y � x 3

��3, 3�y � x 2 � 2x

�0, 1�

�0.9, 1.1���0.1, 0.1��0.5, 1.5���0.5, 0.5��0, 2�
��1, 1�y � e x

A

B

C

D

E

0 x

y

3.

t � a

t � a � ht � a

s � f �t�

Q�x, f �x��P�3, f �3��

y � f �x�
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(a) Find the average rate of growth
(i) from 1992 to 1996

(ii) from 1994 to 1996
(iii) from 1996 to 1998
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 1996 by 
taking the average of two average rates of change. What
are its units?

(c) Estimate the instantaneous rate of growth in 1996 by
measuring the slope of a tangent.

23. The number (in thousands) of cellular phone subscribers
in Malaysia is shown in the table. (Midyear estimates are
given.)

(a) Find the average rate of growth
(i) from 1995 to 1997

(ii) from 1995 to 1996
(iii) from 1994 to 1995
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 1995 by 
taking the average of two average rates of change. What
are its units?

(c) Estimate the instantaneous rate of growth in 1995 by
measuring the slope of a tangent.

24. The number of locations of a popular coffeehouse chain
is given in the table. (The number of locations as of June 30
are given.)

(a) Find the average rate of growth
(i) from 1996 to 1998

(ii) from 1996 to 1997
(iii) from 1995 to 1996
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 1996 by 
taking the average of two average rates of change. What
are its units?

(c) Estimate the instantaneous rate of growth in 1996 by
measuring the slope of a tangent.

The cost (in dollars) of producing units of a certain 
commodity is .
(a) Find the average rate of change of with respect to 

when the production level is changed
(i) from to 

(ii) from to 
(b) Find the instantaneous rate of change of with respect

to when . (This is called the marginal cost. Its
significance will be explained in Section 3.3.)

x � 100x
C

x � 101x � 100
x � 105x � 100

xC
C�x� � 5000 � 10x � 0.05x 2

x25.

N

N

17. The displacement (in meters) of a particle moving in a
straight line is given by the equation of motion

, where is measured in seconds. Find 
the velocity of the particle at times ,
and .

18. The displacement (in meters) of a particle moving in a
straight line is given by , where is meas-
ured in seconds.
(a) Find the average velocities over the following time

intervals:
(i) (ii)

(iii) (iv)
(b) Find the instantaneous velocity when .
(c) Draw the graph of as a function of and draw the

secant lines whose slopes are the average velocities in
part (a) and the tangent line whose slope is the instanta-
neous velocity in part (b).

A warm can of soda is placed in a cold refrigerator. Sketch
the graph of the temperature of the soda as a function of
time. Is the initial rate of change of temperature greater or
less than the rate of change after an hour?

20. A roast turkey is taken from an oven when its temperature
has reached 185 °F and is placed on a table in a room where
the temperature is 75 °F. The graph shows how the tempera-
ture of the turkey decreases and eventually approaches 
room temperature. (In Section 7.4 we will be able to use
Newton’s Law of Cooling to find an equation for as a
function of time.) By measuring the slope of the tangent,
estimate the rate of change of the temperature after an hour.

21. (a) Use the data in Example 4 to find the average rate of
change of temperature with respect to time

(i) from 8 P.M. to 11 P.M.
(ii) from 8 P.M. to 10 P.M.

(iii) from 8 P.M. to 9 P.M.
(b) Estimate the instantaneous rate of change of with

respect to time at 8 P.M. by measuring the slope of a 
tangent.

22. The population P (in thousands) of Belgium from 1992 to
2000 is shown in the table. (Midyear estimates are given.)

T

T  (°F)

0

P

30 60 90 120 150

100

200

t
(min)

T

19.

ts
t � 4

�4, 4.5��4, 5�
�3.5, 4��3, 4�

ts � t 2 � 8t � 18

t � 3
t � a, t � 1, t � 2

ts � 4t 3 � 6t � 2
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Year 1992 1994 1996 1998 2000

P 10,036 10,109 10,152 10,175 10,186

Year 1993 1994 1995 1996 1997

N 304 572 873 1513 2461

Year 1994 1995 1996 1997 1998

N 425 676 1015 1412 1886
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In Section 2.6 we defined the slope of the tangent to a curve with equation 
at the point where to be

We also saw that the velocity of an object with position function at time 
is

In fact, limits of the form

arise whenever we calculate a rate of change in any of the sciences or engineering,
such as a rate of reaction in chemistry or a marginal cost in economics. Since this type
of limit occurs so widely, it is given a special name and notation.

Definition The derivative of a function at a number , denoted by
, is

if this limit exists.

If we write , then and approaches if and only if ap-
proaches . Therefore, an equivalent way of stating the definition of the derivative, as
we saw in finding tangent lines, is

EXAMPLE 1 Find the derivative of the function at the number .af �x� � x 2 � 8x � 9

f ��a� � lim
xl a

 
 f �x� � f �a�

x � a
3

a
x0hh � x � ax � a � h

f ��a� � lim
h l

 

0
 
 f �a � h� � f �a�

h

f ��a�
af2

lim
h l

 

0
 
 f �a � h� � f �a�

h

v�a� � lim
h l

 

0
 
 f �a � h� � f �a�

h

t � as � f �t�

m � lim
h l

 

0
 
 f �a � h� � f �a�

h
1

x � a
y � f �x�

2.7

▲ is read “ prime of .”aff ��a�

Find the rate at which the water is flowing out of the tank
(the instantaneous rate of change of with respect to ) as a
function of t. What are its units? For times t � 0, 10, 20, 30,
40, 50, and 60 min, find the flow rate and the amount of
water remaining in the tank. Summarize your findings in a
sentence or two. At what time is the flow rate the greatest?
The least?

tV
26. If a cylindrical tank holds 100,000 gallons of water, which

can be drained from the bottom of the tank in an hour, then
Torricelli’s Law gives the volume of water remaining in
the tank after minutes as

0 � t � 60V�t� � 100,000
1 �
t

60�2

t
V
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SOLUTION From Definition 2 we have

Interpretation of the Derivative as the Slope of a Tangent

In Section 2.6 we defined the tangent line to the curve at the point 
to be the line that passes through and has slope given by Equation 1. Since, by
Definition 2, this is the same as the derivative , we can now say the following.

The tangent line to at is the line through whose
slope is equal to , the derivative of at .

Thus, the geometric interpretation of a derivative [as defined by either (2) or (3)] is as
shown in Figure 1.

If we use the point-slope form of the equation of a line, we can write an equation
of the tangent line to the curve at the point :

EXAMPLE 2 Find an equation of the tangent line to the parabola at
the point .

SOLUTION From Example 1 we know that the derivative of at the
number is . Therefore, the slope of the tangent line at is �3, �6�f ��a� � 2a � 8a

f �x� � x 2 � 8x � 9

�3, �6�
y � x 2 � 8x � 9

y � f �a� � f ��a��x � a�

�a, f �a��y � f �x�

FIGURE 1
Geometric interpretation

of the derivative

0
x

y
y=ƒ

ƒ-f(a)

x-a

xa

P

(b) f ª(a)=lim

=slope of tangent at P
x=a

ƒ-f(a)

x-a

0
x

y
y=ƒ

f(a+h)-f(a)

h

a+ha

P

h=0
(a) f ª(a)=lim

=slope of tangent at P

f(a+h)-f(a)

h

=slope of curve at P=slope of curve at P

aff ��a�
�a, f �a���a, f �a��y � f �x�

f ��a�
mP

P�a, f �a��y � f �x�

 � 2a � 8

 � lim
h l

 

0
 
2ah � h 2 � 8h

h
� lim

h l
 

0
 �2a � h � 8�

 � lim
h l

 

0
 
a 2 � 2ah � h 2 � 8a � 8h � 9 � a 2 � 8a � 9

h

 � lim
h l

 

0
 
��a � h�2 � 8�a � h� � 9� � �a 2 � 8a � 9�

h

 f ��a� � lim
h l

 

0
 
 f �a � h� � f �a�

h
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. Thus, an equation of the tangent line, shown in Figure 2, is

or

EXAMPLE 3 Let . Estimate the value of in two ways:
(a) By using Definition 2 and taking successively smaller values of .
(b) By interpreting as the slope of a tangent and using a graphing calculator to
zoom in on the graph of .

SOLUTION
(a) From Definition 2 we have

Since we are not yet able to evaluate this limit exactly, we use a calculator to
approximate the values of . From the numerical evidence in the table at
the left we see that as approaches , these values appear to approach a number
near 0.69. So our estimate is

(b) In Figure 3 we graph the curve and zoom in toward the point . We
see that the closer we get to , the more the curve looks like a straight line. In
fact, in Figure 3(c) the curve is practically indistinguishable from its tangent line at

. Since the -scale and the -scale are both 0.01, we estimate that the slope of
this line is

So our estimate of the derivative is . In Section 3.5 we will show that,
correct to six decimal places, .

Interpretation of the Derivative as a Rate of Change

In Section 2.6 we defined the instantaneous rate of change of with respect to
at as the limit of the average rates of change over smaller and smaller inter-

vals. If the interval is , then the change in is , the corresponding
change in is


y � f �x2� � f �x1�

y

x � x2 � x1x�x1, x2�

x � x1x
y � f �x�

FIGURE 3 Zooming in on the graph of y=2® near (0, 1)

(0, 1) (0, 1) (0, 1)

(a) �_1, 1� by �0, 2� (b) �_0.5, 0.5� by �0.5, 1.5� (c) �_0.1, 0.1� by �0.9, 1.1�

f ��0� � 0.693147
f ��0� � 0.7

0.14

0.20
� 0.7

yx�0, 1�

�0, 1�
�0, 1�y � 2x

f ��0� � 0.69

0h
�2h � 1��h

f ��0� � lim
h l

 

0
 
 f �h� � f �0�

h
� lim

h l
 

0
 
2h � 1

h

y � 2x
f ��0�

h
f ��0�f �x� � 2x

y � �2xy � ��6� � ��2��x � 3�

f ��3� � 2�3� � 8 � �2
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h

0.1 0.718
0.01 0.696
0.001 0.693
0.0001 0.693

�0.1 0.670
�0.01 0.691
�0.001 0.693
�0.0001 0.693

2h � 1

h

0 x

y

y=≈-8x+9

(3, _6)

y=_2x

FIGURE 2



and

From Equation 3 we recognize this limit as being the derivative of at , that is,
. This gives a second interpretation of the derivative:

The derivative is the instantaneous rate of change of with
respect to when .

The connection with the first interpretation is that if we sketch the curve ,
then the instantaneous rate of change is the slope of the tangent to this curve at the
point where . This means that when the derivative is large (and therefore the
curve is steep, as at the point in Figure 4), the -values change rapidly. When 
the derivative is small, the curve is relatively flat and the -values change slowly.

In particular, if is the position function of a particle that moves along 
a straight line, then is the rate of change of the displacement with respect to 
the time . In other words, is the velocity of the particle at time (see Sec-
tion 2.6). The speed of the particle is the absolute value of the velocity, that is,

EXAMPLE 4 The position of a particle is given by the equation of motion
, where is measured in seconds and in meters. Find the

velocity and the speed after 2 seconds.

SOLUTION The derivative of when is

Thus, the velocity after 2 seconds is , and the speed is
.

EXAMPLE 5 A manufacturer produces bolts of a fabric with a fixed width. The cost of
producing x yards of this fabric is dollars.
(a) What is the meaning of the derivative ? What are its units?
(b) In practical terms, what does it mean to say that ?
(c) Which do you think is greater, or ? What about ?f ��5000�f ��500�f ��50�

f ��1000� � 9
f ��x�

C � f �x�

� f ��2� � � �� 1
9 � � 1

9 m�s
f ��2� � �

1
9 m�s

 � lim
h l

 

0
 

�h

3�3 � h�h
� lim

h l
 

0
 

�1

3�3 � h�
� �

1

9

 � lim
h l

 

0
 

1

3 � h
�

1

3

h
� lim

h l
 

0
 

3 � �3 � h�
3�3 � h�

h

f ��2� � lim
h l

 

0
 
 f �2 � h� � f �2�

h
� lim

h l
 

0
 

1

1 � �2 � h�
�

1

1 � 2

h

t � 2f

sts � f �t� � 1��1 � t�

� f ��a� �.
t � af ��a�t

sf ��a�
s � f �t�

y
yP

x � a

y � f �x�

x � ax
y � f �x�f ��a�

f ��x1�
x1f

� lim
x2

 l
 

x1

 
 f �x2� � f �x1�

x2 � x1
 instantaneous rate of change � lim


x l
 

0
 

y


x
4
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FIGURE 4
The y-values are changing rapidly
at P and slowly at Q.

x

y

P

Q

In Module 2.7 you are asked to
compare and order the slopes of

tangent and secant lines at several points
on a curve.



SOLUTION
(a) The derivative is the instantaneous rate of change of C with respect to x;
that is, means the rate of change of the production cost with respect to the
number of yards produced. (Economists call this rate of change the marginal cost.
This idea is discussed in more detail in Sections 3.3 and 4.7.)

Because

the units for are the same as the units for the difference quotient . Since 
is measured in dollars and in yards, it follows that the units for are

dollars per yard.

(b) The statement that means that, after 1000 yards of fabric have
been manufactured, the rate at which the production cost is increasing is $9�yard.
(When , C is increasing 9 times as fast as x.)

Since is small compared with x � 1000, we could use the approximation

and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.

(c) The rate at which the production cost is increasing (per yard) is probably lower
when x � 500 than when x � 50 (the cost of making the 500th yard is less than the
cost of the 50th yard) because of economies of scale. (The manufacturer makes
more efficient use of the fixed costs of production.) So

But, as production expands, the resulting large-scale operation might become 
inefficient and there might be overtime costs. Thus, it is possible that the rate of
increase of costs will eventually start to rise. So it may happen that

The following example shows how to estimate the derivative of a tabular function,
that is, a function defined not by a formula but by a table of values.

EXAMPLE 6 Let be the population of the United States at time t. The table at the
left gives approximate values of this function by providing midyear population esti-
mates from 1992 to 2000. Interpret and estimate the value of .

SOLUTION The derivative means the rate of change of P with respect to t
when , that is, the rate of increase of the population in 1996.

According to Equation 3,

So we compute and tabulate values of the difference quotient (the average rates of
change) as follows.

P��1996� � lim
tl1996

 
P�t� � P�1996�

t � 1996

t � 1996
P��1996�

P��1996�

P�t�

f ��5000� � f ��500�

f ��50� � f ��500�

f ��1000� �

C


x
�


C

1
� 
C


x � 1
x � 1000

f ��1000� � 9

f ��x�
x
C

C�
xf ��x�

f ��x� � lim

xl 0

 

C


x

f ��x�
f ��x�
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▲ Here we are assuming that the cost
function is well behaved; in other words,

doesn’t oscillate rapidly near
.x � 1000

C�x�

t

1992 255,002,000
1994 260,292,000
1996 265,253,000
1998 270,002,000
2000 274,634,000

P�t�



From this table we see that lies somewhere between 2,480,500 and
2,374,500. [Here we are making the reasonable assumption that the population 
didn’t fluctuate wildly between 1992 and 2000.] We estimate that the rate of
increase of the population of the United States in 1996 was the average of these two
numbers, namely

P��1996� � 2.4 million people�year

P��1996�
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If the tangent line to at (4, 3) passes through the
point (0, 2), find and .

Sketch the graph of a function for which ,
, and .

6. Sketch the graph of a function for which ,
, , and .

7. If , find and use it to find an equation 
of the tangent line to the parabola at the 
point .

8. If , find and use it to find an equation of
the tangent line to the curve at the point .

(a) If , find and use it to find 
an equation of the tangent line to the curve

at the point .

; (b) Illustrate part (a) by graphing the curve and the 
tangent line on the same screen.

10. (a) If , find and use it to find an
equation of the tangent line to the curve 
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

11. Let . Estimate the value of in two ways:
(a) By using Definition 2 and taking successively smaller 

values of .

; (b) By zooming in on the graph of and estimating
the slope.

12. Let . Estimate the value of in two ways:
(a) By using Definition 2 and taking successively smaller 

values of .

; (b) By zooming in on the graph of and estimating
the slope.

y � tan x
h

t����4�t�x� � tan x

y � 3x
h

f ��1�f �x� � 3x

(�1
4 , �1

2 )
y � x��1 � 2x�

G��a�G�x� � x��1 � 2x�

�1, �3�y � x 3 � 5x � 1

F��1�F�x� � x 3 � 5x � 19.

�0, 1�y � 1 � x 3
t��0�t�x� � 1 � x 3

�2, 2�
y � 3x 2 � 5x

f ��2�f �x� � 3x 2 � 5x

t��2� � 1t��1� � 0t��0� � 3
t�0� � 0t

f ��2� � �1f ��1� � 0f ��0� � 3,
f �0� � 0f5.

f ��4�f �4�
y � f �x�4.1. On the given graph of f, mark lengths that represent ,

, , and h. (Choose .) What 

line has slope ?

2. For the function whose graph is shown in Exercise 1,
arrange the following numbers in increasing order and
explain your reasoning:

For the function t whose graph is given, arrange the follow-
ing numbers in increasing order and explain your reasoning:

y=©

1 3 4_1 0 x2

y

0 t���2� t��0� t��2� t��4�

3.

0 f ��2� f �3� � f �2� 1
2 � f �4� � f �2��

f

y=ƒ

0 x2

y

f �2 � h� � f �2�
h

h � 0f �2 � h� � f �2�f �2 � h�
f �2�
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t

1992 2,562,750
1994 2,480,500
1998 2,374,500
2000 2,345,250

P�t� � P�1996�
t � 1996

▲ Another method is to plot the popula-
tion function and estimate the slope of
the tangent line when . (See
Example 4 in Section 2.6.)

t � 1996



31. Let be the temperature (in °C) in Cairo, Egypt, hours
after midnight on July 21, 1999. The table shows values of
this function recorded every two hours. What is the meaning
of ? Estimate its value.

32. The graph shows the influence of the temperature on the
maximum sustainable swimming speed of Coho salmon.
(a) What is the meaning of the derivative ? What are

its units?
(b) Estimate the values of and and interpret

them.

Let be the amount of U.S. cash per capita in circulation
at time t. The table, supplied by the Treasury Department,
gives values of as of June 30 of the specified year.
Interpret and estimate the value of .

34. Life expectancy improved dramatically in the 20th century.
The table gives values of , the life expectancy at birth
(in years) of a male born in the year t in the United States.
Interpret and estimate the values of and .

35–36 ■ Determine whether or not exists.

36.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

f �x� � 	x 2 sin 
1

x
   if x � 0

0 if x � 0

f �x� � 	x sin 
1

x
   if x � 0

0 if x � 0
35.

f ��0�

E��1950�E��1910�

E�t�

C��1980�
C�t�

C�t�33.

200 T (°C)10

S
(cm/s)

20

S��25�S��15�

S��T �
S

T

T ��6�

tT�t�13–18 ■ Find .

13. 14.

16.

17. 18.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

19–24 ■ Each limit represents the derivative of some function 
at some number . State and in each case.

19. 20.

21. 22.

24.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

25–26 ■ A particle moves along a straight line with equation 
of motion , where is measured in meters and in 
seconds. Find the velocity when .

26.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

The cost of producing x ounces of gold from a new gold
mine is dollars.
(a) What is the meaning of the derivative ? What are

its units?
(b) What does the statement mean?
(c) Do you think the values of will increase or

decrease in the short term? What about the long term?
Explain.

28. The number of bacteria after t hours in a controlled labora-
tory experiment is .
(a) What is the meaning of the derivative ? What are

its units?
(b) Suppose there is an unlimited amount of space and

nutrients for the bacteria. Which do you think is larger,
or ? If the supply of nutrients is limited,

would that affect your conclusion? Explain.

29. The fuel consumption (measured in gallons per hour) of a
car traveling at a speed of miles per hour is 
(a) What is the meaning of the derivative ? What are its

units?
(b) Write a sentence (in layman’s terms) that explains the

meaning of the equation .

30. The quantity (in pounds) of a gourmet ground coffee that is
sold by a coffee company at a price of p dollars per pound 
is .
(a) What is the meaning of the derivative ? What are

its units?
(b) Is positive or negative? Explain.f ��8�

f ��8�
Q � f �p�

f ��20� � �0.05

f ��v�
c � f �v�.v

f ��10�f ��5�

f ��5�
n � f �t�

f ��x�
f ��800� � 17

f ��x�
C � f �x�

27.

f �t� � 2t 3 � t � 1f �t� � t 2 � 6t � 525.

t � 2
tss � f �t�

lim
t l

 

1
 
t 4 � t � 2

t � 1
lim
h l

 

0
 
cos�� � h� � 1

h
23.

lim
x l

 

��4
 
tan x � 1

x � ��4
lim
x l

 

5
 
2x � 32

x � 5

lim
h l

 

0
 
s4 16 � h � 2

h
lim
h l

 

0
 
�1 � h�10 � 1

h

afa
f

f �x� � s3x � 1f �x� �
1

sx � 2

f �x� �
x 2 � 1

x � 2
f �t� �

2t � 1

t � 3
15.

f �t� � t 4 � 5tf �x� � 3 � 2x � 4x 2

f ��a�
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t 0 2 4 6 8 10 12 14

T 23 26 29 32 33 33 32 32

t 1960 1970 1980 1990

$177 $265 $571 $1063C�t�

t t

1900 48.3 1950 65.6
1910 51.1 1960 66.6
1920 55.2 1970 67.1
1930 57.4 1980 70.0
1940 62.5 1990 71.8

E�t�E�t�



Early Methods for Finding Tangents

The first person to formulate explicitly the ideas of limits and derivatives was Sir Isaac
Newton in the 1660s. But Newton acknowledged that “if I have seen farther than other 
men, it is because I have stood on the shoulders of giants.” Two of those giants were Pierre
Fermat (1601–1665) and Newton’s teacher at Cambridge, Isaac Barrow (1630–1677). 
Newton was familiar with the methods that these men used to find tangent lines, and their
methods played a role in Newton’s eventual formulation of calculus.

The following references contain explanations of these methods. Read one or more 
of the references and write a report comparing the methods of either Fermat or Barrow to
modern methods. In particular, use the method of Section 2.7 to find an equation of the
tangent line to the curve at the point (1, 3) and show how either Fermat or
Barrow would have solved the same problem. Although you used derivatives and they did
not, point out similarities between the methods.

1. Carl Boyer and Uta Merzbach, A History of Mathematics (New York: John Wiley,
1989), pp. 389, 432.

2. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-
Verlag, 1979), pp. 124, 132.

3. Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York:
Saunders, 1990), pp. 391, 395.

4. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York:
Oxford University Press, 1972), pp. 344, 346.

y � x 3 � 2x

Writing
Project
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The Derivative as a Function ● ● ● ● ● ● ● ● ● ● ● ●

In the preceding section we considered the derivative of a function f at a fixed num-
ber a:

Here we change our point of view and let the number a vary. If we replace a in Equa-
tion 1 by a variable x, we obtain

Given any number x for which this limit exists, we assign to x the number . 
So we can regard as a new function, called the derivative of and defined by Equa-
tion 2. We know that the value of at , , can be interpreted geometrically as the
slope of the tangent line to the graph of at the point .

The function is called the derivative of because it has been “derived” from 
by the limiting operation in Equation 2. The domain of is the set exists
and may be smaller than the domain of .f

��x � f ��x�f �
fff �

�x, f �x��f
f ��x�xf �

ff �
f ��x�

f ��x� � lim
h l

 

0
 
 f �x � h� � f �x�

h
2

f ��a� � lim
h l

 

0
 
 f �a � h� � f �a�

h
1

2.8



EXAMPLE 1 The graph of a function is given in Figure 1. Use it to sketch the graph
of the derivative .

SOLUTION We can estimate the value of the derivative at any value of by drawing 
the tangent at the point and estimating its slope. For instance, for x � 5 
we draw the tangent at in Figure 2(a) and estimate its slope to be about , so

. This allows us to plot the point on the graph of directly
beneath P. Repeating this procedure at several points, we get the graph shown in
Figure 2(b). Notice that the tangents at , , and are horizontal, so the derivative
is 0 there and the graph of crosses the -axis at the points , , and , directly
beneath A, B, and C. Between and the tangents have positive slope, so is
positive there. But between and the tangents have negative slope, so is
negative there.

If a function is defined by a table of values, then we can construct a table of approx-
imate values of its derivative, as in the next example.

FIGURE 2

y

Aª

P ª (5, 1.5)

Bª

Cª

(b)

x

1

10 5

y=fª(x)

y

B

A

C

P

(a)

x

1

10 5

y=ƒ

f ��x�CB
f ��x�BA

C�B�A�xf �
CBA

f �P��5, 1.5�f ��5� � 1.5

3
2P

�x, f �x��
x

f �
f
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Resources / Module 3
/ Derivatives as Functions 

/ Mars Rover

Watch an animation of the relation between 
a function and its derivative.

Resources / Module 3
/ Slope-a-Scope 

/ Derivative of a Cubic
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EXAMPLE 2 Let be the population of Belgium at time . The table at the left gives
midyear values of , in thousands, from 1980 to 2000. Construct a table of values
for the derivative of this function.

SOLUTION We assume that there were no wild fluctuations in the population between
the stated values. Let’s start by approximating , the rate of increase of the
population of Belgium in mid-1988. Since

we have

for small values of .
For , we get

(This is the average rate of increase between 1988 and 1990.) For , we have

which is the average rate of increase between 1986 and 1988. We get a more accu-
rate approximation if we take the average of these rates of change:

This means that in 1988 the population was increasing at a rate of about 25,000
people per year.

Making similar calculations for the other values (except at the endpoints), we get
the table of approximate values for the derivative.

y=B(t)

1980

9,800

9,900

10,000

10,100

10,200

t

y

1984 1988 1992 1996 2000

y=Bª(t)

1980

10

20

t

y

1984 1988 1992 1996 2000

30

FIGURE 3

B��1988� � 1
2�39 � 11� � 25

B��1988� �  
B�1986� � B�1988�

�2
�

9862 � 9884

�2
� 11

h � �2

B��1988� �  
B�1990� � B�1988�

2
�

9962 � 9884

2
� 39

h � 2
h

B��1988� �  
B�1988 � h� � B�1988�

h

B��1988� � lim
h l

 

0
 
B�1988 � h� � B�1988�

h

B��1988�

B�t�
tB�t�
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t

1980 9,847
1982 9,856
1984 9,855
1986 9,862
1988 9,884
1990 9,962
1992 10,036
1994 10,109
1996 10,152
1998 10,175
2000 10,186

B�t�

t

1980 4.5
1982 2.0
1984 1.5
1986 7.3
1988 25.0
1990 38.0
1992 36.8
1994 29.0
1996 16.5
1998 8.5
2000 5.5

B��t�

▲ Figure 3 illustrates Example 2 by 
showing graphs of the population func-
tion and its derivative . Notice
how the rate of population growth
increases to a maximum in 1990 and
decreases thereafter.

B��t�B�t�



EXAMPLE 3
(a) If , find a formula for .
(b) Illustrate by comparing the graphs of f and .

SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the
variable is h and that x is temporarily regarded as a constant during the calculation
of the limit.

(b) We use a graphing device to graph and in Figure 4. Notice that
when has horizontal tangents and is positive when the tangents have positive
slope. So these graphs serve as a check on our work in part (a).

EXAMPLE 4 If , find the derivative of . State the domain of .

SOLUTION

We see that exists if , so the domain of is . This is smaller than
the domain of , which is .

Let’s check to see that the result of Example 4 is reasonable by looking at the
graphs of and in Figure 5. When is close to 0, is also close to , so

is very large and this corresponds to the steep tangent lines near
in Figure 5(a) and the large values of just to the right of 0 in Figure 5(b).

When is large, is very small and this corresponds to the flatter tangent lines at
the far right of the graph of and the horizontal asymptote of the graph of .f �f

f ��x�x
f ��x��0, 0�

f ��x� � 1�(2sx)
0sxxf �f

�0, 
�f
�0, 
�f �x � 0f ��x�

 �
1

sx � sx
�

1

2sx

 � lim
h l

 

0
 

1

sx � h � sx

 � lim
h l

 

0
 

�x � h� � x

h(sx � h � sx )

 � lim
h l

 

0
 
sx � h � sx

h
�
sx � h � sx

sx � h � sx

 � lim
h l

 

0
 
sx � h � sx

h

 f ��x� � lim
h l

 

0
 
 f �x � h� � f �x�

h

f �ff �x� � sx

f ��x�f
f ��x� � 0f �f

 � lim
h l

 

0
 �3x 2 � 3xh � h 2 � 1� � 3x 2 � 1

 � lim
h l

 

0
 
3x 2h � 3xh 2 � h 3 � h

h

 � lim
h l

 

0
 
x 3 � 3x 2h � 3xh 2 � h 3 � x � h � x 3 � x

h

 f ��x� � lim
h l

 

0
 
 f �x � h� � f �x�

h
� lim

h l
 

0
 
 ��x � h�3 � �x � h�� � �x 3 � x�

h

f �
f ��x�f �x� � x 3 � x

160 ■ CHAPTER 2 LIMITS AND DERIVATIVES

FIGURE 4
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See more problems like these.

Here we rationalize the numerator.



EXAMPLE 5 Find if .

SOLUTION

Other Notations

If we use the traditional notation to indicate that the independent variable is
and the dependent variable is , then some common alternative notations for the

derivative are as follows:

The symbols and are called differentiation operators because they indicate
the operation of differentiation, which is the process of calculating a derivative.

The symbol , which was introduced by Leibniz, should not be regarded as a
ratio (for the time being); it is simply a synonym for . Nonetheless, it is a very
useful and suggestive notation, especially when used in conjunction with increment
notation. Referring to Equation 2.7.4, we can rewrite the definition of derivative in
Leibniz notation in the form

dy

dx
� lim


x l
 

0
 

y


x

f ��x�
dy�dx

d�dxD

f ��x� � y� �
dy

dx
�

df

dx
�

d

dx
 f �x� � Df �x� � Dx f �x�

yx
y � f �x�

 � lim
h l

 

0
 

�3

�2 � x � h��2 � x�
� �

3

�2 � x�2

 � lim
h l

 

0
 

�3h

h�2 � x � h��2 � x�

 � lim
h l

 

0
 
�2 � x � 2h � x 2

� xh� � �2 � x � h � x 2
� xh�

h�2 � x � h��2 � x�

 � lim
h l

 

0
 
�1 � x � h��2 � x� � �1 � x��2 � x � h�

h�2 � x � h��2 � x�

 � lim 
hl 0

 

1 � �x � h�
2 � �x � h�

�
1 � x

2 � x

h

 f ��x� � lim
h l

 

0
 
 f �x � h� � f �x�

h

f �x� �
1 � x

2 � x
f �

FIGURE 5 (a) ƒ=œ„x 1

2œ„
(b) f ª(x)=

x
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If we want to indicate the value of a derivative in Leibniz notation at a specific
number , we use the notation

or

which is a synonym for .

Definition A function is differentiable at a if exists. It is differ-
entiable on an open interval [or or or ] if it is 
differentiable at every number in the interval.

EXAMPLE 6 Where is the function differentiable?

SOLUTION If , then and we can choose small enough that 
and hence . Therefore, for we have

and so is differentiable for any .
Similarly, for we have and can be chosen small enough that

. Therefore, for ,

and so is differentiable for any .
For we have to investigate

Let’s compute the left and right limits separately:

and

Since these limits are different, does not exist. Thus, is differentiable at all 
except 0.

xff ��0�

 lim
h l

 

0�
 � 0 � h � � � 0 �

h
� lim

h l
 

0�
 � h �

h
� lim

h l
 

0�
  

�h

h
� lim

h l
 

0�
 ��1� � �1

 lim
h l

 

0�
 � 0 � h � � � 0 �

h
� lim

h l
 

0�
 � h �

h
� lim

h l
 

0�
 
h

h
� lim

h l
 

0�
 1 � 1

 � lim
h l

 

0
 � 0 � h � � � 0 �

h
�if it exists�

 f ��0� � lim
h l

 

0
 
 f �0 � h� � f �0�

h

x � 0
x � 0f

 � lim
h l

 

0
 
��x � h� � ��x�

h
� lim

h l
 

0
 
�h

h
� lim

h l
 

0
 ��1� � �1

 f ��x� � lim
h l

 

0
 � x � h � � � x �

h

x � 0x � h � 0 and so � x � h � � ��x � h�
h� x � � �xx � 0

x � 0f

 � lim
h l

 

0
 
�x � h� � x

h
� lim

h l
 

0
 
h

h
� lim

h l
 

0
 1 � 1

 f ��x� � lim
h l

 

0
 � x � h � � � x �

h

x � 0� x � h � � x � h
x � h � 0h� x � � xx � 0

f �x� � � x �

��
, 
���
, a��a, 
��a, b�
f ��a�f3

f ��a�

dy

dx�x�a

dy

dx �
x�a

a
dy�dx
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▲ Gottfried Wilhelm Leibniz was born in
Leipzig in 1646 and studied law, theol-
ogy, philosophy, and mathematics at the
university there, graduating with a bache-
lor’s degree at age 17. After earning his
doctorate in law at age 20, Leibniz
entered the diplomatic service and spent
most of his life traveling to the capitals of
Europe on political missions. In particu-
lar, he worked to avert a French military
threat against Germany and attempted 
to reconcile the Catholic and Protestant
churches.

His serious study of mathematics did
not begin until 1672 while he was on a
diplomatic mission in Paris. There he built
a calculating machine and met scientists,
like Huygens, who directed his attention
to the latest developments in mathematics
and science. Leibniz sought to develop 
a symbolic logic and system of notation
that would simplify logical reasoning. In
particular, the version of calculus that he
published in 1684 established the nota-
tion and the rules for finding derivatives
that we use today.

Unfortunately, a dreadful priority dis-
pute arose in the 1690s between the 
followers of Newton and those of Leibniz
as to who had invented calculus first.
Leibniz was even accused of plagiarism
by members of the Royal Society in 
England. The truth is that each man
invented calculus independently. Newton
arrived at his version of calculus first but,
because of his fear of controversy, did
not publish it immediately. So Leibniz’s
1684 account of calculus was the first to
be published.



A formula for is given by  

and its graph is shown in Figure 6(b). The fact that does not exist is reflected
geometrically in the fact that the curve does not have a tangent line at .
[See Figure 6(a).]

Both continuity and differentiability are desirable properties for a function to have.
The following theorem shows how these properties are related.

Theorem If is differentiable at , then is continuous at .

Proof To prove that is continuous at , we have to show that .
We do this by showing that the difference approaches 0.

The given information is that is differentiable at a, that is,

exists (see Equation 2.7.3). To connect the given and the unknown, we divide and
multiply by (which we can do when ):

Thus, using the Product Law and (2.7.3), we can write

To use what we have just proved, we start with and add and subtract :

Therefore, is continuous at a.

| NOTE ● The converse of Theorem 4 is false; that is, there are functions that are con-
tinuous but not differentiable. For instance, the function is continuous at 0
because

(See Example 7 in Section 2.3.) But in Example 6 we showed that is not differen-
tiable at 0.

f

lim
x l

 

0
 f �x� � lim

x l
 

0
 � x � � 0 � f �0�

f �x� � � x �

f

 � f �a� � 0 � f �a�

 � lim
x l

 

a
 f �a� � lim

x l
 

a
 � f �x� � f �a��

 lim
x l

 

a
 f �x� � lim

x l
 

a
 � f �a� � � f �x� � f �a���

f �a�f �x�

 � f ��a� � 0 � 0

 � lim
x l

 

a
 
 f �x� � f �a�

x � a
 lim

x l
 

a
 �x � a�

 lim
x l

 

a
 � f �x� � f �a�� � lim

x l
 

a
 
 f �x� � f �a�

x � a
 �x � a�

f �x� � f �a� �
 f �x� � f �a�

x � a
 �x � a�

x � ax � af �x� � f �a�

f ��a� � lim
x l

 

a
 
 f �x� � f �a�

x � a

f
f �x� � f �a�

limx l a f �x� � f �a�af

afaf4

�0, 0�y � � x �
f ��0�

f ��x� � 	1

�1

if x � 0

if x � 0

f �
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How Can a Function Fail to be Differentiable?

We saw that the function in Example 6 is not differentiable at 0 and Fig-
ure 6(a) shows that its graph changes direction abruptly when . In general, if the
graph of a function has a “corner” or “kink” in it, then the graph of has no tangent
at this point and is not differentiable there. [In trying to compute , we find that
the left and right limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if
is not continuous at , then is not differentiable at . So at any discontinuity (for

instance, a jump discontinuity) fails to be differentiable.
A third possibility is that the curve has a vertical tangent line when , that is,

is continuous at and

This means that the tangent lines become steeper and steeper as . Figure 7 shows
one way that this can happen; Figure 8(c) shows another. Figure 8 illustrates the three
possibilities that we have discussed.

A graphing calculator or computer provides another way of looking at differentia-
bility. If is differentiable at , then when we zoom in toward the point the
graph straightens out and appears more and more like a line. (See Figure 9. We saw a
specific example of this in Figure 3 in Section 2.7.) But no matter how much we zoom
in toward a point like the ones in Figures 7 and 8(a), we can’t eliminate the sharp point
or corner (see Figure 10).

FIGURE 9
ƒ is differentiable at a.

FIGURE 10
ƒ is not differentiable at a.
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�a, f �a��af
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(a) A corner (b) A discontinuity (c) A vertical tangent

FIGURE 8
Three ways for ƒ not to be

differentiable at a
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a
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x � 0
y � � x �
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The Second Derivative

If is a differentiable function, then its derivative is also a function, so may have
a derivative of its own, denoted by . This new function is called the sec-
ond derivative of because it is the derivative of the derivative of . Using Leibniz
notation, we write the second derivative of as

EXAMPLE 7 If , find and interpret .

SOLUTION In Example 3 we found that the first derivative is . So the
second derivative is

The graphs of , , are shown in Figure 11.
We can interpret as the slope of the curve at the point .

In other words, it is the rate of change of the slope of the original curve .
Notice from Figure 11 that is negative when has negative slope

and positive when has positive slope. So the graphs serve as a check on
our calculations.

In general, we can interpret a second derivative as a rate of change of a rate of
change. The most familiar example of this is acceleration, which we define as follows.

If is the position function of an object that moves in a straight line, we
know that its first derivative represents the velocity of the object as a function of
time:

The instantaneous rate of change of velocity with respect to time is called the accel-
eration of the object. Thus, the acceleration function is the derivative of the veloc-
ity function and is therefore the second derivative of the position function:

or, in Leibniz notation,

a �
dv

dt
�

d 2s

dt 2

a�t� � v��t� � s��t�

a�t�

v�t� � s��t� �
ds

dt

v�t�
s � s�t�

y � f ��x�
y � f ��x�f ��x�

y � f �x�
�x, f ��x��y � f ��x�f ��x�

f �f �f

      � lim
h l

 

0
 �6x � 3h� � 6x

    � lim
h l

 

0
 
 3x 2 � 6xh � 3h2 � 1 � 3x 2 � 1

h

     � lim
h l

 

0
 
 �3�x � h�2 � 1� � �3x 2 � 1�

h

 f ���x� � lim
h l

 

0
 
 f ��x � h� � f ��x�

h

f ��x� � 3x 2 � 1

f ��x�f �x� � x 3 � x

d

dx
 
 dy

dx� � d 2y

dx 2

y � f �x�
ff

f �� f ��� � f �
f �f �f
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EXAMPLE 8 A car starts from rest and the graph of its position function is shown in
Figure 12, where is measured in feet and in seconds. Use it to graph the velocity
and acceleration of the car. What is the acceleration at seconds?

SOLUTION By measuring the slope of the graph of at and 5,
and using the method of Example 1, we plot the graph of the velocity function

in Figure 13. The acceleration when s is , the slope of the
tangent line to the graph of when . We estimate the slope of this tangent line
to be

Similar measurements enable us to graph the acceleration function in Figure 14.

The third derivative is the derivative of the second derivative: . So
can be interpreted as the slope of the curve or as the rate of change

of . If , then alternative notations for the third derivative are

The process can be continued. The fourth derivative is usually denoted by . In
general, the th derivative of is denoted by and is obtained from by differen-
tiating times. If , we write

EXAMPLE 9 If , find and .

SOLUTION In Example 7 we found that . The graph of the second derivative
has equation and so it is a straight line with slope 6. Since the derivative

is the slope of , we have

for all values of . So is a constant function and its graph is a horizontal line.
Therefore, for all values of ,

f �4��x� � 0

x
f �x

f ��x� � 6

f ��x�f ��x�
y � 6x

f ��x� � 6x

f �4��x�f ��x�f �x� � x3 � x

y �n� � f �n��x� �
d ny

dxn

y � f �x�n
ff �n�fn

f �4�f�

y� � f ��x� �
d

dx
 
d 2y

dx 2 � � d 3y

dx 3

y � f �x�f ��x�
y � f ��x�f ��x�

f � � � f ���f �

FIGURE 13
Velocity function
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FIGURE 12
Position function of a car
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▲ The units for acceleration are feet per
second per second, written as .ft�s2



We can interpret the third derivative physically in the case where the function is the
position function of an object that moves along a straight line. Because

, the third derivative of the position function is the derivative of the
acceleration function and is called the jerk:

Thus, the jerk j is the rate of change of acceleration. It is aptly named because a large
jerk means a sudden change in acceleration, which causes an abrupt movement in a
vehicle.

We have seen that one application of second and third derivatives occurs in ana-
lyzing the motion of objects using acceleration and jerk. We will investigate another
application of second derivatives in Section 2.10, where we show how knowledge of

gives us information about the shape of the graph of . In Section 8.9 we will see
how second and higher derivatives enable us to obtain more accurate approximations
of functions than linear approximations and also to represent functions as sums of infi-
nite series.

ff �

j �
da

dt
�

d 3s

dt 3

s� � �s��� � a�
s � s�t�
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4–11 ■ Trace or copy the graph of the given function .
(Assume that the axes have equal scales.) Then use the method
of Example 1 to sketch the graph of below it.

x

y

0

4. 5.

x

y

0

f �

f

III

III IV

y

0 x

y

0 x

y

0 x

y

0 x

y

0 x

y

0 x

(c) (d)1–2 ■ Use the given graph to estimate the value of each deriva-
tive. Then sketch the graph of .

1. (a)
(b)
(c)
(d)
(e)
(f)
(g)

2. (a)
(b)
(c)
(d)
(e)
(f)

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Match the graph of each function in (a)–(d) with the graph
of its derivative in I–IV. Give reasons for your choices.

y

0 x

y

0 x

(b)(a)

3.

y

0 x1

1

y=f(x)

f ��5�
f ��4�
f ��3�
f ��2�
f ��1�
f ��0�

y

0 x

1

1

y=f(x)

f ��3�
f ��2�
f ��1�
f ��0�
f ���1�
f ���2�
f ���3�

f �
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14–16 ■ Make a careful sketch of the graph of and below it
sketch the graph of in the same manner as in Exercises 4–11. 
Can you guess a formula for from its graph?

14. 15.

16.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; Let .

(a) Estimate the values of , , , and by
using a graphing device to zoom in on the graph of f.

(b) Use symmetry to deduce the values of , ,
and .

(c) Use the results from parts (a) and (b) to guess a formula
for .

(d) Use the definition of a derivative to prove that your
guess in part (c) is correct.

; 18. Let .
(a) Estimate the values of , , , , and

by using a graphing device to zoom in on the
graph of f.

(b) Use symmetry to deduce the values of , ,
, and .

(c) Use the values from parts (a) and (b) to graph .
(d) Guess a formula for .
(e) Use the definition of a derivative to prove that your

guess in part (d) is correct.

19–25 ■ Find the derivative of the function using the definition
of derivative. State the domain of the function and the domain
of its derivative.

19.

20.

21.

22.

24.

25.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

26. (a) Sketch the graph of by starting with the
graph of and using the transformations of Sec-
tion 1.3.

(b) Use the graph from part (a) to sketch the graph of .
(c) Use the definition of a derivative to find . What are

the domains of f and ?

; (d) Use a graphing device to graph and compare with
your sketch in part (b).

f �
f �

f ��x�
f �

y � sx
f �x� � s6 � x

G�t� �
4t

t � 1

f �x� �
3 � x

1 � 3x

t�x� � s1 � 2x23.

f �x� � x � sx

f �x� � x 3 � 3x � 5

f �x� � 5 � 4x � 3x 2

f �x� � 4 � 7x

f ��x�
f �

f ���3�f ���2�
f ���1�f �(�1

2 )

f ��3�
f ��2�f ��1�f �( 1

2 )f ��0�
f �x� � x 3

f ��x�

f ���2�
f ���1�f �(�1

2 )

f ��2�f ��1�f �( 1
2 )f ��0�

f �x� � x 217.

f �x� � ln x

f �x� � e xf �x� � sin x

f ��x�
f �

f

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

12. Shown is the graph of the population function for yeast
cells in a laboratory culture. Use the method of Example 1
to graph the derivative . What does the graph of tell
us about the yeast population?

13. The graph shows how the average age of first marriage of
Japanese men has varied in the last half of the 20th century.
Sketch the graph of the derivative function . During
which years was the derivative negative?

1990

25

M

1960 1970 1980

27

t

M��t�

(yeast cells)

t (hours)

P

0 5 10 15

500

P�P��t�

P�t�

x

y

0 x

y

0

x

y

0 0 x

y

x

y

00 x

y

6. 7.

8. 9.

10. 11.
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32. The graph of is given.
(a) At what numbers is discontinuous? Why?
(b) At what numbers is not differentiable? Why?

; 33. Graph the function . Zoom in repeatedly,
first toward the point (�1, 0) and then toward the origin. 
What is different about the behavior of in the vicinity of
these two points? What do you conclude about the differen-
tiability of f ?

; 34. Zoom in toward the points (1, 0), (0, 1), and (�1, 0) on 
the graph of the function . What do you
notice? Account for what you see in terms of the differen-
tiability of t.

The figure shows the graphs of , , and . Identify each
curve, and explain your choices.

36. The figure shows graphs of , , and . Identify each
curve, and explain your choices.

x

y
a b c d

f �f �f �f, 

x

y
a

b

c

f �f �f35.

t�x� � �x 2 � 1�2�3

f

f �x� � x � s� x �

x

y

10

t
t

t27. (a) If , find .

; (b) Check to see that your answer to part (a) is reasonable
by comparing the graphs of and .

28. (a) If , find .

; (b) Check to see that your answer to part (a) is reasonable
by comparing the graphs of and .

The unemployment rate varies with time. The table
(from the Bureau of Labor Statistics) gives the percentage
of unemployed in the U.S. labor force from 1989 to 1998.

(a) What is the meaning of ? What are its units?
(b) Construct a table of values for .

30. Let the smoking rate among high-school seniors at time t
be . The table (from the Institute of Social Research,
University of Michigan) gives the percentage of seniors 
who reported that they had smoked one or more cigarettes
per day during the past 30 days.

(a) What is the meaning of ? What are its units?
(b) Construct a table of values for .
(c) Graph S and .
(d) How would it be possible to get more accurate values 

for ?

The graph of is given. State, with reasons, the numbers at
which is not differentiable.

x

y

2 4 6 8 10 12

f
f31.

S��t�

S�
S��t�

S��t�

S�t�

U��t�
U��t�

U�t�29.

f �f

f ��t�f �t� � 6��1 � t 2 �

f �f

f ��x�f �x� � x � �2�x�
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t t

1989 5.3 1994 6.1
1990 5.6 1995 5.6
1991 6.8 1996 5.4
1992 7.5 1997 4.9
1993 6.9 1998 4.5

U�t�U�t�

t t

1980 21.4 1990 19.1
1982 21.0 1992 17.2
1984 18.7 1994 19.4
1986 18.7 1996 22.2
1988 18.1 1998 22.4

S�t�S�t�



(b) Use the acceleration curve from part (a) to estimate the
jerk at t � 10 seconds. What are the units for jerk?

43. Let .
(a) If , use Equation 2.7.3 to find .
(b) Show that does not exist.
(c) Show that has a vertical tangent line at .

(Recall the shape of the graph of . See Figure 13 in
Section 1.2.)

44. (a) If , show that does not exist.
(b) If , find .
(c) Show that has a vertical tangent line at .

; (d) Illustrate part (c) by graphing .

Show that the function is not differentiable 
at 6. Find a formula for and sketch its graph.

46. Where is the greatest integer function not differ-
entiable? Find a formula for and sketch its graph.

47. Recall that a function is called even if for
all in its domain and odd if for all such .
Prove each of the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

48. When you turn on a hot-water faucet, the temperature of
the water depends on how long the water has been running.
(a) Sketch a possible graph of as a function of the time 

that has elapsed since the faucet was turned on.
(b) Describe how the rate of change of with respect to 

varies as increases.
(c) Sketch a graph of the derivative of .

49. Let be the tangent line to the parabola at the point
. The angle of inclination of is the angle that 

makes with the positive direction of the -axis. Calculate 
correct to the nearest degree.

�x
����1, 1�

y � x 2�

T
t

tT

tT

T

xf ��x� � �f �x�x
f ��x� � f �x�f

f �
f �x� � �x


f �
f �x� � � x � 6 �45.

y � x 2�3
�0, 0�y � x 2�3

t��a�a � 0
t��0�t�x� � x 2�3

f
�0, 0�y � s3 x

f ��0�
f ��a�a � 0

f �x� � s3 x

100 t

s

100

20

37. The figure shows the graphs of three functions. One is the
position function of a car, one is the velocity of the car, and
one is its acceleration. Identify each curve, and explain your
choices.

38. The figure shows the graphs of four functions. One is the 
position function of a car, one is the velocity of the car, one
is its acceleration, and one is its jerk. Identify each curve,
and explain your choices.

; 39–40 ■ Use the definition of a derivative to find and
. Then graph , , and on a common screen and check

to see if your answers are reasonable.

39.

40.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

If , find , , , and .
Graph , , , and on a common screen. Are the
graphs consistent with the geometric interpretations of these
derivatives?

42. (a) The graph of a position function of a car is shown,
where s is measured in feet and t in seconds. Use it to
graph the velocity and acceleration of the car. What is
the acceleration at t � 10 seconds?

f �f �f �f
f �4��x�f � �x�f ��x�f ��x�f �x� � 2x 2 � x341.

f �x� � 1�x

f �x� � 1 � 4x � x 2

f �f �ff ��x�
f ��x�

0 t
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b c
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b c
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Linear Approximations ● ● ● ● ● ● ● ● ● ● ● ● ● ●

We have seen that a curve lies very close to its tangent line near the point of tangency.
In fact, by zooming in toward a point on the graph of a differentiable function, we
noticed that the graph looks more and more like its tangent line. (See Figure 2 in
Section 2.6 and Figure 3 in Section 2.7.) This observation is the basis for a method of
finding approximate values of functions.

The idea is that it might be easy to calculate a value of a function, but dif-
ficult (or even impossible) to compute nearby values of f. So we settle for the eas-
ily computed values of the linear function L whose graph is the tangent line of f at

. (See Figure 1.) The following example illustrates the method.

EXAMPLE 1 Use a linear approximation to estimate the values of and .

SOLUTION The desired values are values of the function near . From
Example 3 in Section 2.7 we know that the slope of the tangent line to the curve

at the point is . So an equation of the tangent line is
approximately

or

Because the tangent line lies close to the curve when (see Figure 2), the
value of the function is almost the same as the height of the tangent line when

. Thus

Similarly,

It appears from Figure 2 that our estimate for is better than our estimate for
and that both estimates are less than the true values because the tangent line lies

below the curve. In fact, this is correct because the true values of these numbers are

In general, we use the tangent line at as an approximation to the curve
when x is near a. An equation of this tangent line is

and the approximation

is called the linear approximation or tangent line approximation of f at a. The lin-
ear function whose graph is this tangent line, that is,

is called the linearization of at a.f

L�x� � f �a� � f ��a��x � a�

f �x� � f �a� � f ��a��x � a�

y � f �a� � f ��a��x � a�

y � f �x�
�a, f �a��

20.4 � 1.31950. . .20.1 � 1.07177. . .

20.4
20.1

20.4 � f �0.4� � 1 � 0.69�0.4� � 1.276

20.1 � f �0.1� � 1 � 0.69�0.1� � 1.069

x � 0.1

x � 0.1

y � 1 � 0.69xy � 1 � 0.69�x � 0�

f ��0� � 0.69�0, 1�y � 2 x

a � 0f �x� � 2 x

20.420.1

�a, f �a��

f �a�

2.9
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▲ We will see in Sections 3.8 and 8.9
that linear approximations are very useful
in physics for the purpose of simplifying
a calculation or even an entire theory.
Sometimes it is easier to measure the
derivative of a function than to measure
the function itself. Then the derivative
measurement can be used in the linear
approximation to estimate the function.



EXAMPLE 2 Find the linear approximation for the function at . Then
use it to approximate the numbers , , and . Are these approxima-
tions overestimates or underestimates?

SOLUTION We first have to find , the slope of the tangent line to when
. We could estimate using numerical or graphical methods as in Sec-

tion 2.7, or we could find the value exactly using the definition of a derivative. In
fact, in Example 4 in Section 2.8, we found that

and so . Therefore, an equation of the tangent line at is

or

and the linear approximation is

In particular, we have

In Figure 3 we graph the root function and its linear approximation
. We see that our approximations are overestimates because the tan-

gent line lies above the curve.
In the following table we compare the estimates from the linear approximation

with the true values. Notice from this table, and also from Figure 3, that the tangent
line approximation gives good estimates when x is close to 1 but the accuracy of the
approximation deteriorates when x is farther away from 1.

Of course, a calculator can give us better approximations than the linear approxi-
mations we found in Examples 1 and 2. But a linear approximation gives an approx-
imation over an entire interval and that is the reason that scientists often use such
approximations. (See Sections 3.8 and 8.9.)

The following example is typical of situations in which we use linear approxima-
tion to predict the future behavior of a function given by empirical data.

L�x� � 1
2 x �

1
2

y � sx

s1.05 � L�1.05� � 1
2�1.05� �

1
2 � 1.025

s1.01 � L�1.01� � 1
2�1.01� �

1
2 � 1.005

s0.99 � L�0.99� � 1
2�0.99� �

1
2 � 0.995

sx � L�x� � 1
2 x �

1
2

y � 1
2 x �

1
2y � 1 � 1

2�x � 1�

�1, 1�f ��1� � 1
2

f ��x� �
1

2sx

f ��1�x � 1
y � sxf ��1�

s1.05s1.01s0.99
a � 1f �x� � sx
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EXAMPLE 3 Suppose that after you stuff a turkey its temperature is and you
then put it in a oven. After an hour the meat thermometer indicates that the
temperature of the turkey is and after two hours it indicates . Predict the
temperature of the turkey after three hours.

SOLUTION If represents the temperature of the turkey after t hours, we are given
that , and . In order to make a linear approxima-
tion with , we need an estimate for the derivative . Because

we could estimate by the difference quotient with t � 1:

This amounts to approximating the instantaneous rate of temperature change by the
average rate of change between t � 1 and t � 2, which is . With this esti-
mate, the linear approximation for the temperature after 3 h is

So the predicted temperature after three hours is .
We obtain a more accurate estimate for by plotting the given data, as in

Figure 4, and estimating the slope of the tangent line at t � 2 to be

Then our linear approximation becomes

and our improved estimate for the temperature is .
Because the temperature curve lies below the tangent line, it appears that the

actual temperature after three hours will be somewhat less than , perhaps closer
to .160 �F

162 �F

162 �F

T�3� � T�2� � T��2� � 1 � 129 � 33 � 162

T��2� � 33

T��2�
165 �F

 � 129 � 36 � 1 � 165

 T�3� � T�2� � T��2��3 � 2�

36 �F�h

T��2� �
T�1� � T�2�

1 � 2
�

93 � 129

�1
� 36

T��2�

T��2� � lim
tl2

 
T�t� � T�2�

t � 2

T��2�a � 2
T�2� � 129T�0� � 50, T�1� � 93

T�t�

129 �F93 �F
325 �F

50 �F
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; (a) If , estimate the value of .

(b) Find the linear approximation for at .

(c) Use part (b) to estimate the cube roots of the numbers
0.5, 0.9, 0.99, 1.01, 1.1, 1.5, and 2. Compare these esti-
mates with the values of the cube roots from your calcu-
lator. Did you obtain underestimates or overestimates?
Which of your estimates are the most accurate?

(d) Graph the curve and its tangent line at .
Use these graphs to explain your results from part (c).

; 4. (a) If , estimate the value of .

(b) Find the linear approximation for at .a � ��3f

f ����3�f �x� � cos x

�1, 1�y � s3 x

a � 1f

f ��1�f �x� � s3 x3.; 1. (a) If , estimate the value of either numeri-
cally or graphically.

(b) Use the tangent line to the curve at to find
approximate values for and .

(c) Graph the curve and its tangent line. Are the approxima-
tions in part (b) less than or greater than the true values?
Why?

; 2. (a) If , estimate the value of graphically.
(b) Use the tangent line to the curve at to

estimate the values of and .
(c) Graph the curve and its tangent line. Are the estimates in

part (b) less than or greater than the true values? Why?

ln 1.3ln 0.9
�1, 0�y � ln x

f ��1�f �x� � ln x

30.130.05
�0, 1�y � 3x

f ��0�f �x� � 3x
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years 2040 and 2050. Do you think your predictions are too
high or too low? Why?

12. The figure shows the graph of a population of Cyprian 
honeybees raised in an apiary.
(a) Use a linear approximation to predict the bee population

after 18 weeks and after 20 weeks.
(b) Are your predictions underestimates or overestimates?

Why?
(c) Which of your predictions do you think is the more

accurate? Why?

Suppose that the only information we have about a function
is that and the graph of its derivative is as

shown.
(a) Use a linear approximation to estimate and .
(b) Are your estimates in part (a) too large or too small?

Explain.

14. Suppose that we don’t have a formula for but we know
that and for all .
(a) Use a linear approximation to estimate and

.
(b) Are your estimates in part (a) too large or too small?

Explain.

t�2.05�
t�1.95�

xt��x� � sx 2 � 5t�2� � �4
t�x�

y

x0 1

y=fª(x)

1

f �1.1�f �0.9�

f �1� � 5f
13.

3

20
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80
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aged 65
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t

P

0

(c) Use the linear approximation to estimate the values of
, , , and . Are these under-

estimates or overestimates? Which of your estimates are
the most accurate?

(d) Graph the curve and its tangent line at
. Use these graphs to explain your results from

part (c).

5–6 ■

(a) Use the definition of a derivative to compute .
(b) Use the linear approximation for at to estimate

for , 0.95, 0.99, 1.01, 1.05, and 1.1. How do
these estimates compare with the actual values?

; (c) Graph and its tangent line at . Do the graphs support
your comments in part (b)?

5.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

7. The turkey in Example 3 is removed from the oven when its
temperature reaches and is placed on a table in a
room where the temperature is . After 10 minutes the
temperature of the turkey is and after 20 minutes it is

. Use a linear approximation to predict the tempera-
ture of the turkey after half an hour. Do you think your pre-
diction is an overestimate or an underestimate? Why?

8. Atmospheric pressure P decreases as altitude h increases. 
At a temperature of , the pressure is 101.3 kilopascals
(kPa) at sea level, 87.1 kPa at h � 1 km, and 74.9 kPa at

km. Use a linear approximation to estimate the
atmospheric pressure at an altitude of 3 km.

9. The table lists the amount of U.S. cash per capita in circula-
tion as of June 30 in the given year. Use a linear approxima-
tion to estimate the amount of cash per capita in circulation
in the year 2000. Is your prediction an underestimate or an
overestimate? Why?

The table shows the population of Nepal (in millions) as of
June 30 of the given year. Use a linear approximation to
estimate the population at midyear in 1984. Use another 
linear approximation to predict the population in 2006.

11. The graph indicates how Australia’s population is aging by
showing the past and projected percentage of the population
aged 65 and over. Use a linear approximation to predict the
percentage of the population that will be 65 and over in the 

10.

h � 2

15 �C

160 �F
172 �F

75 �F
185 �F

f �x� � x 36.f �x� � x 2

�1, 1�f

x � 0.9f �x�
a � 1f

f ��1�

(��3, 12)
y � cos x

cos 2cos 1.5cos 1.1cos 1
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What Does Say About f ? ● ● ● ● ● ● ● ● ● ● ● ● ●

Many of the applications of calculus depend on our ability to deduce facts about a
function from information concerning its derivatives. Because represents the
slope of the curve at the point , it tells us the direction in which the
curve proceeds at each point. So it is reasonable to expect that information about 
will provide us with information about .

In particular, to see how the derivative of can tell us where a function is increas-
ing or decreasing, look at Figure 1. (Increasing functions and decreasing functions
were defined in Section 1.1.) Between and and between and , the tangent lines
have positive slope and so . Between and the tangent lines have nega-
tive slope and so . Thus, it appears that increases when is positive
and decreases when is negative.

It turns out, as we will see in Chapter 4, that what we observed for the function
graphed in Figure 1 is always true. We state the general result as follows.

If on an interval, then is increasing on that interval.

If on an interval, then is decreasing on that interval.

EXAMPLE 1
(a) If it is known that the graph of the derivative of a function is as shown in
Figure 2, what can we say about ?
(b) If it is known that , sketch a possible graph of .

SOLUTION
(a) We observe from Figure 2 that is negative when , so the origi-
nal function must be decreasing on the interval . Similarly, is positive
for and for , so is increasing on the intervals and .
Also note that, since and , the graph of has horizontal tan-
gents when .

(b) We use the information from part (a), and the fact that the graph passes through
the origin, to sketch a possible graph of in Figure 3. Notice that , so
we have drawn the curve passing through the origin with a slope of .
Notice also that as (from Figure 2). So the slope of the curve

approaches 1 as becomes large (positive or negative). That is why we
have drawn the graph of in Figure 3 progressively straighter as .

We say that the function in Example 1 has a local maximum at because near
the values of are at least as big as the neighboring values. Note that 

is positive to the left of and negative just to the right of . Similarly, has a local
minimum at 1, where the derivative changes from negative to positive. In Chapter 4
we will develop these observations into a general method for finding optimal values
of functions.

What Does f � Say about f ?

Let’s see how the sign of affects the appearance of the graph of . Since
, we know that if is positive, then is an increasing function. Thisf �f ��x�f � � � f ���

ff ��x�

f�1�1
f ��x�f �x�x � �1

�1f

xl�
f
xy � f �x�

xl�
f ��x�l1
�1y � f �x�

f ��0� � �1f

x � �1
ff ��1� � 0f ���1� � 0

�1, 
���
, �1�fx � 1x � �1
f ��x���1, 1�f

�1 � x � 1f ��x�

ff �0� � 0
f

f �

ff ��x� � 0

ff ��x� � 0

f ��x�
f ��x�ff ��x� � 0

C,Bf ��x� � 0
DCBA

f
f �x�

f ��x�
�x, f �x��y � f �x�

f ��x�f
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says that the slopes of the tangent lines of the curve increase from left to
right. Figure 4 shows the graph of such a function. The slope of this curve becomes
progressively larger as increases and we observe that, as a consequence, the curve
bends upward. Such a curve is called concave upward. In Figure 5, however,
is negative, which means that is decreasing. Thus, the slopes of decrease from 
left to right and the curve bends downward. This curve is called concave downward.
We summarize our discussion as follows. (Concavity is discussed in greater detail in
Section 4.3.)

If on an interval, then is concave upward on that interval

If on an interval, then is concave downward on that interval.

EXAMPLE 2 Figure 6 shows a population graph for Cyprian honeybees raised in an
apiary. How does the rate of population increase change over time? When is this rate
highest? Over what intervals is P concave upward or concave downward?

SOLUTION By looking at the slope of the curve as t increases, we see that the rate of
increase of the population is initially very small, then gets larger until it reaches a
maximum at about t � 12 weeks, and decreases as the population begins to level
off. As the population approaches its maximum value of about 75,000 (called the
carrying capacity), the rate of increase, , approaches 0. The curve appears to be
concave upward on (0, 12) and concave downward on (12, 18).

In Example 2, the population curve changed from concave upward to concave
downward at approximately the point (12, 38,000). This point is called an inflection 
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Since f ·(x)>0, the slopes increase
and ƒ is concave upward.
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FIGURE 5
Since f ·(x)<0, the slopes decrease
and ƒ is concave downward.
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point of the curve. The significance of this point is that the rate of population increase
has its maximum value there. In general, an inflection point is a point where a curve
changes its direction of concavity.

EXAMPLE 3 Sketch a possible graph of a function that satisfies the following 
conditions:

SOLUTION Condition (i) tells us that is increasing on and decreasing on
. Condition (ii) says that is concave upward on and , and

concave downward on . From condition (iii) we know that the graph of has
two horizontal asymptotes: and .

We first draw the horizontal asymptote as a dashed line (see Figure 7).
We then draw the graph of approaching this asymptote at the far left, increasing to
its maximum point at and decreasing toward the x-axis as . We also
make sure that the graph has inflection points when and 2. Notice that the
curve bends upward for and , and bends downward when x is between
�2 and 2.

Antiderivatives

In many problems in mathematics and its applications, we are given a function and
we are required to find a function whose derivative is . If such a function exists,
we call it an antiderivative of . In other words, an antiderivative of is a function

such that . (In Example 1 we sketched an antiderivative of the function .)

EXAMPLE 4 Let be an antiderivative of the function whose graph is shown in
Figure 8.
(a) Where is increasing or decreasing?
(b) Where is concave upward or concave downward?
(c) At what values of does have an inflection point?
(d) If , sketch the graph of .
(e) How many antiderivatives does have?

SOLUTION
(a) We see from Figure 8 that for all . Since is an antiderivative 
of , we have and so is positive when . This means that 
is increasing on .�0, 
�

Fx � 0F��x�F��x� � f �x�f
Fx � 0f �x� � 0

f
FF�0� � 1

Fx
F
F

fF

f �fF� � fF
ff

FfF
f

FIGURE 7

10

y

2 x
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x � 2x � �2
x � �2

xl 
x � 1
f

y � �2
y � 0y � �2

f��2, 2�
�2, 
���
, �2�f�1, 
�

��
, 1�f

 �iii� lim
x l

 

�

 f �x� � �2,  lim

x l
 



 f �x� � 0

 �ii� f ��x� � 0 on ��
, �2� and �2, 
�, f ��x� � 0 on ��2, 2�

 �i� f ��x� � 0 on ��
, 1�, f ��x� � 0 on �1, 
�

f
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(b) is concave upward when . But , so is concave
upward when , that is, when is increasing. From Figure 8 we see that 
is increasing when when and when . So is concave upward on

and . is concave downward when , that is, when 
is decreasing. So is concave downward on .

(c) has an inflection point when the direction of concavity changes. From part (b)
we know that changes from concave upward to concave downward at , so 
has an inflection point there. changes from concave downward to concave upward
when , so has another inflection point when .

(d) In sketching the graph of , we use the information from parts (a), (b), and (c).
But, for finer detail, we also bear in mind the meaning of an antiderivative:
Because , the slope of at any value of is equal to the height
of . (Of course, this is the exact opposite of the procedure we used in
Example 1 in Section 2.8 to sketch a derivative.)

Therefore, since , we start drawing the graph of at the given point
with slope 0, always increasing, with upward concavity to , downward

concavity to , and upward concavity when . (See Figure 9.) Notice that
, so has a gentle slope at the second inflection point. But we see

that the slope becomes steeper when .

(e) The antiderivative of that we sketched in Figure 9 satisfies , so its
graph starts at the point . But there are many other antiderivatives, whose
graphs start at other points on the y-axis. In fact, has infinitely many anti-
derivatives; their graphs are obtained from the graph of by shifting upward or
downward as in Figure 10.

F
f

�0, 1�
F�0� � 1f

1

1

0 x

y

y=F(x)

1

1

0 x

y

FIGURE 9
An antiderivative of ƒ

FIGURE 10
Members of the family of
antiderivatives of ƒ
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y � F�x�f �3� � 0.2
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x � 1�0, 1�

Ff �0� � 0

y � f �x�
xy � F�x�F��x� � f �x�

F

x � 3Fx � 3
F

Fx � 1F
F

�1, 3�F
fF��x� � f ��x� � 0F�3, 
��0, 1�

Fx � 30 � x � 1
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1. 2.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 x

y

0

y=fª(x)

2 4 6 x

y

0

y=fª(x)
1–2 ■ The graph of the derivative of a function is shown.

(a) On what intervals is increasing or decreasing?

(b) At what values of x does have a local maximum or
minimum?

(c) If it is known that , sketch a possible graph 
of .f

f �0� � 0

f

f

ff �
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(a) When is the particle moving toward the right and when
is it moving toward the left?

(b) When does the particle have positive acceleration and
when does it have negative acceleration?

Let be a measure of the knowledge you gain by study-
ing for a test for t hours. Which do you think is larger,

or ? Is the graph of K concave
upward or concave downward? Why?

Coffee is being poured into the mug shown in the figure at a
constant rate (measured in volume per unit time). Sketch a
rough graph of the depth of the coffee in the mug as a func-
tion of time. Account for the shape of the graph in terms of
concavity. What is the significance of the inflection point?

11–12 ■ The graph of the derivative of a continuous function
is shown.

(a) On what intervals is increasing or decreasing?
(b) At what values of x does have a local maximum or

minimum?
(c) On what intervals is concave upward or downward?
(d) State the x-coordinate(s) of the point(s) of inflection.
(e) Assuming that , sketch a graph of f.

2

y

0 x_1 4 6 8

_2

y=fª(x)

2

11.

f �0� � 0

f

f
f

f
f �

10.

K�3� � K�2�K�8� � K�7�

K�t�9.

0 2 4 6

s

t

Use the given graph of to estimate the intervals on which
the derivative is increasing or decreasing.

4. (a) Sketch a curve whose slope is always positive and
increasing.

(b) Sketch a curve whose slope is always positive and
decreasing.

(c) Give equations for curves with these properties.

The president announces that the national deficit is increas-
ing, but at a decreasing rate. Interpret this statement in
terms of a function and its derivatives.

6. A graph of a population of yeast cells in a new laboratory
culture as a function of time is shown.
(a) Describe how the rate of population increase varies.
(b) When is this rate highest?
(c) On what intervals is the population function concave

upward or downward?
(d) Estimate the coordinates of the inflection point.

7. The table gives population densities for ring-necked pheas-
ants (in number of pheasants per acre) on Pelee Island,
Ontario.
(a) Describe how the rate of change of population varies.
(b) Estimate the inflection points of the graph. What is the

significance of these points?

8. A particle is moving along a horizontal straight line. The
graph of its position function (the distance to the right of a
fixed point as a function of time) is shown.

20
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(b) On what intervals is increasing or decreasing?
(c) On what intervals is concave upward or concave

downward?

25–26 ■ The graph of a function is shown. Which graph is an
antiderivative of and why?

26.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

27. The graph of a function is shown in the figure. Make a
rough sketch of an antiderivative , given that .

28. The graph of the velocity function of a car is shown in the
figure. Sketch the graph of the position function.

; 29–30 ■ Draw a graph of and use it to make a rough sketch
of the antiderivative that passes through the origin.

29.

30.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

f �x� � 1��x 4 � 1�

f �x� � sin�x 2 �, 0 � x � 4

f

t

√

0

0 x

y

2

F�0� � 0F

f

b

c

a

x

y

x

y

0

f
b

c

a

25.
f

f

f
f12.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

13. Sketch the graph of a function whose first and second deriv-
atives are always negative.

14. Sketch the graph of a function whose first derivative is
always negative and whose second derivative is always 
positive.

15–20 ■ Sketch the graph of a function that satisfies all of the
given conditions.

15. if , if ,

16. if , if ,
is not differentiable at 2

17. if 
if ,
if if 

18. does not exist,
if , if ,
, , if 

, , ,
if , if ,
if or if ,
if , ,

for all x

20. , if 
if or if 

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

21. Suppose .
(a) On what interval is increasing? On what interval is 

decreasing?
(b) Does have a maximum or minimum value?

22. If , what can you say about ?

23. Let . In Examples 3 and 7 in Section 2.8, we
showed that and . Use these
facts to find the following.
(a) The intervals on which is increasing or decreasing.
(b) The intervals on which is concave upward or

downward.
(c) The inflection point of .

24. Let .
(a) Use the definition of a derivative to find and .f ��x�f ��x�

f �x� � x 4 � 2x 2

f

f
f

f ��x� � 6xf ��x� � 3x 2 � 1
f �x� � x 3 � x

ff ��x� � e�x2

f
f

f
f ��x� � xe�x2

0 � x � 3x � 3, f ��x� � 0x � 0f ��x� � 0
x � 3, f ��0� � 0, f ��x� � 0limx l 3 f �x� � �


f ��x� � f �x�
lim xl
 f �x� � 11 � x � 4f ��x� � 0

x � 40 � x � 1f ��x� � 0
x � 2f ��x� � 00 � x � 2f ��x� � 0

f �0� � 0f �2� � �1f ��2� � 019.

x � 1f ��x� � 0f �1� � 0f ��1� � 4
� x � � 1f ��x� � 0� x � � 1f ��x� � 0

f ���1� � 0, f ��1�

x � 0x � 0, f ��x� � 0f ��x� � 0
� x � � 1, f ��1� � 4, f �1� � 0f ��x� � 0

� x � � 1, f ���1� � f ��1� � 0, f ��x� � 0

f
x � 2f ��x� � 0x � 2f ��x� � 0
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8. What does the Intermediate Value Theorem say?

9. Write an expression for the slope of the tangent line to the
curve at the point .

10. Suppose an object moves along a straight line with position
at time t. Write an expression for the instantaneous

velocity of the object at time . How can you interpret
this velocity in terms of the graph of f ?

11. If and x changes from to , write expressions
for the following.
(a) The average rate of change of y with respect to x over

the interval .
(b) The instantaneous rate of change of y with respect to x

at .

12. Define the derivative . Discuss two ways of interpreting
this number.

13. Define the second derivative of . If is the position
function of a particle, how can you interpret the second
derivative?

14. (a) What does it mean for to be differentiable at a?
(b) What is the relation between the differentiability and

continuity of a function?

15. (a) What does the sign of tell us about ?
(b) What does the sign of tell us about ?

16. (a) Define the linear approximation to at .
(b) Define an antiderivative of .f

af

ff ��x�
ff ��x�

f

f �t�f

f ��a�

x � x1

�x1, x2 �

x2x1y � f �x�

t � a
f �t�

�a, f �a��y � f �x�

1. Explain what each of the following means and illustrate
with a sketch.
(a) (b)

(c) (d)

(e)

2. Describe several ways in which a limit can fail to exist.
Illustrate with sketches.

3. State the following Limit Laws.
(a) Sum Law (b) Difference Law
(c) Constant Multiple Law (d) Product Law
(e) Quotient Law (f) Power Law
(g) Root Law

4. What does the Squeeze Theorem say?

5. (a) What does it mean to say that the line is a vertical
asymptote of the curve ? Draw curves to illus-
trate the various possibilities.

(b) What does it mean to say that the line is a hori-
zontal asymptote of the curve ? Draw curves 
to illustrate the various possibilities.

6. Which of the following curves have vertical asymptotes?
Which have horizontal asymptotes?
(a) (b) (c)
(d) (e) (f)
(g) (h)

7. (a) What does it mean for f to be continuous at a?
(b) What does it mean for f to be continuous on the interval

? What can you say about the graph of such a
function?
��
, 
�

y � sxy � 1�x
y � ln xy � e xy � tan�1x
y � tan xy � sin xy � x 4

y � f �x�
y � L

y � f �x�
x � a

lim
x l

 



 f �x� � L

lim
x l

 

a
 f �x� � 
lim

x l
 

a�
 f �x� � L

lim
x l

 

a�
 f �x� � Llim

x l
 

a
 f �x� � L

2 Review
C O N C E P T  C H E C K

5. If and  , then
does not exist.

6. If exists, then the limit must be 

7. If p is a polynomial, then 

8. If and  , then
.

9. A function can have two different horizontal asymptotes.

10. If has domain and has no horizontal asymptote,
then or .

11. If the line x � 1 is a vertical asymptote of , then 
is not defined at 1.

fy � f �x�

limx l 
 f �x� � �
limx l 
 f �x� � 

�0, 
�f

limx l 0 � f �x� � t�x�� � 0
limx l 0 t�x� � 
limx l 0 f �x� � 


limx l b p�x� � p�b�.

f �6�t�6�.limx l 6 f �x�t�x�
limx l 5 � f �x��t�x��

limx l 5 t�x� � 0lim xl5 f �x� � 0Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1.

2.

3.

4. If and  , then
does not exist.limx l 5 � f �x��t�x��

limx l 5 t�x� � 0limx l 5 f �x� � 2

lim 
xl1
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xl1
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11. 12.

13. 14.

15. 16.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

; 17–18 ■ Use graphs to discover the asymptotes of the curve.
Then prove what you have discovered.

17.

18.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

19. If for , find .

20. Prove that .

21. Let

(a) Evaluate each limit, if it exists.
(i) (ii) (iii)

(iv) (v) (vi)

(b) Where is discontinuous?
(c) Sketch the graph of .

22. Show that each function is continuous on its domain. State
the domain.

(a) (b)

23–24 ■ Use the Intermediate Value Theorem to show that
there is a root of the equation in the given interval.

23.

24. ,
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

�0, 1�e�x2

� x

��2, �1�2x 3 � x 2 � 2 � 0, 

h�x� � xesin xt�x� � sx 2 � 9
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f
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0
 f �x�lim
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 f �x�lim
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0�
 f �x�
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3 � x

�x � 3�2

if x � 0

if 0 � x � 3

if x � 3

limx l 0 x 2 cos�1�x 2 � � 0

limx l1 f �x�0 � x � 32x � 1 � f �x� � x 2

y � sx 2 � x � 1 � sx 2 � x
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cos2x
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 arctan�x 3 � x�lim
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s3x 2 � 1

x � 1

lim
x l

 

�

 
5x 3 � x 2 � 2

2x 3 � x � 3
lim
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0
 
1 � s1 � x 2

x

lim
x l

 

10�
 ln�100 � x 2 �lim

x l
 



 e�3x1. The graph of is given.

(a) Find each limit, or explain why it does not exist.
(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(b) State the equations of the horizontal asymptotes.
(c) State the equations of the vertical asymptotes.
(d) At what numbers is discontinuous? Explain.

2. Sketch the graph of a function that satisfies all of the 
following conditions:

, , ,

, , ,

3–16 ■ Find the limit.

3. 4.

5. 6.

7. 8.

9. 10. lim
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�h � 1�3 � 1

h

lim
x l

 

1�
 

x 2 � 9

x 2 � 2x � 3
lim

x l
 

�3
 

x 2 � 9

x 2 � 2x � 3

lim
x l

 

3
 

x 2 � 9

x 2 � 2x � 3
lim
x l

 

1
 e x3 �x

lim
x l

 

�

 f �x� � 4

lim
x l

 



 f �x� � 3lim

x l
 

2�
 f �x� � �
lim

x l
 

2�
 f �x� � 


f �0� � �1lim
x l

 

0�
 f �x� � 1lim

x l
 

0�
 f �x� � �2

f

0 x

y

1

1

f

lim
x l

 

�

 f �x�lim

x l
 



 f �x�

lim
x l

 

2�
 f �x�lim

x l
 

0
 f �x�

lim
x l

 

4
 f �x�lim

x l
 

�3
 f �x�

lim
x l

 

�3�
 f �x�lim

x l
 

2�
 f �x�

f

E X E R C I S E S

12. If and , then there exists a number c
between 1 and 3 such that .

13. If f is continuous at 5 and and , then

14. If f is continuous on and and 
then there exists a number r such that and 

.f �r� � �
� r � � 1

f �1� � 3,f ��1� � 4��1, 1�

limx l 2 f �4x 2 � 11� � 2.
f �4� � 3f �5� � 2

f �c� � 0
f �3� � 0f �1� � 0 15. If is continuous at a, then is differentiable at a.

16. If exists, then 

17.

18. If for all and exists, then
.limx l 0 f �x� � 1

limx l 0 f �x�xf �x� � 1

d 2y

dx 2 � 
dy

dx�2

limx l r f �x� � f �r�.f ��r�

ff



32–34 ■ Trace or copy the graph of the function. Then sketch a
graph of its derivative directly beneath.

32. 33. 34.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

35. (a) If , use the definition of a derivative to
find .

(b) Find the domains of and .

; (c) Graph and on a common screen. Compare the
graphs to see whether your answer to part (a) is 
reasonable.

36. (a) Find the asymptotes of the graph of
and use them to sketch the

graph.
(b) Use your graph from part (a) to sketch the graph of .
(c) Use the definition of a derivative to find .

; (d) Use a graphing device to graph and compare with
your sketch in part (b).

37. The graph of is shown. State, with reasons, the numbers
at which is not differentiable.

38. The figure shows the graphs of , , and . Identify each
curve, and explain your choices.

39. (a) If , what is the value of ?
(b) Find the linear approximation for at .
(c) Use the linear approximation to estimate the values of

.
(d) Are your approximations overestimates or

underestimates? Which of your estimates are the most
accurate?

e�0.2, e�0.1, e�0.01, e0.01, e0.1, and e0.2

a � 0f
f ��0�f �x� � e x

x

y
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b

c

0

f �f �f
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f
f
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f �x� � �4 � x���3 � x�

f �f
f �f

f ��x�
f �x� � s3 � 5x
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y

0 x

y

0 x

y

25. The displacement (in meters) of an object moving in a
straight line is given by , where is
measured in seconds.
(a) Find the average velocity over the following time 

periods.
(i) (ii)

(iii) (iv)
(b) Find the instantaneous velocity when .

26. According to Boyle’s Law, if the temperature of a confined
gas is held fixed, then the product of the pressure and the
volume is a constant. Suppose that, for a certain gas,

, where is measured in pounds per square inch
and is measured in cubic inches.
(a) Find the average rate of change of as increases from

200 in to 250 in .
(b) Express as a function of and show that the

instantaneous rate of change of with respect to is
inversely proportional to the square of .

27. For the function whose graph is shown, arrange the
following numbers in increasing order:

28. (a) Use the definition of a derivative to find , where
.

(b) Find an equation of the tangent line to the curve
at the point (2, 4).

; (c) Illustrate part (b) by graphing the curve and the tangent
line on the same screen.

; 29. (a) If , estimate the value of graphically
and numerically.

(b) Find an approximate equation of the tangent line to the
curve at the point where x � 1.

(c) Illustrate part (b) by graphing the curve and the tangent
line on the same screen.

30. Find a function and a number a such that

31. The total cost of repaying a student loan at an interest rate
of r% per year is .
(a) What is the meaning of the derivative ? What are its

units?
(b) What does the statement mean?
(c) Is always positive or does it change sign?f ��r�

f ��10� � 1200

f ��r�
C � f �r�

lim
h l
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�2 � h�6 � 64

h
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f
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ts � 1 � 2t � t 2�4
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graph of the total fertility rate in the United States shows
the fluctuations from 1940 to 1990.

(a) Estimate the values of , , and .
(b) What are the meanings of these derivatives?
(c) Can you suggest reasons for the values of these 

derivatives?

45. A car starts from rest and its distance traveled is recorded in
the table in 2-second intervals.

(a) Estimate the speed after 6 seconds.
(b) Estimate the coordinates of the inflection point of the

graph of the position function.
(c) What is the significance of the inflection point?

46. The graph of the function is shown. Sketch the graph of an
antiderivative , given that .

0
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40. The cost of living continues to rise, but at a slower rate. 
In terms of a function and its derivatives, what does this 
statement mean?

41. The graph of the derivative of a function is given.
(a) On what intervals is increasing or decreasing?
(b) At what values of does have a local maximum or

minimum?
(c) Where is concave upward or downward?
(d) If , sketch a possible graph of .

42. The figure shows the graph of the derivative of a
function .
(a) Sketch the graph of .
(b) Sketch a possible graph of .

43. Sketch the graph of a function that satisfies the given 
conditions:

,

on , and 
on and 
on and 
on and 

44. The total fertility rate at time t, denoted by , is an esti-
mate of the average number of children born to each woman
(assuming that current birth rates remain constant). The 
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In our discussion of the principles of problem solving we considered the problem-
solving strategy of introducing something extra (see page 88). In the following exam-
ple we show how this principle is sometimes useful when we evaluate limits. The idea
is to change the variable—to introduce a new variable that is related to the original
variable—in such a way as to make the problem simpler. Later, in Section 5.5, we will
make more extensive use of this general idea.

EXAMPLE 1 Evaluate , where c is a constant.

SOLUTION As it stands, this limit looks challenging. In Section 2.3 we evaluated sev-
eral limits in which both numerator and denominator approached 0. There our strat-
egy was to perform some sort of algebraic manipulation that led to a simplifying
cancellation, but here it’s not clear what kind of algebra is necessary.

So we introduce a new variable t by the equation

We also need to express x in terms of t, so we solve this equation:

Notice that is equivalent to . This allows us to convert the given limit
into one involving the variable t :

The change of variable allowed us to replace a relatively complicated limit by a
simpler one of a type that we have seen before. Factoring the denominator as a dif-
ference of cubes, we get

EXAMPLE 2 How many lines are tangent to both of the parabolas and
? Find the coordinates of the points at which these tangents touch the 

parabolas.

SOLUTION To gain insight into this problem it is essential to draw a diagram. So we
sketch the parabolas (which is the standard parabola shifted 1
unit upward) and (which is obtained by reflecting the first parabola
about the x-axis). If we try to draw a line tangent to both parabolas, we soon dis-
cover that there are only two possibilities, as illustrated in Figure 1.
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Let P be a point at which one of these tangents touches the upper parabola and
let a be its x-coordinate. (The choice of notation for the unknown is important. Of
course we could have used b or c or or instead of a. However, it’s not advisable
to use x in place of a because that x could be confused with the variable x in the
equation of the parabola.) Then, since P lies on the parabola , its 
y-coordinate must be . Because of the symmetry shown in Figure 1, the coor-
dinates of the point Q where the tangent touches the lower parabola must be

.
To use the given information that the line is a tangent, we equate the slope of the

line PQ to the slope of the tangent line at P. We have

If , then the slope of the tangent line at P is . Using the defini-
tion of the derivative as in Section 2.7, we find that . Thus, the condition
that we need to use is that

Solving this equation, we get , so and . Therefore, the
points are (1, 2) and (�1, �2). By symmetry, the two remaining points are (�1, 2)
and (1, �2).

The following problems are meant to test and challenge your problem-solving
skills. Some of them require a considerable amount of time to think through, so don’t
be discouraged if you can’t solve them right away. If you get stuck, you might find it
helpful to refer to the discussion of the principles of problem solving on page 88.

1. Evaluate .

2. Find numbers a and b such that .

3. Evaluate .

4. The figure shows a point P on the parabola and the point Q where the perpen-
dicular bisector of OP intersects the y-axis. As P approaches the origin along the
parabola, what happens to Q? Does it have a limiting position? If so, find it.

5. If denotes the greatest integer function, find .

6. Sketch the region in the plane defined by each of the following equations.
(a) (b) (c) (d)

7. Find all values of a such that is continuous on �:
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x 2
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if x � a
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8. A fixed point of a function is a number in its domain such that . (The func-
tion doesn’t move ; it stays fixed.)
(a) Sketch the graph of a continuous function with domain whose range also lies in

. Locate a fixed point of .
(b) Try to draw the graph of a continuous function with domain and range in 

that does not have a fixed point. What is the obstacle?
(c) Use the Intermediate Value Theorem to prove that any continuous function with

domain and range in must have a fixed point. 

9. (a) If we start from latitude and proceed in a westerly direction, we can let
denote the temperature at the point at any given time. Assuming that is a continu-
ous function of , show that at any fixed time there are at least two diametrically
opposite points on the equator that have exactly the same temperature.

(b) Does the result in part (a) hold for points lying on any circle on Earth’s surface?
(c) Does the result in part (a) hold for barometric pressure and for altitude above sea

level?

10. (a) The figure shows an isosceles triangle with . The bisector of angle 
intersects the side at the point . Suppose that the base remains fixed but the
altitude of the triangle approaches 0, so approaches the midpoint of .
What happens to during this process? Does it have a limiting position? If so, find it.

(b) Try to sketch the path traced out by during this process. Then find an equation of
this curve and use this equation to sketch the curve.

11. Find points and on the parabola so that the triangle formed by the 
-axis and the tangent lines at and is an equilateral triangle. (See the figure.)

12. Water is flowing at a constant rate into a spherical tank. Let be the volume of water
in the tank and be the height of the water in the tank at time .
(a) What are the meanings of and ? Are these derivatives positive, negative, or

zero?
(b) Is positive, negative, or zero? Explain.
(c) Let , , and be the times when the tank is one-quarter full, half full, and 

three-quarters full, respectively. Are the values , , and positive,
negative, or zero? Why?

13. Suppose is a function that satisfies the equation

for all real numbers x and y. Suppose also that

(a) Find . (b) Find . (c) Find .

14. A car is traveling at night along a highway shaped like a parabola with its vertex at the
origin. The car starts at a point 100 m west and 100 m north of the origin and travels in
an easterly direction. There is a statue located 100 m east and 50 m north of the origin. At
what point on the highway will the car’s headlights illuminate the statue?

15. If and , find .

16. If is a differentiable function and , use the definition of a derivative to
show that .

17. Suppose is a function with the property that for all x. Show that .
Then show that .f ��0� � 0
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